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Abstract-Joint detection of a large number ofM-PSK symbols 
is important for many applications in communications, in partic­
ular, for multiuser detection in CDMA systems. In the past, there 
was much effort to find a technically simple solution to this prob­
lem and yet providing near optimal detection performance. We 
propose to use a novel iterative technique, the phase descent search 
(PDS) algorithm, for solving this problem. This technique con­
strains the solution to have a unit magnitude and it is based on 
coordinate descent iterations where coordinates are the unknown 
symbol phases. The PDS algorithm, together with a descent lo­
cal search (also implemented as a version of the PDS algorithm), 
is used multiple times with different initializations in a proposed 
multiple phase detector; the solution with the minimum cost is then 
chosen as the final solution. Simulation results show that for highly 
loaded multiuser scenarios the proposed technique has a detection 
performance that is close to the single-user bound. The results also 
show that the multiple phase detector allows detection in highly 
overloaded scenarios and it exhibits near-far resistance. In par­
ticular, the detector has a performance that is significantly better, 
and complexity that is significantly lower, than that of the detector 
based on semi-definite relaxation. 

Index Terms - coordinate descent, low complexity, M-PSK, mul­
tiuser detection, quadratic optimization, semi-definite relaxation 

I. INTRODUCTION 

In multiple-access CDMA systems, multiuser detection is 
capable of providing high detection performance [1]. How­
ever, the complexity of multiuser detectors that are capable of 
approaching the optimal performance is still a very important 
issue. For a small-size problem, sphere decoding achieves a 
nearly optimal performance [2], but becomes complicated when 
the size of the problem increases [3]. Semi-definite relaxation 
(SDR) has also been proposed and investigated for joint de­
tection of a number of symbols with M-PSK modulation [4]. 
Although, promising for multiuser detection, SDR is still com­
plicated for practical implementation [5]. An efficient imple­
mentation of multiuser detection, especially in hardware, can 
be based on the dichotomous coordinate descent (DCD) al­
gorithm [6], [7], [8]. However, the box-constrained detector 
does not show good detection performance in highly loaded 
scenarios. In [9], we proposed a novel technique for solving 
a constrained optimization problem corresponding to the opti­
mal detection of M-PSK signals in MIMO systems. This tech­
nique has the detection performance similar to that of the sphere 
decoder and significantly lower complexity. Later, we have 

found that this new technique is especially efficient for scenar­
ios where the number of unknown symbols is large. This is 
typical for CDMA communications. In this paper, we consider 
joint detection of M-PSK symbols in application to multiuser 
CDMA scenarios and propose to use the technique from [9] 
for this purpose. We show that such a detector has a detection 
performance that is better than that of the SDR detector and 
significantly lower complexity. 

II. PROBLEM FORMULATION 

The matched-filter output of a symbol synchronous CDMA 
receiver is given by the K -length vector 

y=Rb+n (1) 

where the vector bEAK = {[ej27rm/Ml:;;��}K contains M­
PSK symbols (from a constellation set A) transmitted by the K 
users, R is a K x K positive definite signature waveform cor­
relation matrix, and n is a complex-valued zero-mean Gaussian 
random vector with covariance matrix a2R, a2 > 0 [5]. 

The maximum likelihood (ML) multiuser detector estimates 
the vector b by minimizing the quadratic function [1] 

(2) 

with the constraint bEAK, where �{.} denotes the real part 
of a complex number. The ML data estimates are given by 

bML = arg min {J (b)} . 
bEAK 

(3) 

Although the ML detector provides the best detection perfor­
mance, it is not practical due to its high complexity [1]. Relax­
ation of the constraint is a general approach that results in lower 
complexity multiuser detectors [5]. As M-PSK symbols have a 
unit magnitude, we use the following relaxation to the original 
problem (3): 

b = arg min {J(b)} , 
Ibk l=l,k=O, ... , K-l 

(4) 

where bk are elements of the vector b. After obtaining an ap­
proximate solution to this problem, the final data estimates are 
obtained by mapping elements of the solution vector into the 
constellation set A. 

Notice that the problem (4) is non-convex. Using a con­
vex optimization technique, like the coordinate descent method 
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TABLE I 
PHASE DESCENT SEARCH ALGORITHM 

Step Equation x + 
Inil. b - bo, 1> - 1>0' r - y - Rbo, d - do, n - 0 

1 form = 1: Mb 
2 d +- Ad - -
3 (J = diag{R}[l - cos(d)] K -
4 F1ag= 0 - -
5 forp = 0: (K -1) (a pass) - -
6 4>p,l = 4>p + d, bp,l = eNp,I - 1 
7 b.1 = bp,l - bp, Tl = R{b.i Tp} 2 2 
8 if Op < Tl - 1 
9 n +- n + 1, F1ag= 1 - -

10 r +- r - b.lR(p) 4K 4K 
11 4>p = 4>p,l. bp = bp,l - -
12 4>p,2 = 4>p - d, bp,2 = ej</>p,2 - 1 
13 b.2 = bp,2 - bp, T2 = R{b.2Tp} 2 2 
14 if Op < T2 - 1 
15 n +- n + 1, Flag= 1 - -
16 r +- r - b.2R(p) 4K 4K 
17 4>p = 4>p,2, bp = bp,2 - -
18 end the loop over p (end of the pass) - -
19 if n > N u the algorithm stops - -
20 if F1ag= 1 go to step 4 - -
21 end the loop over m - -

Total complexity: :::; 8K Nu + 5K Mb real multiplications 
and < 12K Nu + 8K Mb real additions 

considered below, can result in a local minimum, Multiple solu­
tions of the problem for a set of initializations will allow finding 
a 'smallest' local minimum. Nevertheless, as will be seen be­
low, a small number of such initializations will result in a very 
high performance of the detector. 

III. PROPOSED DETECTOR 

The multiuser detector is based on multiple use of the Phase 
Descent Search (PDS) algorithm [9] as described below. 

A. Phase Descent Search (PDS) algorithm 
The PDS is based on coordinate descent iterations with re­

spect to the unknown symbol phases and a constraint that forces 
the symbols to have a unit magnitude. Specifically, the elements 
of the solution are given by 

The coordinate descent iterations are applied to the phases ¢k. 
The derivation of the PDS algorithm is based on a general co­
ordinate descent method as described in [10] (see also [6]). 
To derive the PDS algorithm, we apply the coordinate descent 
method to the cost function (2) with elements bk from (5); 
see [9] for details of the derivation. The iterative PDS algo­
rithm is summarized as shown in Table I. 

The complex valued solution vector b is represented using 
real and imaginary parts; its entries are initialized according 
to (5), i.e., I[bolkl = 1 for all k = 1, . . .  , K. The phases of the 
entries are also saved in a K-Iength vector cp. The algorithm 
has two loops. In the external loop, m = 1 : Mb, the step-size 
parameter d, defining the resolution of the phase estimation, 
is reduced Mb times according to the relationship d f-- Ad, 
i.e., d = dOA m, 0 < A < 1. The initial value of the step­
size parameter is do = 271". The choice of A may relate to the 
modulation scheme used; this will be addressed below. The 

parameter Mb indicates the number of reductions of the step­
size d and, thus, the final phase resolution dOAMb; e.g., in the 
case of A = 1/2 and Mb = 6, the final phase resolution is 
271" /2Mb = 71"/32. 

In the internal loop, p = 0 : (K - 1), all elements of the 
solution vector are checked for a possible update. If, for the pth 
element, one of the inequalities at steps 8 or 14 is satisfied, the 
iteration is called 'successful' and the element bp of the solution 
vector and the residual vector r are updated (steps 10-11 or 16-
17, respectively); otherwise, they are not changed. The binary 
parameter Flag indicates a successful iteration. The variable n 

counts the number of successful iterations; it is used for intro­
ducing the stopping criterion at step 19, where Nu is a prede­
fined parameter that limits the maximum number of updates. If 
for a pass through all K solution elements in the internal loop, 
there is no update, it means that, for the current solution, the 
step-size d is too large and it requires reduction. The step-size 
is reduced at step 2. Thus, further updates of the solution will 
be done with a higher phase resolution. 

B. Multiple Phase Detector 
The PDS algorithm with a consequent mapping of the solu­

tion to the constellation A will be shown to provide a good de­
tection performance for BPSK signals, i.e., in the case M = 2. 
However, for M-PSK signals with M > 2, it does not guar­
antee high performance. This is because, for a particular ini­
tialization, the PDS algorithm can find a local minimum of the 
cost function instead of the global minimum. The performance 
can be improved by multiple use of the PDS algorithm with 
different starting solutions and a further local search [5] (also 
implemented using the PDS algorithm) in the multiple phase 
detector as shown in Table II. The multiple use of search algo­
rithms with different starting solutions is known to be a simple 
approach for improving the detection performance [5]. More­
over, this approach introduces parallelism in the processing thus 
making a hardware implementation of the detector efficient. 

The PDS algorithm is used multiple times with different ini­
tializations of the solution vector. To obtain a solution for the 
qth initialization bq, we apply the PDS algorithm twice. The 
first PDS (step 1 in Table II) with the consequent mapping (step 
2) to the constellation A provides a first solution, whereas the 
second PDS (step 3) performs a descent local search moving 
from one ML feasible solution to another in the neighborhood 
of the first solution [5]. Among Q solutions, the one that has 
the smallest cost function J ( . ) (computed at step 4) is selected. 
For the first PDS, we use a high Mb and A = 1/2. For the 
second PDS, we use Mb = 1 and A = 1/ M. The second 
PDS is initialized by the mapped solution of the previous PDS, 
b = exp(j4», and, according to the values of Mb and A, it per­
forms M-PSK symbol-flipping (i.e., the descent local search). 

IV. IMPLEMENTATION ISSUES 

In this section, we discuss implementation of the proposed 
multiple phase detector in hardware. This detector possesses 
intrinsic parallelism. It can be implemented as Q identical par­
allel branches, each containing two PDS blocks (corresponding 



Step 

1 

2 
3 

4 

TABLE II 
MULTIPLE PHASE DETECTOR 

Algorithm 
for q - 0: Q - 1 

Initialize the PDS algorithm with 
Mb > 1, A = 1/2, 1> = 1>q, b = bq, r = y - Rbq 
Apply the PDS algorithm to obtain a solution b 
Map b into the M-PSK constellation to obtain (p and b 
Initialize the PDS algorithm with 
Mb = 1, A = 11M, 1> = (p, b = b, r = y - Rb 
Apply the PDS algorithm to obtain a solution b 
Calculate the cost function for the solution b 

end 
Choose the solution with the minimum cost 

to steps 1 and 3 in Table II), a mapping block (step 2 in Ta­
ble II) and a block for computation of the cost function (step 4 
in Table II). 

The first PDS blocks in the branches use different initializa­
tion of the phase vector 4> and, accordingly, different initializa­
tion of the solution vector b and the residual vector r. The ini­
tial vector bq in the qth branch should satisfy the constraint (5) 
and therefore it can be represented as bq = exp(j4>q). For a 
fixed vector 4>q' the initial vector bq can be obtained using a 

look-up table. The size of the look-up table is as small as 2Mb; 
e.g., for Mb = 6, it contains as few as 64 complex numbers. 
To initialize the residual vector, one has to calculate the matrix­
vector product Rbq, which, in the general case, would require 
K2 complex-valued multiplications and K(K - 1) complex­
valued additions in each branch. This computation is signifi­
cantly simplified if all elements of the phase vector 4>q are the 
same, i.e., Rbq = cqRl, where cq is a complex-valued con­
stant and 1 is a K-Iength vector of ones. In this case, the vector 
Rl is calculated once for all Q branches and this calculation 
does not require multiplications. Then, for initialization of the 
residual vector for each branch as few as K complex-valued 
multiplications and K complex-valued additions are required. 
Multiple simulations with different initialization (not presented 
here due to lack of space) have shown that the use of the initial­
ization cq = exp(j 7!) provides good detection performance. 

Since the PDS algorithm provides phases of the solution, the 
mapping at step 2 becomes a simple operation. It includes trun­
cation (quantization) of Mb-bit elements of the phase vector 4>q 
into log2(M)-bit elements of the vector ¢ and the use of a look­
up table of size M to obtain h. These two vectors are used for 
initialization of the second PDS block in the branch. Note that 
the proposed choice of the parameters Mb = 1 and>. = 1/ M 
makes the second PDS simple for implementation and, also, it 
removes the need for symbol mapping after the second PDS. 
Our simulation results (not presented here) have shown that, in 
the second PDS blocks, the parameter Nu limiting the number 
of updates can be significantly lower than that in the first PDS 
blocks. 

Now, we discuss implementation of the PDS blocks. In the 
PDS algorithm presented in Table I, there are two stopping cri­
teria: 1) at step 21 upon achieving a predefined phase resolution 
dO>.Mb; and 2) at step 19 upon performing Nu updates. When 
implementing in hardware (e.g., on an FPGA platform), other 
stopping criteria can also be used; e.g., the PDS can stop after a 
predefined number of clock cycles (or execution time). Table I 
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Fig. 1. BER performance of the multiple phase detector; BPSK modulation, 
K = 60, SF = 63. 

shows the complexity of different steps of the PDS algorithm 
in terms of real multiplications and additions, as well as the 
maximum complexity. At step 3, the values 1 - cos( d) for Mb 
values of d can be precomputed. Thus, this step only requires 
K real multiplications. For transforming phases <Pp,l and <Pp,2 
into complex numbers bp,l and bp,2 (at steps 6 and 12, respec­
tively), a look-up table of size 2Mb can be used as explained 
above. The maximum complexity corresponds to a scenario 
where, for every pass, only one successful iteration happens 
and the PDS algorithm stops at step 19, i.e., due to reaching a 
predefined maximum number of successful updates Nu. If, in 
a pass through K phases, there are several successful iterations 
and/or the PDS algorithm stops at step 21, i.e., due to reaching 
the predefined phase resolution, the complexity will be lower. 
In the simulation below, we use Nu high enough to guarantee 
that the PDS algorithm stops at step 21. Therefore, our results 
will demonstrate the upper bound for the complexity of the de­
tector. 

V. NUMERICAL RESULTS 

Fig.l shows the BER performance of the proposed detector 
for BPSK modulated signals against the single-user bound, ob­
tained in 106 simulation trials. The user signature waveforms 
have equal energies; they are binary and chosen randomly in 
each simulation trial. The number of users is K = 60 and the 
spreading factor is SF = 63, i.e., here we deal with a highly 
loaded multiuser scenario. The case Q = 0 corresponds to the 
PDS algorithm with a consequent mapping of the solution to the 
set A (steps 1 and 2 in Table II). The case Mb = 1 with>. = 1/2 
corresponds to bit-flipping, i.e., changing the pth coordinate of 
the solution vector between +1 and - 1. The bit-flipping pro­
vides a good performance at low SNRs, but, at high SNRs, there 
is a BER floor. As Mb increases, the BER floor level is reduced; 
however, the performance at low SNRs becomes worse. In the 
case of Q = 1, the PDS algorithm is used again at step 3, now 
with Mb = 1, i.e., the second PDS algorithm provides the bit­
flipping, which results in significant improvement in the BER 
performance. For the highly loaded scenario, the performance 
becomes very close to the single-user bound. We compare the 
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Fig. 2. BER performance of the multiple phase detector; 8-PSK modulation, 
K = 60, SF = 63. 

performance with the single-user bound (instead of the ML per­
formance) because simulation of the ML detector with K = 60 
users would be impractical. 

Fig.2 shows the BER performance for a scenario with 8-PSK 
modulation. For this scenario, the use of Q = 0 or Q = 1 
(not shown here) does not allow the detection performance to 
approach the single-user bound. For Q = 4, as Mb increases, 
the BER floor level is reduced, whereas the BER curves slightly 
depart from the single-user bound. However, for Q = 8 and 
Mb = 6 at high SNRs, the BER performance of the proposed 
detector is very close to the single-user bound. 

In the simulation, we computed the average number of mul­
tiplications in the proposed detector with the best performance 
in Fig.2, i.e., Q = 8 and Mb = 6. On average, the detector re­
quires approximately 5.105 multiplications to detect all K = 60 
user symbols. Note that the complexity of the decorrelator (one 
of the simplest detectors) is approximately K3 � 2· 105 mul­
tiplications, i.e., the complexity of the proposed multiple phase 
detector with Q = 8 branches in such a highly loaded scenario 
is close to that of the decorrelator. In [4], complexity results 
for the SDR detector are presented; specifically, for K = 10, 
the SDR detector requires approximately 2.106 multiplications. 
Our simulation results have shown that, in the case of K = 10, 
Q = 8, and Mb = 6, the proposed detector requires on average 
1.2 . 104 multiplications, i.e., two orders of magnitude lower 
than that of the SDR detector. 

Fig.3 compares the symbol-error-rate (SER) performance of 
the proposed detector against the SDR detector for 8-PSK mod­
ulation. The results for the SDR detector are taken from [4], 
where the simulation has been done with Gold signature wave­
forms of length SF = 31. We also use the Gold signature wave­
forms in the same scenarios, where the number of users varies 
from K = 20 to K = 30. Fig.3 shows that the proposed de­
tector significantly outperforms the SDR detector and the per­
formance of our detector is very close to the single-user bound. 
We have also repeated the simulation for binary signature wave­
forms randomly chosen in each simulation trial; it can be seen 
that the performance is similar or better than that of the SDR 
detector with Gold signature waveforms. 
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Fig. 3. SER performance of the multiple phase detector against the SDR 
detector; 8-PSK modulation, Q = 4, Mb = 8, SF = 31, SNR = 17 dB. 
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Fig. 4, BER performance of the multiple phase detector in overloaded scenar­
ios; BPSK modulation, SF = 31. 

Fig.4 shows the BER performance of the proposed detec­
tor in overloaded multiuser scenarios with BPSK modulation 
where the number of users K exceeds the spreading factor SF. 
The signature waveforms are random binary with equal ener­
gies. It is seen that the proposed detector allows reliable de­
tection even in these difficult situations. E.g., for K = 60 and 
as high a load as K /SF � 2, at BER = 10-4 the detection 
performance departs from the single-user bound by as little as 
approximately 1 dB. However, this requires an increase in the 
number of branches (initializations) Q. 

Finally, we provide simulation results that demonstrate near­
far resistance of the proposed detector. We consider scenarios 
where all but the first user has the same SNR [5]. In Fig.5, the 
BER of the first user is shown against the ratio of the strength 
of the interfering user signals to the first user signal for BPSK 
modulation. In the case of K = 10 and SF = 32 (this case 
and the case K = 24 and SF = 32 are similar to that consid­
ered in [5]), the near-far resistance of the proposed detector is 
close to that of the ML detector. In this case, increase in Q does 
not improve the BER performance. In the case of K = 24, in-
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Fig. 5. BER performance of the multiple phase detector in near-far scenarios; 
BPSK modulation, SNR(l) = 6 dB. 
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Fig. 6. BER performance of the multiple phase detector in near-far scenarios; 
8-PSK modulation, SNR(l) = 16 dB. 

crease in Q results in a slight improvement. Note that the direct 
simulation of the ML detector for K = 24 is impractical, there­
fore we cannot compare our results with the ML performance. 
In [5], the BER performance of an ML detector implemented 
using a branch and bound algorithm based on SDR is given for 
the same scenario. However, our results show slightly better 
near-far resistance compared to the ML performance presented 
in [5] 1. It is seen that with further increase of the load (the case 
of K = 60 and SF = 63), the proposed detector demonstrates 
small variations in the near-far resistance. Fig.6 shows that the 
proposed detector has also good near-far resistance for 8-PSK 
modulation. 

V I. CONCLUSIONS 

We have used a novel iterative technique, the phase descent 
search algorithm, for joint detection of multiple M-PSK sym­
bols, specifically for multiuser detection. The technique pro­
vides an approximate solution to the quadratic optimization 
problem with a constraint that forces elements of the solution to 

IThis could be due to approximations made in [5] orland a smaller number 
of simulation trials used in [5]. 

have unit magnitude. This technique is used multiple times in 
the multiuser detector. Simulation results show that for highly 
loaded scenarios this technique has detection performance that 
is close to the single-user bound. The technique also allows reli­
able detection in highly overloaded scenarios and demonstrates 
good near-far resistance. We have shown by simulation that the 
multiple phase detector has a performance that is significantly 
better, and complexity that is significantly lower, than that of 
the detector based on semi-definite relaxation. 
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