
SocialCloudShare: a Facebook Application for a
Relationship-based Information Sharing in the
Cloud
Davide Alberto Albertini1, Barbara Carminati1, Elena Ferrari1

1DISTA, Università degli Studi dell’Insubria, Via Mazzini 5, Varese, Italy.
{davide.albertini, barbara.carminati, elena.ferrari}@uninsubria.it

Abstract

In last few years, Online Social Networks (OSNs) have become one of the most used platforms for sharing
data (e.g., pictures, short texts) on the Internet. Nowadays Facebook and Twitter are the most popular OSN
providers, though they implement different social models. However, independently from the social model they
implement, OSN platforms have become a widespread repository of personal information. All these data (e.g.,
profile information, shared elements, users’ likes) are stored in a centralized repository that can be exploited
for data mining and marketing analysis. With this data collection process, lots of sensitive information are
gathered by OSN providers that, in time, have become more and more targeted by malicious attackers.
To overcome this problem, in this paper we present an architectural framework that, by means of a Social
Application registered in Facebook, allows users to move their data (e.g., relationships, resources) outside the
OSN realm and to store them in the public Cloud. Given that the public Cloud is not a secure and private
environment, our proposal provides users security and privacy guarantees over their data by encrypting the
resources and by anonymizing their social graphs. The presented framework enforces Relationship-Based
Access Control (ReBAC) rules over the anonymized social graph, providing OSN users the possibility to
selectively share information and resources as they are used to do in Facebook.

Keywords: Online Social Networks; Collaborative graph anonymization; Controlled information sharing; Privacy-
preserving path finding.

1. Introduction
In last years Online Social Networks (OSNs) have
become one of the most common platforms for sharing
data (e.g., pictures, short texts) on the Internet.
Nowadays Facebook and Twitter are the most common
OSN providers, though they implement different social
models (e.g., supporting symmetric or asymmetric
relationships). However, independently from the
model they implement, OSN platforms have become
a widespread repository of personal information. All
these data (e.g., profile information, shared elements,
users’ likes) are stored in a centralized repository, not
only to offer users a more customized experience on
the OSN, but also to exploit them for data mining and
marketing analysis. With this data collection process,
lots of sensitive information are gathered by OSN
providers that, in time, have become more and more
targeted by malicious attackers.

Even though OSN providers give users’ the ability
to control how their information is shared over
the platforms, this does not prevent them from

collecting and profiling d ata. L iterature presents
several proposals aiming to prevent these marketing
analysis. In general, these solutions imply to hide
resources to OSN providers, e.g., by encrypting or by
moving them to an external platform (see Section 7 for
a more detailed discussion). All these proposals, thus,
give users the ability to hide their resources from OSN
providers, but do not avoid that OSN providers may
infer users’s personal information by analyzing, for
example, the social graph.

This problem is further exacerbated by the fact that
some well known OSN provider have not been always
honest with respect to users privacy (see, for instance,
[11] for a survey on these privacy concerns). Moreover,
it occurred that OSN weaknesses brought to release as
public some users’ private data (e.g., the Google cyber
attack in 2009 [13] or Google glitches [25]).

To overcome this problem, in this paper we present
an architectural framework that, by means of a Social
Application registered in Facebook, allows users to
move their data (e.g., resources, relationships) outside

1

Research Article
EAI Endorsed Transactions
on Collaborative Computing

Received on 19 July 2014, accepted on 23 July 2014, published on 20 October 2014

Copyright © 2014 Davide Alberto Albertini et al., licensed to ICST. This is an open access article distributed under the terms of
the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution
and reproduction in any medium so long as the original work is properly cited.
doi: 10.4108/ cc.1.2.e6

EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

mailto:<\protect \T1\textbraceleft davide.albertini, barbara.carminati, elena.ferrari\protect \T1\textbraceright @uninsubria.it>

Figure 1. An example of social graph

the OSN realm and to store them in the public Cloud.
Given that the public Cloud is not a secure and private
environment, our proposal provides users security and
privacy guarantees over their data by encrypting the
resources and anonymizing their social graphs.

The presented framework enforces Relationship-
Based Access Control (ReBAC) (see [5, 8]) rules over
the anonymized social graph, granting OSN users the
possibility to selectively share resources as they are
used to do in Facebook. More precisely, the owner of a
certain resource rsc can define relationship-based access
control conditions that have to be verified in order to
release rsc to the requestors. A relationship-based access
control condition acc specifies type and depth of the
relationship that must exist between the resource owner
and the requestor to release rsc to the latter. More
formally, an access control condition has the form acc =
(RelT ype,MaxDepth), where RelType is taken from a
finite set of relationship type (e.g., friend, relative,
sibling, colleague) and MaxDepth specifies the maximum
number of hops that the shortest path connecting the
owner and the requestor may be composed of. In this
paper, we allow users to define access control conditions
on their resources according to the ReBAC paradygm.

The proposed framework is based on the architecture
described in [1], where anonymization and encryption
techniques are accurately described. The work in
[1], however, was tailored for a Decentralized Social
Network (DSN) and, then, it suffers of all the limitations
coming from a decentralized management of users
data. In this paper, we present a proof-of-concept of such
model, by implementing it inside Facebook.

The remainder of the paper is organized as follows.
Section 2 presents an overall description of the

proposal, while Section 3 illustrates the details of
the architecture, along with a disussion describing
how ReBAC is enforced over an anonymized social
graph. Section 4 describes communication protocols,
whereas Section 5 provides technical details of the
current framework implementation. Section 6 deals
with experimental evaluations. Finally, Section 7 gives
an overview of the state of art, whereas Section 8
concludes the paper.

2. Overall Description
In order to highlight limitations of current proposals,
we introduce a motivating example that reflects a real
case of use of OSN functionalities.

Example. Let consider the simple social network
represented in Figure 1, where where nodes represent
users and edges represent “friend” relationships. Let
assume that an OSN user, say Ernest, is willing to
publish on his Facebook wallboard some pictures
regarding a Christmas company party. As such, Ernest
wishes to share those pictures only with the people
working in his company, that is, with Gabriel, James,
Karen, and Lori.

In a Facebook-style scenario, Ernest would not be able
to keep track of the real-life relationships that he has
with his colleagues. Then, in order to distinguish his
colleagues from other contacts, Ernest would have to
create a group or an event including all the people who
take part in the party and then share the pictures with
them. A simple relationship-based sharing, like the one
offered by Facebook (e.g., friends or friends-of-friends),
in fact, would not reach all the users of the network that
attended the party. Indeed, with an “only friends” (OF)

2 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

Davide Alberto Albertini et al.

privacy setting, James and Karen, who are not directly
connected with Ernest, would not be able to see the
pictures. On the other hand, with a “friend of friends”
(FoF) privacy setting, a larger set of users would be
able to see them, including other people such as, e.g.,
Ernest’s friends and relatives and their contacts.

Moreover, users who can see Ernest’s pictures are
granted the ability to share the pictures on their own
wall, diclosing to the OSN community that there exists
a connection between them and Ernest. Let assume,
then, that pictures are uploaded with an OF privacy
setting and Lori shares them on her wall. As such, even
James and Karen would be able to see those photos,
discovering there exists a connection between Ernest
and Lori. This side effect may not be appreciated by
Ernest, who may desire to keep this relationship private.

Finally, Ernest may have concerns publishing his
pictures, in that he knows that all the published
pictures are stored in an OSN repository that could
be attacked by malicious users without any possibility
for Ernest to prevent this event. The Social Network
provider, actually, may try to infer data about Ernest
for marketing purposes too and, still, Ernest would
have no chances to prevent this profiling.

As highlighted by the example above, we identify
three main issues underlying every OSN user expe-
rience: a limited set of privacy settings available in
today OSNs for sharing resources, the possibility for
both users and OSN provider to infer existence of
relationships, and the lack of tools for users to control
how their data are stored in the social network provider
realm. To cope with these issues, we propose to export
users’ data (i.e., relationships and resources) from the
OSN to an external platform, such as, the public Cloud,
by, at the same time, enforcing a relationship-based
access control more flexible than the one offered by
OSN providers. Moreover, since the Cloud itself could
act as a malicious party or, simply, it could be targeted
by malicious attackers, data stored in the public Cloud
have to be protected.

To achieve these requirements, in this paper, we
present an implementation of the solutions proposed
in [1] having the most popular social network, i.e.,
Facebook, as target. The framework presented in [1]
allows users to share encrypted resources stored on
the public Cloud, releasing decryption keys only to
users that satisfy the corresponding ReBAC rule. The
key management presented in [1] assures that resources
can be encrypted/decrypted only at client-side, without
disclosing any other information to the framework
components. More details on the encryption scheme
will be provided in Section 6.

Relationships data have to be processed in a different
way with respect to users’ resources. Indeed, in
order to implement ReBAC, the framework needs

to search for path existence in the social graph.
Thus, in order to preserve users’ privacy, this path
discovering is performed on anonoymized structures,
called Anonymized Contact Lists (ACL)s. More precisely,
given a user u and the list of contacts, denoted as
CLd(u), that are at a maximum distance of d-hops from
u, the corresponding Anonymized Contact List, ACLd(u),
is defined as the coefficients of the polynomial P d

u (x)
whose roots are all and only the identifiers of users in
CLd(u).1

By exploiting the ACLs, it is possible to verify the
existance of a path of a given distance between two
users. As example, if the identifier of a user v is a root
for the polynomial whose coefficients are in ACL1(u)
(i.e., P 1

u (x = idv) = 0), it means that between u and v
there exists direct relationship. However, since users
have only a local view of the social graph (i.e., only their
direct contacts), they are only able to compute their
ACL1. Indeed, they cannot retrieve enough information
in order to compute any ACLns, where n > 1, on his/her
own. Thus, in order to enforce a ReBAC model, a more
complete view of the social graph is necessary, rather
than the one offered by ACL1s.

To overcome this problem, in [1] we propose a
method to combine ACL1s so as to compute such a
global view of the social graph. This method is based
on the consideration that, given a certain user u, his/her
list of contacts CL2(u) contains all and only those users t
such that there exists a user v contained in CL1(u), such
that t is in CL1(t). Then, with an abuse of notation, we
can denote CL2(u) =

⋃
v∈CL1(u) CL

1(v). Thus, by means
of ACL1s of all the direct contacts of u, it is possible to
compute ACL2(u).

In particular, to compute the union, we exploit the
polynomials property that, given two polynomials p(x)
and q(x), the roots of the polynomial which results from
their multiplication, that is, r(x) = p(x) · q(x), are all and
only the roots in the union set between the roots of
p(x) and the roots of q(x). Thus, to privately compute
ACL2(u), it is possible to compute the multiplication of
all the polynomials P 1

v (x), where v is a direct contact
of u, that is, P 1

u (x = idv) = 0, in order to obtain P 2
u (x). By

means of this procedure, at last, it is possible not only to
compute ACL2s, but also to obtain ACLns, where n ≥ 2.
As such, in order to compute ACLns, where n ≥ 2, no
user interaction is required.

With reference to the social graph depicted in Figure
1, the proposed collaborative graph reconstruction
procedure is executed as follows. Let assume that Karen
makes use of SocialCloudShare before any other user
in her community. At registration time, Karen fetches

1This relies on the assumption that, for each user u of the social
network, the OSN provider assigns him/her an unique identifier idu ,
at registration time, which is true for any popular OSN.

3 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

SocialCloudShare: a Facebook Application for a Relationship-based Information Sharing in the Cloud

her direct contact list CL1(Karen) and anonymizes it
locally, in order to compose ACL1(Karen). Let assume,
for instance, that CL1(Karen) = [Lori,Gabriel]; then
ACL1(Karen) is given by a polynomial P 1

Karen(x), whose
only possible roots are the the values of identifiers of
users in CL1

Karen. Then, this ACL1(Karen) is sent to the
SocialCloudShare framework (see Figure 2).

Figure 2. Example of the propagation procedure - phase 1

Assume now that, in a second time, Ernest makes use
of SocialCloudShare. Similarly to Karen, Ernest fetches
CL1(Ernest) and anonymizes it, obtaining P 1

Ernest(x). By
having ACL1(Karen) and ACL1(Ernest) (see Figure 3),
the framework2 can combine them together so as to
reconstruct the graph. More precisely, it has to discover
if Karen and Ernest are friends. This can be done
by evaluating P 1

Karen(x = idErnest), which will return a
number , 0, since Ernest is not a Karen’s contact. Then,
no information propagation is necessary, in that no new
relationship has been discovered.

Figure 3. Example of the propagation procedure - phase 2

Finally, assume that Lori makes use of
SocialCloudShare. Figure 1 depicts that Lori is both
a direct contact of Karen and Ernest; as such, when
the framework comes to evaluate P 1

Karen(x = idLori)

2In Section 3 it will be explained which entity of the framework is in
charge of this activity.

the result will be 0. Then, the framework is able to
determine

P 2
Lori(x) = P 2

Lori(x) · P 1
Karen(x),

P 2
Karen(x) = P 2

Karen(x) · P 1
Lori(x).

Then, the propagation procedure evaluates P 1
Ernest(x =

idLori) and, again, the given result is 0; as such
the information represented by ACL1(Ernest) and
ACL1(Karen) has to be cross-propagated, resulting in

P 2
Lori(x) = P 2

Lori(x) · P 1
Ernest(x),

P 2
Ernest(x) = P 2

Ernest(x) · P 1
Lori(x).

Figure 4 illustrates the impact of these evaluations on
the framework current state.

Figure 4. Example of the propagation procedure - phase 3

The procedure, then, continues in propagating
users information in deeper levels until no futher
computation is possible, that is, when the ACL1(Lori)
has been propagated to each of Lori’s contacts and
their ACLs have been propagated too (see Figure 5). As
such, by exploiting the presented collaborative graph
reconstruction, the framework is able to compute ACLn,
where n ≥ 2, obtaining a social graph representation
much wider than the one represented by only ACL1.

idu ACL1(u) ACL2(u) ACL3(u) . . .

idKaren ACL1(Karen) ACL1(Lori) ACL1(Ernest)
idErnest ACL1(Ernest) ACL1(Lori) ACL1(Karen)
idLori ACL1(Lori) ACL1(Karen) · ACL1(Ernest)

Figure 5. Example of the propagation procedure - end phase

A more detailed description of the adopted tech-
niques, along with a security analysis of the framework,
can be found in [1].

4 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

Davide Alberto Albertini et al.

Figure 6. Framework architecture

3. Framework Architecture
According to the proposed architecture (see Figure
6), users’ resources to be shared are locally encrypted
by owners and stored into a Cloud storage (i.e.,
Dropbox). In support of this, we assume that the user is
provided with the Encryption Manager (EM), a browser
plugin that is mainly in charge of owner’s resources
encryption and of generation of the Anonymized
Contact List of user’s direct contacts, that is, ACL1. As
described in Section 2, these structures are computed
by anonymizing the information of CL1, which is
gathered directly from the OSN (i.e., Facebook). The
channel between Facebook and the browser plugin is
handled by the JavaScript Facebook SDK,3 that allows
the user to fetch structured data about the social graph
(e.g., a contact list) directly from the OSN, without
relying on any thirdy-party application.

ReBAC enforcement is carried out by releasing
encryption keys only to those requestors that satisfy at
least one of the owner’s access rules. This enforcement
requires the presence in the framework of two more
entities. The first entity is a Social Application,
named SocialCloudShare (SCS), that provides users the
possibility to manage access control rules and to share
resources directly from the Facebook web page. The
second is an entity, called Key Manager (KM), in charge
of the management of encryption keys.

Encryption keys are generated by exploiting two
secret parameters: the first parameter, denoted with

3https://developers.facebook.com/docs/javascript .

secretowner , is unique per user and it is generated by
SocialCloudShare; the second parameter, denoted with
secretrsc, is unique per resource and it is generated by
KM. As such, this results in an encryption key unique
per resource, that can be obtained only by combining
the two corresponding secrets. As it will be discussed
in Section 4, protocols regulating resources release
have been designed so that neither SocialCloudShare
nor KM can decrypt owner’s resources, as well as infer
any information on owner’s relationships. In particular,
these are designed such that only EM is able to combine
the encryption secrets; as such, SocialCloudShare is
not able to discover secretrsc values, while KM is not
able to unveil secretowner values. This holds under the
assumption that SocialCloudShare and KM do not
collude together. In support of this assumption, we
assume that SocialCloudShare is implemented on a
tailored server and acts only inside the OSN realm,
whereas the KM is an external trusted entity, whose
role could be played by a Certificate Authority.

Moreover, to determine if a relationship-based access
control rule is satisfied, it is required to find those
paths in the social graph that connect the owner to
the requestor. To protect relationships privacy, this path
finding is carried out on ACLs stored in the public
Cloud. This task is performed by the Path Finder Service
(P FS) at Cloud side. As described in Section 2, ACLs are
combined together to convey a deeper view of the social
graph, with respect to the simple user local view that is
represented with ACL1. More precisely, for each user u
P FS computes ACLd(u) representing the list of all the
contacts that u can reach with a d-hop path.

5 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

SocialCloudShare: a Facebook Application for a Relationship-based Information Sharing in the Cloud

4. Communication Protocols
Let us now introduce how the proposed framework
enforces relationship-based information sharing, by
illustrating the messages exchanged in each step. In
doing that, we assume that the communication between
entities is transmitted over secure channels.4

In this section, we will denote with K a symmetric
encryption key, with K+ and K− a public and private
key, and with Ksession a session key valid only for the
current comunication session. For any key, we report
as subscript the framework component for which the
key has been generated (e.g., K+

SCS denotes a public key
generated for SocialCloudShare). Moreover, we denote
with Krsc a resource encryption key, whereas secretowner
and secretrsc denote the secret tokens that are used for
the generation of the resource encryption keys. Finally,
with such defined keys, we denote with {message}K a
message that is encrypted exploiting K as encryption
key.

1. FB.api{ ‘me/friends’, {fields: ‘id’} }
2. JSON-formatted CL1

3. ACL1 := anonymize(CL1)
4. {iduser , ACL1}K+

P FS

5. storeAndPropagate(iduser , ACL1)
6. { “ACK” }K−P FS

Figure 7. Registration phase: messages Exchange

User Registration. Figure 7 depicts the messages
exchange when users access SocialCloudShare for the
first time. Exploiting Facebook JavaScript SDK, the
user’s contact list is requested (message 1) and gathered
directly from the OSN (message 2) with no need to rely
on any intermediate service. The anonymization process
(message 3 in Figure 7) produces ACL1 at user side,
taking as input the direct contact list CL1; as such, no

4Beyond encryption primitives present in messages schemas,
we assume that HTTPS connections can be instantiated before
communicating, so that an additional security layer can be granted.

relationship data are sent to the provider before being
anonymized. The anonymized contact list is then sent to
the P FS, which stores it and propagates in all the ACLs
(see message 5 in Figure 7).

The messages exchange is ended with a response
message produced by the P FS, i.e. message 6, to notify
the EM that the protocol has been properly executed by
both parties and the sent data have been successfully
handled.

Login Phase. Since we assume that EM is not
aware of SocialCloudShare and KM public keys, the
communication is initalized by requesting K+

SCS , K+
KM ,

where K+
SCS and K+

KM respectively denote the public
keys of SocialCloudShare and of the Key Manager (see
messages 1-4 in Figure 8).

1. {iduser , “PUBLIC_KEYS_REQ”}
2. {iduser , “PUBLIC_KEYS_REQ”}
3. {iduser , K+

KM }
4. {iduser , K+

KM , K+
SCS }

5. {iduser , Ksession
SCS , {iduser , Ksession

KM }K+
KM
}K+

SCS
6. {iduser , Ksession

KM }K+
KM

7. {iduser , “SESSION_KEY_RECEIVED”}K−KM
8. {iduser , “SESSION_KEY_RECEIVED”, . . .

. . . {iduser , “SESSION_KEY_RECEIVED”}K−KM
}K−SCS

Figure 8. Login phase: messages exchange

Once the user has received these keys, the EM
generates a pair of 128 bit random keys, denoted as
Ksession
SCS and Ksession

KM , that will be exploited as session
keys for the user current session. Note that, as depicted
by the architecture in Figure 6, EM communicates
with KM relying only on SocialCloudShare, since there
exist no direct communication channel between the
EM and the KM. Indeed, we adapted the structure of
Needham-Schroeder protocol (see [23]). As such, when
the EM has to communicate with the KM, it creates a
message for SocialCloudShare and encapsulates inside
this the message directed to KM. SocialCloudShare,
when receives such message, forwards to KM the
encapsulated chunk (e.g., messages 5,6 in Figure 8).
Assuming that only KM knows his private key K−KM ,
SocialCloudShare cannot decrypt the encapsulated

6 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

Davide Alberto Albertini et al.

message, but it has just to forward it to the KM.5 Once
both SocialCloudShare and KM correctly receive the
session key, they reply to the user with messages 7-8 in
Figure 8.

1. {´id’: ´user_id’, ´changed_fields’: ´friends’ }
2. storeUpdate(user_id, “CL_OUT_OF_DATE”)
3. { “CL_OUT_OF_DATE” }
4. FB.api{ ´me/friends’, {fields: ´id’} }
5. JSON-formatted CL1

6. ACL1−new := anonymize(CL1−new)
ACL1−removed := anonymize(CL1−removed)

7. {iduser , ACL1−new , ACL1−removed }K+
P FS

8. updateAndPropagate(iduser , ACL1−new , ACL1−removed)
9. { “ACK” }K−P FS
10. { “CL_UPDATE_DONE” }

Ksession
SCS

11. { “ACK” }
Ksession
SCS

Figure 9. Contact list update: messages exchange

Contact List Update. Figure 9 summarizes the messages
exchange when the users’ contact lists are modified (i.e.,
by adding or removing relationships). In the current
implementation, we exploit Facebook Real Time Updates
(RTU).6 RTU is a feature of Facebook Graph API7

which allows Facebook thirdy-party Social Apps to
be informed, directly from the OSN provider, when
certain pieces of data change (e.g., new profile pictures,
new friendship requests). With this functionality,
SocialCloudShare does not need to continuously keep
synchronized with the social graph, because a callback
function is called, by means of an HTTP POST request,

5This still relies on the assumption that SocialCloudShare and KM
do not collude.
6https://developers.facebook.com/docs/graph-api/real-time-
updates/v2.0 .
7https://developers.facebook.com/docs/graph-api/ .

every time a user changes his/her own contact list (see
message 1 in Figure 9).

Unfortunately, the OSN only notifies
SocialCloudShare about the changed fields, without
revealing any other information. As such, it is then
necessary to fetch from the OSN social graph all the
data about new or removed friends. For this reason, we
designed SocialCloudShare to keep track of all those
users whose contact lists are not synchronized with the
ACLs stored at Cloud side. Then, when each of those
users makes use of SocialCloudShare, he/she receives
a message that informs the EM that the contact list
has to be synchronized (see messages 2,3 in Figure 9).
Exploiting JavaScript functions, the current contact
list is fetched from the social graph and new users
(or, equivalently, removed users) are detected. CL1−new

and CL1−removed denote the two contact lists computed
by the EM representing the lists of the new and the
removed contacts. By exploiting the anonymize function
in message 6 of Figure 7, CL1−new and CL1−removed are
anonymized.

Then, the user sends to the P FS these two separate
ACLs (or just one of them, in case the other one
results in an empty list) (see message 7 in Figure 9).
The P FS runs again the process of ACL propagation,
adding the new information whenever these data
are missing, or removing old information in case of
relationship removal (i.e., by dividing polynomials
instead of multiplying them). The messages flow is
concluded with a special flag (see messages 9-11), in
order to inform both the P FS and SocialCloudShare
that the protocol has been properly executed.

Resource Upload. The messages exchange for the
resource upload phase follows the same schema as the
one depicted in Figure 8, whereas the messages content
is depicted in Figure 10.

1. {iduser , idrsc , “RSC_UPLOAD_REQ”, . . .
. . . {iduser , idrsc , “RSC_UPLOAD_REQ”}

Ksession
KM

}
Ksession
SCS

2. {iduser , idrsc , “RSC_UPLOAD_REQ”}
Ksession
KM

3. {iduser , idrsc , secretrsc}Ksession
KM

4. {iduser , secretuser , {iduser , idrsc , secretrsc}Ksession
KM

}
Ksession
SCS

5. {iduser , idrsc ,Rrsc , {iduser , idrsc , {rsc}Krsc }Ksession
KM

}
Ksession
SCS

6. {iduser , idrsc , {rsc}Krsc }Ksession
KM

7. {iduser , idrsc , “RSC_STORED”}
Ksession
KM

8. {iduser , idrsc , “ACR_STORED”, . . .
. . . {iduser , idrsc“RSC_STORED”}

Ksession
KM

}
Ksession
SCS

Figure 10. Resource upload phase: messages exchange

Before uploading a certain resource rsc in Dropbox,
its owner, say user u, has to encrypt it using a symmetric
key, that is, Krsc. This key is computed as combination
of two secrets, i.e. Krsc= F (secretowner , secretrsc), which

7 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

Davide Alberto Albertini et al.

SocialCloudShare: a Facebook Application for a Relationship-based Information Sharing in the Cloud

are separately generated by SocialCloudShare and
the KM.8 In the given implementation, we choose to
encrypt resources exploiting AES-256 algorithm [22],
operating in Cipher Block Chaining (CBC) mode [10],
where the plaintext is padded according to PKCS#7
[17]; for this reason we designed the two secrets with
length of 256 bit. As it will be discussed later, these
secrets are released to a requestor by SocialCloudShare
and KM if and only if he/she satisfies a t l east one
access rule condition associated with rsc.

Thus, before any upload, resource owner has to
interact with both SocialCloudShare and the KM so as
to retrieve the corresponding secretowner and secretrsc.
Assuming the user shares a symmetric session key
only with KM, negotiated during the login phase,
SocialCloudShare cannot decrypt the encapsulated
message and thus cannot discover secretrsc. Once the
secrets have been generated by SocialCloudShare and
the KM, they are received by u encrypted with pre-
shared session key (see message 4 in Figure 10); as
such, the user is able to compute Krsc. Hence, u
composes a message including the encrypted resource
(to be transmitted to KM) and the set of access
control rules Rrsc that SocialCloudShare has to store.
In our implementation Rrsc is a 1 byte value; the 5
more significant bits translate the relationship type
(with a maximum of possible relationship types equal
to 32) and the 3 less significant bits translate the
maximum depth value of the access control condition.
Even though our implementation currently supports
only “friend” relationships, this implementative choice
leaves the framework ready to further improvements.

As depicted in Figure 10, the EM sends all messages
to SocialCloudShare, which then forwards nested
encrypted messages to the KM. After the execution
of the protocol illustrated in Figure 10, the Cloud
data storage service contains the encrypted resource,
whereas SocialCloudShare and the KM contain only
resource metadata. In particular, the KM stores idrsc
and secretrsc, whereas SocialCloudShare saves idrsc
along with the resource access control rulesRrsc, where
idrsc denotes a unique identifier for the resource.

Resource Download. In order to enforce a relationship-
based resource sharing, the framework has to release
encryption keys only to requestors satisfying at least
an access control rule associated with the requested
resources. To determine if an access rule is satisfied, the
P FS service is inquired. To protect the communication
between SocialCloudShare, the KM, and the P FS
we assume there exists a symmetric encryption key,
denoted as KP FS , shared between those three entities. By

8Several F functions can be adopted. In our implementation, we
make use of XOR.

using this key, the communication encrypted with KP FS
cannot be decrypted by anyone unless the components
of the framework.

If a requestor req wishes to download and decrypt rsc,
it has to send a message to SocialCloudShare with the
related ids (message 1 in Figure 11). SocialCloudShare
retrieves the corresponding access rules Rrsc and the id
of rsc’s owner (i.e., idown). Then, assuming for simplicity
Rrsc contains only one access control condition acc =
(t, d), it inquires the P FS to search for a path connecting
the requestor to the owner, with all edges labeled with
t and length less than d (i.e., message 2 in Figure 11).
It is important to note that if the P FS sends the yes/no
answer back directly to SocialCloudShare, this might
bring to some information leakage. Indeed, for some
particular access rules, knowing whether the rule is
satisfied gives exact information on existing paths. As
such, the answer produced by the P FS is sent to the KM
(see message 3 in Figure 11).

1. {idreq , idown, idrsc , “RSC_DWNLD_REQ”, . . .
. . . {idown, idrsc , “RSC_DWNLD_REQ”}

Ksession
KM

}
Ksession
SCS

2. {h(idreq ||accrsc .type), h(idown||accrsc .type), accrsc .depth . . .
. . . {idown, idrsc , “RSC_DWNLD_REQ”}

Ksession
KM

}KP FS

3. {result, {idown, idrsc , “RSC_DWNLD_REQ”}
Ksession
KM

}KP FS

4. {tokensecret , URLrsc}Ksession
KM

5. {idreq , secretown, {tokensecret , URLrsc}Ksession
KM

}
Ksession
SCS

Figure 11. Resource download phase: messages exchange

The URL sent from the KM (see message 4 in
Figure 11) is a temporarily valid URL provided by
the Cloud storage service upon KM requests. The rsc
to be downloaded is reachable at this URL only for
a small and fixed interval of time, afterwards rsc is
moved back to the private realm of the storage service,
without any public access.9 Message 4 (see Figure 11)
contains, along with the above mentioned URL, the
value of tokensecret , which is tokensecret = secretrsc in
case the P FS sent a positive answer, or a random
value otherwise. SocialCloudShare inserts secretown
into the received message, encrypts it with pre-shared
session key and forwards it to the user (i.e., message

9Moving resources on temporary URL is a common approach used by
several Cloud storage services (e.g., Dropbox, in this implementation)
to limit access of requested resources.

8 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

Davide Alberto Albertini et al.

Davide Alberto Albertini et al.

5 in Figure 11). Then, the user decrypts secretown and
tokensecret values and generates F (secretown, tokensecret),
which returns the correct encryption key Krsc only if
tokensecret = secretrsc, that is, only if the KM receives a
positive answer from the P FS, confirming the existence
of a path satisfying the rule.

5. Implementation
In this section, we provide some details concerning the
implementation of SocialCloudShare.

5.1. Encryption Manager - Browser Plugin
The Encryption Manager (EM) is the component in
charge of client-side resource encryption and of
anonymized contact lists generation. We choose to
implement the aboved-mentioned functionalities with
a set of JavaScript functions, in order to achieve a better
usability than a customized software and to give users
the possibility to make use of it with no restriction
given by his/her operative system.

By exploiting jQuery library10 and AJAX-like11 tech-
niques, EM is able to process user actions (e.g., mouse
clicks, page requests, upload/download requests) inside
SocialCloudShare. The most important functionali-
ties offered by EM are the encryption primitives for
resources/messages encryption/decryption. For what
concerns the resource encryption/decryption phase, the
EM can be seen as a cipher black box. Thus, plaintext
resource is taken as input and coded into a ciphertext
resource and vice versa. As such, no entity except
the EM takes part in these processes. At this pur-
pose, we decided to exploit an existing library, named
Crypto-JS,12 available under BSD-3 License on Google
Code, offering several encryption primitives ready to be
used. In particular, for resources encryption, we exploit
AES-256 algorithm applied according to Cipher Block
Chaining (CBC) mode, where the plaintext is padded
according to PKCS#7.

In order to exploit CBC mode, an Initialization Vector
iv is necessary during the encryption and decryption
phases. For this reason, the EM generates each time
a random value as initalization vector (by exploiting
CryptoJS.lib.WordArray.random(128/8)), which is added
prior to the ciphertext, such that the iv itself can be
securely stored along with the encrypted resource.

Figures 12 and 13 depict the functions used in the
EM implementation.

10http://jquery.com/ .
11http://www.w3schools.com/ajax/default.ASP .
12https://code.google.com/p/crypto-js/ .

CryptoJS.AES.encrypt(

’Resource-Stream’,

’Resource-Secret-Key’,

{ iv: ’iv’,

mode: CryptoJS.mode.CBC,

padding: CryptoJS.pad.Pkcs7

}

);

Figure 12. Javascript AES encipher

CryptoJS.AES.decrypt(

’Encrypted-Resource-Stream’,

’Resource-Secret-Key’,

{ iv: ’iv’,

mode: CryptoJS.mode.CBC,

padding: CryptoJS.pad.Pkcs7

}

);

Figure 13. Javascript AES decipher

Another important feature handled by EM is the
generation of ACL1. To compute such ACL1, the
JavaScript library contains functions implementing the
polynomial multiplication, i.e., computing the discrete
convolution bewteen number sequences. As first step,
the direct contacts list is fetched from Facebook social
graph, by means of Facebook JavaScript SDK. As
depicted in Figure 14, the JavaScript SDK needs to
be initalized with a valid Social-App-Id, which is the
identifier assigned by Facebook when registering a
Social App inside its realm.

<script type=’text/javascript’>

$(document).ready(function() {

$.ajaxSetup({ cache: true });

$.getScript(’//connect.facebook.net/en_UK/all.js’,

function(){ FB.init({

appId: ’Social-App-Id’,

});

});

});

</script>

Figure 14. Facebook JS-SDK load phase

The EM can request to Facebook, by means of the
Javascript FB Object, the logged user’s friend list (e.g.,
see messages 1,2 in Figure 7) so that it can receive
the current user’s direct contacts identifiers. By having
these identifiers, the EM can generate the user’s ACL1.
Once this ACL1 is fully computed, it is sent to the
Path Finder Service, which is the component in charge
of handling the anonymized social graph.

9 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

SocialCloudShare: a Facebook Application for a Relationship-based Information Sharing in the Cloud

5.2. Path Finder Service
As outlined above, the Path Finder Service (PFS) is
the component of SocialCloudShare that handles the
anonymized social graph. All the ACLs are stored into
the ACL Repository table, where the record is in the
form [idu , ACL1(u), ACL2(u), . . . , ACLMaxDepth(u)], that
is, it contains the user identifier and all his/her ACLs
of different path length (see example of ACL Repository
in Figures 2, 3, 4, 5).

The P FS is implemented as a web service, by means
of a Java servlets that handles HTTP requests. The
request received from EM instances are encrypted with
the P FS public key, i.e., K+

P FS . On the other hand,
requests received from SocialCloudShare entity are
encrypted with a pre-shared session key, denoted as
KP FS , that grants a lower overhead than an asymmetric-
key encryption.

Such component, like SocialCloudShare and the
KM entities presented in the following sections, has
been developed inside the Spring framework13 and
exploiting STS14, an eclipse-based IDE.15

Algorithm 5.1 describes the procedure executed each
time a new ACL1 is received from a SocialCloudShare
user. This algorithm makes use of the ACL Repository,
denoted with R, and of a boolean matrix, updates, that
keeps track of the ACLs that have been modified during
the propagation procedure.

Each time a new ACL1 is received, along with the user
id, the P FS stores inside the ACL Repository those new
information (see Line 3 in Algorithm 5.1) and sets as
true the corresponding cell of the updates matrix (see
Line 4). Once the data have been stored, the procedure
analyzes, from the shallowest level to the deepest, the
ACL Repository record (see Lines 5,7). We denote with
e.id the user identifier stored in the repository entry
e, and with e.ACLd , the ACLd stored in the same
reporitory entry.

For each record e, the procedure performs a second
iteration over all different record e′ (see Line 8). If the
updates matrix contains true in the cell corresponding
to e′ , the procedure performs a polynomial evaluation,
where the polynomial is the ACL taken from e′ and the
user identifier is taken from e (see Line 9). In case the
polynomial evalutation results 0, and each polynomial
evaluation for smallest path length (see Lines 10, 11)

13http://projects.spring.io/spring-framework/ .
14http://spring.io/tools .
15Spring is an application framework with built-in modules that
facilitate Java application development, in which code dependecies
are directly handled by Apache Maven (http://maven.apache.org/)
and Gradle (http://www.gradle.org/) at build-time, generating a
.jar archive that can run under, for example, an Apache Tomcat
(http://tomcat.apache.org/) web server.

result in a value different from 0, the information
carried by e.ACL1 and e′ .ACL1 is cross-propagated to
level d + 1, where d is the variable iterated over the
path depth values (see Lines 12, 13). Along with this
cross-propagation, the procedure updates the values
of the updates matrix, that is, it keeps track of the
above modified entries. Finally, a boolean variable stop,
initally set with true (see Line 6), is set with false (see
Line 16).

The above described procedure terminates when,
given a path depth d, ACLds are no more modified
throughout the whole iteration over the repository
records, that is, the boolean value of the variable stop
is true when the loop cycle at Line 7 ends, and the
procedure is forced to terminate (see Line 18).

Algorithm 5.1: ACL propagation procedure

Input: idu , ACL1(u), ACL Repository R
begin1

boolean[][] updates;2

R.push({ idu , ACL1(u), 1, 1, . . . });3
updates[1][u] = true;4
foreach d ∈ {1, 2, . . . ,MaxDepth} do5

boolean stop = true;6
foreach entry e ∈ R do7

foreach entry e′ > e do8
if (updates[d][e′ .id]) AND9

(e′ .ACLd (x = e.id) == 0) then
foreach d′ < d do10

if e′ .ACLd
′
(x = e.id) , 0 then11

e.ACLd+1 = e.ACLd+1 · e′ .ACL1;12

e′ .ACLd+1 = e′ .ACLd+1 · e.ACL1;13
updates[d+1][e.id]=true;14
updates[d+1][e’id]=true;15
stop = false;16

if stop then17
exit;18

end19

5.3. SocialCloudShare

Differently from the P FS and the KM,
SocialCloudShare has been developed with both a
back-end system and a graphical interface, which is
displayed when users access SocialCloudShare inside
Facebook.
SocialCloudShare back-end is implemented as a web

application, designed according to the Model-View-
Controller architectural pattern, such that a precise
HTTP request on a given URL calls a certain method
of the underlying servlet. The most relevant methods
offered by SocialCloudShare are called by handling
HTTP requests incoming on the following URLs:

10 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

Davide Alberto Albertini et al.

SCS/ : A request to the base URL of the web application
generates and returns SocialCloudShare home-
page. The underlying controller, when necessary,
fetches and stores some of the users’ data (e.g.,
full name, profile picture). These data are col-
lected interacting directly with the OSN provider,
exploiting Facebook Graph API in order to receive
users’ profile information.

SCS/key/broadcast : This URL is requested automati-
cally when the EM detects that the public keys
of SocialCloudShare and the KM are not stored
at client-side. It represents the arrival point of
message 1 in Figure 8. The controller forwards
the received parameters to the KM on its URL
KM/key/broadcast.

SCS/key/negotiate : This URL is requested automati-
cally when the EM detects that the session keys
for communicating with SocialCloudShare and
KM are not stored at client-side. It represents the
arrival point of message 5 in Figure 8. The con-
troller forwards the message that is encapsulated
in the received one, that is the message from EM
to the KM, on the URL KM/key/negotiate.

SCS/fb_updates : This URL is reachable both with
HTTP GET and HTTP POST requests, but it is
supposed to be requested only from Facebook
provider. The application listens to information
from the OSN, waiting for Real Time Updates
(RTU). Once an HTTP GET request has been
received, the application communicates with
Facebook in order to control and regulate the
subscription for RTU. HTTP POST requests,
on the other hand, are assumed to include
information about the user activity in the OSN
(e.g., a new profile picture, a new friendship in
the social graph). The controller underlying these
requests keeps track of those users that have a
contact list that is not synchronyzed with the
ACLs stored in the P FS (e.g., see message 1 in
Figure 9).

SCS/upload : The controller that handles HTTP
requests to this URL is the one responsible of
starting the resource upload procedure (see
message 1 in Figure 10). The received message
is decrypted with the corresponding session key,
and the encapsulated message (that cannot be
decrypted by SocialCloudShare) is forwarded to
the KM on its URL KM/upload. Once the message
is forwarded, the controller holds and waits for a
response from the KM.

SCS/upload/finalize : A request done to this URL
finalizes an upload procedure already started. As
such, the underlying controller waits messages

such as message 5 in Figure 10. Once received,
the message is decrypted and the encapsulated
part is forwarded to the KM. The remainder of
the message, thus, includes the access control
rule Rrsc of the uploaded resource. As such,
Rrsc is stored by SocialCloudShare along with
the resource owner identifier and the resource
identifier.

SCS/download : The controller that handles the
incoming requests to this URL is the one in charge
of listening to download requests (e.g., message
1 in Figure 11), representing the initialization
of a download process. As such, this message
gathers information about the requestor, the
owner, and the resource involved in the download
process. These data are sent to the P FS that, after
checking the existence of a path on ACLs, sends
the corresponding result to the KM on its URL
KM/download.

5.4. Key Manager
Similar to SocialCloudShare, the KM has been
developed as a web application, exploiting the STS IDE.
On the other hand, the KM is sligthly different from
the previously presented SocialCloudShare. The KM is
designed to listen to communication exclusively coming
from SocialCloudShare, the P FS, and Dropbox; as such
the application performs an IP filtering prior to accept
incoming data. In case some data are received by a peer
that is not regognized as belonging to one of those three
parties, its requests are rejected and the communication
channel closed. Then, the KM is designed without
any front-end interface; any incoming message that is
identified as valid brings the KM to perform some data
processing and the output is directly sent as response to
the message sender. The main methods offered by the
KM are called by handling HTTP requests incoming on
the following URLs:

KM/key/broadcast : This URL can only be requested
by SocialCloudShare (e.g., via IP filtering) and it
is requested only when EM detects that the public
keys of SocialCloudShare and the KM are not
stored at client-side. It represents the arrival point
of message 2 in Figure 8.

KM/key/negotiate : This URL is requested automati-
cally when the EM detects that the session keys
for communicating with SocialCloudShare and
KM are not present at client-side. It represents the
arrival point of message 5 in Figure 8.

KM/upload : With reference to Figure 10, the con-
troller handling these requests listens to messages
such as message 2. The underlying methods are
the ones responsible of generating and storing

11 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

SocialCloudShare: a Facebook Application for a Relationship-based Information Sharing in the Cloud

the resource secret secretrsc, where rsc represents
the identifier of the resource that is going to be
uploaded .

KM/upload/finalize : The underlying controller
includes the methods for resources upload to the
Cloud Storage Service (e.g., Dropbox). Once a
resource is stored into Dropbox, the KM locally
stores certain resource metadata, such as the
name, the filetype, and the last modification date.
Those data are then displayed to users, through
the SocialCloudShare GUI.

KM/download : This URL is listening only to requests
coming from P FS. Indeed, the underlying con-
troller is listening to messages resulting from a
path search on the anonymized graph (message
3 in Figure 11). Messages received at this URL

not only contain the result of the path search
performed by P FS, but they include pieces of
data that were included in the dowload request
sent from the requestor. With these informa-
tion, the KM is able to ask Dropbox to gener-
ate URLrsc, that is a temporary valid URL for the
encrypted resource download. URLrsc is included
in the response along with tokensecret , that may
be a randomly generated value, in case the path
finding returns a negative answer, or the value of
secretrsc otherwise, where rsc is the downloaded
resource.

6. Experimental Evaluations
To evaluate the framework performance, we carried out
several tests. In doing that, we kept into account that
the P FS efficiency has been studied in [1]. In particular,
[1] presents the time needed by the P FS to perform
polynomial evaluation and multiplication, that is, to
verify a relationship-based access control rule and
propagate an ACL throughout the ACL Repository. As
such, in this section, we focus more on the overhead
introduced by resource management, such as messages
encryption size, messages encryption average time,
and resource encryption average time. The workstation
used for these experiments is an Intel Core 2 Quad
Q6600 @ 2.40 GHz × 4, with 8GB RAM. In the current
implementation SocialCloudShare, the KM, and the
P FS are instantiated in the same instance of an Apache
Tomcat servlet container and they run under different
namespaces.

Message Encryption Size. Figure 15 depicts the over-
head, in terms of length of messages, implied by mes-
sages encryption. The considered messages are those
exchanged during the login, upload, and download
phases (see Figures 8, 10, 11).

Figure 15. Messages encryption size overhead

Each bar in Figure 15 represents a single message,
in term of message size. Each message is denoted by a
message plaintext size, that is, the size of the message
before encryption and a message overhead, that is, the
size of the message once encrypted. Some message
includes an encapsulated message (see message 5 in
Figure 8, messages 1,2 in Figure 10, and message 1 in
Figure 11) that requires a further encryption phase
prior to message encryption. For those messages, Figure
15 reports the encapsulated message plaintext size as
well as the encapsulated message overhead. As such, the
message plaintext size for those messages is composed of
the message plaintext size, the encapsulated message
plaintext size, and the encapsulated message overhead.

Finally, it is important to note that messages in
the login phase (see Figure 8) are encrypted using an
asymmetric key encryption scheme.16 This motivates
the higher overhead introduced by messages encryption
in such phase. Messages exchanged during upload and
download phases, on the other hand, are encrypted
exploiting AES-128 algorithm.

Message Encryption/Decryption Average Time. Tables 1
and 2 report the time consumption given by messages
encryption. This experiment has been carried out
monitoring the time required by encryption primitives
to encrypt/decrypt the corresponding messages; for
each message the encryption/decryption phase has
been repeated 10 times. As such Tables 1, 2 report
the minimum and the maximum time obtained in
this experiment, along with the time average and the
standard deviation.

With the exception of message 5 of the upload phase
(Figure 10), the encryption/decryption primitives

16In particular, we exploit RSA-1024 for this phase .

12 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

Davide Alberto Albertini et al.

Protocol Msg
Time [ms] Standard

Min Avg Max Deviation

Login
5 3.0 6.0 9.0 1.89
7 1.0 2.2 3.0 0.6
8 2.0 3.0 6.0 1.61

Upload

1 6.0 14.4 24.0 7.68
3 3.0 8.1 12.0 3.01
4 6.0 15.0 24.0 8.16
5 14.0 28.0 56.0 16.57
7 2.0 5.2 8.0 2.4
8 4.0 8.0 16.0 4.0

Download

1 6.0 16.2 24.0 7.61
2 5.0 8.0 20.0 4.58
3 3.0 8.1 12.0 3.01
4 6.0 13.2 24.0 7.96
5 9.0 26.1 36.0 10.22

Table 1. Time required for message encryption

Protocol Msg
Time [ms] Standard

Min Avg Max Deviation
Login 6 4.0 4.8 6.0 0.98

Upload
2 4.0 10.0 16.0 4.1
6 8.0 21.6 32.0 8.8

Download
2 4.0 9.2 16.0 4.02
3 5.0 11.0 20.0 6.63
4 5.0 10.8 20.0 6.38

Table 2. Time required for message decryption

completed the execution in less than 40 milliseconds. In
this experiment, we used a 64byte text file as uploaded
resource to keep the simulation as light as possible. The
average time for all messages encryption/decryption,
thus, never reached a value higher than 30 milliseconds;
as such this result let us state that the protocols may
run with no impact on the user experience over the
OSN.

Resource Encryption Average Time. Finally, Table 3
reports the results of the experiment to estimate the
encryption time necessary to prepare a resource to
be uploaded. Unlike messages, which are encrypted
exploiting AES-128 algorithm, resources are encrypted
exploiting AES-256 algorithm, in order to achieve a
better security for resources, that have to be stored in
the public Cloud. The first column in Table 3 reports
the size (in Mbytes) of the resource to be encrypted,
while the other columns gather the time interval, in
seconds, necessary to perform the encryption. In this
experiment, we used random-generated ASCII strings,
with pre-determined lengths. The encryption phase
has been repeated 10 times for each resource; as such
Table 3 reports the minimum and the maximum time

File Size Time [s] Standard
[Mb] Min Avg Max Deviation
0.2 1.92 2.01 2.08 0.05
0.4 3.66 3.94 4.14 0.15
0.6 5.76 5.94 6.16 0.13
0.8 7.2 8.07 8.72 0.56
1.0 9.71 9.99 10.3 0.18
1.2 11.47 12.03 12.58 0.41
1.4 13.8 14.05 14.28 0.16
1.6 14.77 16.05 17.36 0.85
1.8 17.16 17.83 18.57 0.46
2.0 19.54 20.01 20.59 0.33
2.5 23.53 25.34 26.45 0.96
3.0 28.3 30.33 32.34 1.25
3.5 32.53 34.79 38.08 1.96
4.0 36.62 39.69 43.43 2.56
4.5 41.34 45.74 48.62 1.96
5.0 48.07 49.64 51.51 0.98
5.5 52.86 54.23 56.88 1.18
6.0 57.5 60.12 62.65 1.76
6.5 60.79 64.33 68.89 2.27
7.0 68.89 69.88 70.94 0.66
7.5 69.58 74.74 80.77 4.16
8.0 77.33 79.99 83.43 2.03
8.5 77.47 83.77 92.24 5.05
9.0 87.06 90.06 92.98 1.85
9.5 90.64 95.26 98.39 2.80

10.0 91.11 99.35 108.1 5.42
Table 3. Time required for resource encryption

recorded during the experiment, along with the time
consumption average and the standard deviation.

With those experiments, and the ones previously
reported in [1] about the Path Finder Service perfor-
mances, we can thus state that SocialCloudShare causes
a slight overhead over users experience in the Social
Network. As such, we believe that protocols and tech-
niques proposed in this paper would give a remarkable
improval to OSN privacy measures.

7. Related Work
The presented work is mainly related to the following
research topics: path-preserving graph anonymization,
crypto-based access control, and privacy preserving in
Online Social Networks.

Present literature includes many work proposing
graph anonymization techniques. Most of these works
can be grouped into two separate categories: those
which propose node clusterization tecnhiques (e.g., [3,
6, 15]), and those which flatten the graph topology by
modifying it (e.g., [16, 18]). However, these works, make
the common assumption that the graph topology can be

13 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

SocialCloudShare: a Facebook Application for a Relationship-based Information Sharing in the Cloud

entirely read by a centralized party that anonymizes the
graph.

A slightly different approach is described by Terzi
et al. in [12]. In this work, authors present a
collaborative anonymization procedure that exploits
only nodes’ neighborhood information. However, even
this work, likely the works mentioned before, presents
a technique that anonymize the graph by modifying its
topology. Unfortunately, an anonymization techniques
that contemplates a topology modification is not
suitable for ReBAC enforcement. Indeed, introducing
new edges in the graph may bring to harmful data
release, whereas removing edges may cause not to
release resource that should be released according to
access control rules in place.

The only work presenting a path-preserving
anonymization technique is, to the best of our
knowledge, [4]. Authors in [4] present algorithms
that allow to compute privacy-preserving operations
without editing the graph structure. However, the path
finding procedure presented in [4] can handle only
paths whose lenght is ≤ 2. As such, none of these works
propose a path-preserving collaborative anonymization
procedure like the one presented in this paper.

Literature offers several proposals of crypto-based
access control for cloud-centric platforms. Many recent
proposals exploit attribute-based encryption (see [14,
21, 26]). Authors in [9] propose a solution for
regulating access to outsourced data by means of a
proper distribution of encryption keys. In recent works
have been proposed OSN plugins (e.g., see Scramble!
[2], FaceCloak [19]) that prevent OSN providers to
performa data mining by analyzing users’ data by
encrypting them. As such, resources can be shared
as encrypted data and decrypted only by those users
who exploit the same platform that has been used for
encryption phase. None of these works, however, target
the enforcement of ReBAC.

A different approach, that can be exploited to prevent
OSN analysis over shared data, is to move users’
resources to a data repository separate from the OSN
(e.g., see Lockr [24] or Trust&Share [7]), where the social
network provider has no access. Still, those proposals
treat only aspects related to shared resources, and do
not take into account to hide relationship data from
OSN managers.

8. Conclusions
In this paper, we present an implementation of the
architecture presented in [1], where users’ personal
data are securely stored in public Cloud data storage
and shared according to relationship-based access
control rules defined by owners, tailored for the
most popular of today OSNs, that is, Facebook. We

plan to extend the work reported in this paper
along several directions. First, we plan to extend the
proposed privacy-preserving path finding to support
more expressive access control rules. For instance, we
intend to enforce also constraints on the trust of the
required relationships. Moreover, we plan to improve
the framework by implementing it in a distributed
system, where the Path Finder Service is instantiated
inside a Cloud provider realm (e.g., Amazon EC2).

9. Acknowledgements

The research presented in this paper was partially
funded by the European Office of Aerospace Research
and Development (EOARD) and the Air Force for
Scientific Research (ASFOR). The authors would like
to thank the anonymous reviewers for their valuable
comments and suggestions to improve the quality of the
paper.

References

[1] D.A. Albertini, B. Carminati. Relationship-based Infor-
mation Sharing in Cloud-based Decentralized Social
Networks. In Proc. ACM CODASPY, 2014.

[2] F. Beato, I. Ion, S. Čapkun, B. Preneel, M. Langheinrich.
For Some Eyes Only: Protecting Online Information
Sharing.In Proc. ACM CODASPY, 2013.

[3] S. Bhagat, G. Cormode, B. Krishnamurthy, D. Srivas-
tava. Class-based graph anonymization for social net-
work data. In Proc. VLDB Endowment, 2009.

[4] J. Brickell, V. Shmatikov. Privacy-Preserving graph
algorithms in the semi-honest model. In Proc. ASI-
ACRYPT, 2005.

[5] G. Bruns, P. W. L. Fong, I. Siahaan, M. Huth.
Relationship-Based Access Control: Its Expression and
Enforcement Through Hybrid Logic. In Proc. ACM
CODASPY, 2012.

[6] A. Campan, T. M. Truta. A clustering approach for data
and structural anonymity in social networks. In Proc.
ACM PinKDD, 2008.

[7] B. Carminati, E. Ferrari, J. Girardi. Trust&Share:
Trusted Information Sharing in Online Social Net-
works. In Proc. IEEE ICDE, 2012.

[8] B. Carminati, E. Ferrari, A. Perego. Enforcing Access
Control in Web-based Social Networks. In Proc. ACM
TISSEC, 2009.

[9] S. De Capitani Di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, P. Samarati. Encryption policies for
regulating access to outsourced data. ACM Trans.
Database Systems, 2010.

[10] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, W. L.
Tuchman. message verification and transmission error
detection by block chaining. US Patent 4074066, 1976.

[11] Electronic Privacy Information Center, Facebook Pri-
vacy. online: http://epic.org/privacy/facebook/

[12] D. Erdös, R. Germulla, E. Terzi. Reconstructing Graphs
from Neighborhood Data. In Proc. IEEE ICDM, 2012.

14 EAI Endorsed Transactions on
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation
European Alliance

Davide Alberto Albertini et al.

[13] Google official blog, A new approach to China. online:
http://googleblog.blogspot.com/2010/01/new-approach-to-
china.html. January 12, 2010.

[14] V. Goyal, O. Pandey, A. Sahai, B. Waters. Attribute-
based encryption for fine-grained access control of
encrypted data. In Proc. ACM CCS, 2006.

[15] M. Hay, G. Miklau, D. Jensen, D. Towsley, P. Weis.
Resisting structural re-identification in anonymized
social networks. In Proc.VLDB, 2008.

[16] M. Hay, G. Miklau, D. Jensen, P. Weis, S. Srivastava.
Anonymizing Social Networks. Technical Report, 2007.

[17] B. Kaliski. RFC 2315. online:
http://tools.ietf.org/html/rfc2315, 1998.

[18] K. Liu, E. Terzi. Towards identity anonymization on
graphs. In Proc. ACM SIGMOD, 2008.

[19] W. Luo, Q. Xie, U. Hengartner. FaceCloak: An
architecture for user privacy on social networking sites.
In Proc. ICCSE, 2009.

[20] M. Naor, B. Pinkas. Oblivious transfer and polynomial
evaluation. In Proc. ACM STOC, 1999.

[21] S. Narayan, M. Gagné,R. Safavi-Naini. Privacy preserv-
ing EHR system using attribute-based infrastructure. In
Proc. ACM CCSW, 2010.

[22] National Institute of Standards and Technology.
Announcing the Advanced Encryption Standard (AES).
online: http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf, 2001.

[23] R. Needham, M. Schroeder. Using encryption for
authenticating in large networks of computers. Commu-
nication of the ACM 21, 1978

[24] A. Tootoonchian, S. Saroiu, Y. Ganjali, A. Wolman.
Lockr: better privacy for social networks. In Proc. ACM
CoNEXT, 2009.

[25] J. E. Vascellaro. Google discloses Privacy Glitch. online:
http://blogs.wsj.com/digits/2009/03/08/1214/.

[26] J. Zhang, Z. Zhang, A. Ge. Ciphertext policy attribute-
based encryption from lattices. In Proc. ACM ASIACCS,
2012.

15
EAI Endorsed Transactions on

Collaborative Computing
06 -10 2014 | Volume 01 | Issue 2 | e6EAI for Innovation

European Alliance

SocialCloudShare: a Facebook Application for a Relationship-based Information Sharing in the Cloud

	1 Introduction
	2 Overall Description
	Example

	3 Framework Architecture
	4 Communication Protocols
	User Registration
	Login Phase
	Contact List Update
	Resource Upload
	Resource Download

	5 Implementation
	5.1 Encryption Manager - Browser Plugin
	5.2 Path Finder Service
	5.3 SocialCloudShare
	5.4 Key Manager

	6 Experimental Evaluations
	Message Encryption Size
	Message Encryption/Decryption Average Time
	Resource Encryption Average Time

	7 Related Work
	8 Conclusions
	9 Acknowledgements

