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Abstract

Users of online social networks often adjust their privacy settings to control how much information on their
profiles is accessible to other users of the networks. While a variety of factors have been shown to affect the
privacy strategies of these users, very little work has been done in analyzing how these factors influence each
other and collectively contribute towards the users’ privacy strategies.

In this paper, we analyze the influence of attribute importance, benefit, risk and network topology on the
users’ attribute disclosure behavior by introducing a weighted evolutionary game model.

Results show that: irrespective of risk, users are more likely to reveal their most important attributes than their
least important attributes; when the users’ range of influence is increased, the risk factor plays a smaller role
in attribute disclosure; the network topology exhibits a considerable effect on the privacy in an environment
with risk.
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1. Introduction

Online social networks provide platforms for people
to share information about themselves, which facili-
tates the establishment and enhancement of friendships
between users [20]. However, the shared information
can also be exploited by identity thieves, sexual preda-
tors, stalkers, etc., and this has triggered worldwide
concern about privacy issues in online social networks.
Thus, users of online social networks face a

dilemma: reveal more personal information to increase
their chances of finding potential new friends and
identifying old friends, or reveal less information to
decrease the chance of their identities being inferred by
unscrupulous characters. Therefore, each user weighs
both the risk and benefit to determine howmany profile
attributes to reveal. Additionally, the privacy settings
of other users potentially affect the choice of privacy
settings for a user.
Little work has been done on investigating how these

factors collectively influence users’ privacy settings.

∗Corresponding author. Email: jdc074@latech.edu

Therefore, it is important to develop a model based
on interaction of users that captures the influence of
privacy risk and relationship-building on the level of
self-disclosure.
In this paper, we propose an evolutionary game-

theoretic model to study the behavior of users with
regard to their privacy settings in a possible online
social network. Our study conducts simulations of user
behavior in a variety of network topologies, which
include random, small-world, scale-free and Facebook
friend networks.
Themain contribution of this paper is threefold. First,

our model investigates the importance of the revealed
and/or hidden attributes to the users’ behavior. By
weighting the attributes, we consider that some
attributes may have a higher impact than others in self-
disclosure. As an illustration, given Alice is a user in
a social network, our model investigates whether her
decision to reveal important attributes (such as religion
and sexual preferences) would affect other users’
revelation decisions more or less than revealing her
less important attributes (such as her favorite movies).
Second, our model helps us to explore the users’
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attribute disclosure behavior from different ranges of
influence. For instance, how do risk and benefit affect
Alice if she only discloses her attributes to her friends,
as opposed to disclosing them to her friends as well
as the friends of her friends? Third, our model allows
us to investigate what influence the network topology
has on the privacy strategy of the user. For example,
if Alice decided to reveal all her attributes in a social
network exhibiting small-world characteristics, would
she make the same decision if the network exhibited
random graph characteristics instead?
The results show that users tend to reveal their most

important attributes more than their least important
attributes regardless of the risk level. Important
attributes are defined as the attributes which have a
larger impact on the social capital of a user [6]. We also
find that the range of influence plays a bigger role than
the risk factor in users’ disclosure of profile attributes.
Additionally, we discover that network topologies have
a higher impact on the users’ attribute disclosure in the
risk-included cases than they do in the risk-free cases.
The provided models and the gained results can be

used to understand the influence of different factors on
users’ privacy choices and help users in determining
how to optimize their disclosure strategies in a network
while keeping the privacy risk at a low level.
The remainder of this paper is as follows. We discuss

related work in the next section and specify the system
model, definitions and strategies in Section 3. Our
game-theoretic approach is described in Section 4, the
results are presented in Section 6, and we conclude this
paper with a discussion in Section 7.

2. Related work

Researchers have been studying the motivation of users
to disclose their personal information in online social
networks for sometime. Spiekermann et al. find that
Relationship-building and platform enjoyment are the
factors that motivate users’ self-disclosure [12]. Aiello
et al. show that people with higher similarity are
more likely to be friends [13]. They identify similarity
between users’ profile attributes as an important factor
in predicting the existence of a friendship between
those users. It follows that if users reveal more
attributes, there is an increased chance of sharing
common attributes with other users and consequently
becoming friends with them.
Game theory is the analysis of situations involving

conflicts of interest using mathematical models [18].
Each participant is referred to as a player, and each
player has a set of possible strategies they can employ
to achieve their goals. Each player’s utility is jointly
determined by the strategies chosen by all the players
in the game. Game theory is a growing field that
has been applied to many areas including various

aspects of online social networks. These aspects range
from modeling network formation [10], to community
detection [5], and discovering influential nodes [16].

Game theory has been applied to optimizing users’
data sharing in online social networks. Kamhoua et
al. propose a Markov game theoretic approach to help
online social network users determine their optimum
data sharing policy [9]. Squicciarini et al. design a
model to facilitate users’ management of shared data
based on Clarke-Tax mechanism [22].

Game theory has also been employed to model per-
sonal information revelation in online social networks.
Squicciarini et al. [23] conduct a survey to investigate
the factors that affect the behavior of personal informa-
tion revelation, and then use a game theoretic model to
find out the dynamics of the revelation behavior. Their
results show that close friends strongly influence users’
revelation decisions.

The profile attribute privacy problem is similar to
the classic stag-hunt game [21]. The stag-hunt game
models a conflict between safety and cooperation. In
the game, two hunters can either jointly hunt a stag or
individually hunt a hare. The highest benefit can only
be achieved through cooperatively hunting a stag. In
contrast, a hunter is exposed to the highest risk if he
decides to hunt a stag while the other hunter decides
otherwise. This game is very similar to the situation that
online social network users encounter while disclosing
their profile attributes. The highest benefit accrues
when both users reveal all their attributes. The highest
risk occurs to a user when the other user reveals
less attributes because the user with more revealed
attributes is vulnerable to identify inference.

The approach presented in our paper is built upon
evolutionary game theory on graphs. Szabó et al. review
different types of evolutionary games on different
structure of graphs [24]. Antonioni et al. employ the
model of evolutionary game on graphs to investigate the
cooperation in social networks [1].

In previous work, we apply weighted evolutionary
game theoretic model to analyze users’ behavior in
profile attribute disclosure in an online social network
[4]. The model is employed on three different network
topologies, where we show that the disclosure of
profile attributes is not only influenced by attribute
importance but network connectivity as well.

In this work, we extend our previous work in
a variety of ways. We investigate how an increase
in the influential range affects the users’ privacy
strategies, by considering friends-of-friends in the
utility function. Furthermore, we apply our model
to actual Facebook friend networks and report more
comprehensive results.
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3. Preliminaries

This section contains fundamental assumptions, con-
cepts, definitions and methods used throughout the
paper.

3.1. Assumptions

We assume that users with more attributes in common
are more likely to be friends. This assumption is based
on the homophily principle exhibited in social networks
[15]. Additionally, we assume that all users of the
network attach the same importance to the same type
of attribute, e.g. all users will attach higher importance
to their address attribute than to their religion attribute.
These assumptions make it possible for us to

investigate the influence of local properties such as
profile attributes and their importance to users on a
common ground while simultaneously exploring how
global network properties affect users’ privacy.

3.2. Risk and identity inference

To capture the risk of identity inference, we introduce
the concept of hiding. A User x is hidden by another
User y if y is more distinguishable than x. This happens
when User x’s attributes are a subset of User y’s
attributes. For example, if a user John Doe reveals a
set of attributes {Doe, 25} while another user Jane Doe
reveals {Doe, Female, 25, Chicago}, then Jane is more
distinguishable than John. Therefore, John is hidden by
Jane. This is because a third party can more easily infer
the identity of Jane than John given a set of revealed
profile attributes. As a result, the risk to John Doe’s
identity is reduced by Jane Doe.

3.3. Privacy settings

The privacy setting is a configuration of the user’s
profile information, which allows the user to enable
or disable the visibility of specific profile attributes to
other network users. The privacy settings of a typical
social network consist of different levels of visibility
for different aspects of the users’ profile. The aspects
include profile attributes, activity logs, and friend lists
while the levels of visibility include friends, friends of
friends, and public. In our model, we only consider
profile attributes and two levels of visibility, i.e. friends
and friends of friends.

3.4. Network topologies

We examine the behavior of our model on five network
topologies, which include a random network, a small-
world network, a scale-free network, and two Facebook
friend networks. In these topologies, a node represents
a social network user while an edge between two nodes
indicates that the two users are “friends”. Friends of

a user represent other network users who have direct
access to that user’s revealed attributes.

A random network is a graph where an edge occurring
between two nodes follows a probability distribution
[28]. As in [17], random graphs have been used for
modeling social networks when the node degrees follow
an appropriate probability distribution. The Erdös-
Rényi (ER) [7] model is one of the models that
can generate such random networks. Given n nodes,
and that each edge occurs between two nodes with
independent probability p, the average node degree k
is approximately n · p.

In a small-world network, each node is connected
to every other node by a relatively small number of
intermediate nodes, even though most of the nodes
are not directly connected to each other. Online social
networks have been shown to exhibit small-world
properties and can be created by using a Watts-Strogatz
model [25].

A scale-free network is a network where node degree
distribution follows a power-law, i.e. the number of
nodes decreases exponentially as the node degree
increases [2]. To generate the scale-free network,
seed nodes are placed within the network, then new
nodes are added to the existing network incrementally
following the principal of preferential attachment [2].

The Facebook friend networks considered in this
work are networks constructed from actual Facebook
profiles. The nodes of a Facebook friend network
represent all the friends of that Facebook user. An edge
between two nodes indicates that the two users are
friends with each other on top of being friends with the
principal user. Mathematica provides a SocialMediaData
function to build such a Facebook friend network for
any Facebook user [14, 26, 27].

4. Our approach

We present a weighted evolutionary game to investigate
the influence of attribute importance (weight) and
network topology on the social network users’ behavior
in profile attribute disclosure.

Nowadays, there are many online social networks
with a variety of designs for their privacy settings [8].
In this paper, we model a possible social network with
characteristics exhibited by some of the online social
networks in existence. For example, our social network
and game model consists of users, each of whom owns
a profile comprised of profile attributes and is allowed
to select how many and which attributes to reveal to
friends or friends-of-friends in the network. However,
we do not consider a user revealing a different set of
attributes to different friends, which is a feature of some
social networks.
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4.1. Our approach: definitions

The definition of our basic social network is as follows.

Definition 1 (Social network). We define a social network
as an undirected graph G = (N,E) with node set N
and edge set E, where the node set N = {1, 2, ..., n}
corresponds to n users in the network.

Additionally, we consider that the connectivity
pattern of the network can follow the different network
types described in the previous section. These networks
include random, small-world, scale-free and Facebook
friend networks.
Our weighted evolutionary game is implemented

on top of this possible social network. The utility of
a user is a combination of both positive utility and
negative utility. The positive utility is represented by the
summation of the weights of the attribute pairs with
each neighbor on the network. On the other hand, the
negative utility is represented by the probability of the
identity of a user being inferred.
A strategy is a set of actions that players can execute.

In our approach, the strategy involves selecting which
and how many attributes to disclose.

Definition 2 (Privacy settings). The vector Ax =
(ax,1, ax,2, ..., ax,m) denotes the profile attributes for

User x in the social network, where ax,i is his/her ith

attribute. The attribute vector Ax has a corresponding
weight vector W = (w1, w2, ..., wm). For each User x, a
sign flag vector Sx = (sx,1, sx,2, ..., sx,m) denotes whether
specific attributes are disclosed or revealed. If attribute
ax,i is disclosed, then sx,i = 1, otherwise sx,i = 0.

For example, an attribute vector for a
given user Alice, is represented by AAlice =
(Name,Gender, Age, ..., Hometown). For simplicity,
we assume that all the users have the same set of profile
attributes. The sign flag vector SAlice = (0, 0, 0, ..., 1)
means that Alice decides to reveal her hometown but
withholds her name, gender, and age. We use Attr#i to
represent a specific attribute i.
We use the concept of pairs to evaluate the similarities

between two users. Two users Alice and Bob are said to
have a pair if they both reveal the same attribute, e.g.
hometown. Formally, a 2-tuple (ax,i , ay,i ) is called a pair
if and only if sx,i = 1 and sy,i = 1.
Fig. 1 shows a possible profile configuration for

two users x and y which exhibits r pairs. Among
the m attributes, User x reveals kx attributes
while User y reveals ky attributes. Attributes
Attr#1, Attr#2, ..., Attr#r are revealed by both users,
which constitute the r pairs. The pairs are denoted by
(ax,1, ay,1), (ax,2, ay,2), ..., (ax,r , ay,r ). A higher number of
pairs allows for the increased possibility of common
ground between users. An increase in common ground
leads to an increase in the strength of their friendship

User x User y

r pairs
Attr#1

Attr#(r + 1)

Attr#r

Attr#kx

Attr#(kx + 1)

Attr#(kx + ky − r + 1)

Attr#(kx + ky − r)

Attr#m

Figure 1. The figure shows a possible profile configuration for

two users x and y, who disclose kx and ky attributes respectively

out of the m possible attributes. The clear rectangles represent
the disclosed attributes while the shaded rectangles represent

withheld attributes.

[11]. In our case, a friendship is considered stronger if
two friends reveal and share more common attributes.

We consider that the benefit and risk are affected by
the users at two different levels of social closeness. The
first level only includes User x’s friends, and the second
level also includes User x’s friends-of-friends. We adopt
influential range (IR) to represent which level of users
contribute to User x’s benefit and/or risk.

Bx(IR) =















{F}, IR = 1,

{F} ∪ {FoF}, IR = 2,
(1)

where IR denotes influential range, F represents friend,
and FoF stands for friend-of-friend. Therefore, Bx(1) is
the set of all the friends. Bx(2) includes not just friends,
but also friends-of-friends.

In our game, the utility is a combination of benefits
(positive utility) and risks (negative utility). A user’s
positive utility is related to the amount and type of
attributes that that user shares with other users in their
influential range. The set of users who contribute to
User x’s positive utility is denoted by Bx(IR).

Conversely, the risk is the probability of a user’s
identity being inferred. This probability is measured by
the reciprocal of the number of the users who disclose
the same or additional attributes, i.e. howmany users in
the influential range can hide that user. The set Bh

x(IR)
consists of users in the influential range who disclose
the same attributes as x or extra attributes in addition
to those disclosed by User x, and can possibly hide User
x. The set Bh

x(IR) determines how much risk a user is
exposed to.
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The combined utility (payoff) function is obtained by
using Equation 2, wherewP and wN are the weight coef-
ficients for the positive utility

∑

y∈Bx(IR)
(Sx ∧ Sy) ×W

T

and negative utility 1
|Bhx |

respectively1.

ux = wP ·
∑

y∈Bx(IR)

(Sx ∧ Sy) ×W
T −wN ·

1

|Bh
x(IR)|

(2)

We define the benefit-to-risk ratio (BRR) as wP : wN ,
which is the ratio of the coefficient for positive utility to
the coefficient for negative utility.

4.2. Our approach: model

Our model is iterative and synchronous. First, each user
in the network is assigned a random initial attribute
sign flag vector. In every iteration, each user compiles
a set of candidate neighbors whose privacy settings
they may mimic. This set consists of the neighbors who
derive a higher utility from their privacy settings than
the user derives from his/her own settings. Based on
the neighbors’ utilities, each user decides whether to
change or maintain their strategy. A user is likely to
change his/her strategy if his/her neighbors derive a
higher utility from their own strategies than the user
derives from his/her own. If a user decides to change
his/her strategy, one of the candidate neighbors is then
selected as the object to mimic. The mimicking process
involves a user changing one digit of their sign flag
to the corresponding digit of the candidate neighbor’s
sign flag. This is analogous to a user Alice deciding
to reveal her location attribute after seeing that her
friend Bob, who has a higher utility, has a revealed
location attribute. At the end of each iteration, all
the users update their strategies synchronously. The
procedure keeps running iteratively until there are
no users who change their sign flags between two
consecutive iterations. When this condition has been
met, the model is said to achieve convergence.

Formally, users follow the replicator rule to update
their strategies between two successive time steps [19].
Each node makes a decision to maintain or change its
current strategy based on the utilities exhibited by its
neighbors. Given ut

x and ut
y are the utilities of User x

and User y respectively at time t, the probability of User
x (at time t + 1) adopting the strategy of User y (at time
t) is given by

Pt+1
x,y =















uty−u
t
x

dmax
, ut

y > ut
x ,

0, ut
y ≤ ut

x .
(3)

1Unless otherwise stated, we use notation ∧ to represent logic AND.
Notation WT refers to the transpose of vector W .

P t+1
x,y1/∆ P t+1

x,y2/∆ P t+1
x,y3/∆ P t+1

x,y
|Cx|/∆

rand ∈ [0, 1]

0

,

1

Figure 2. The figure shows the implementation of selecting one
of the candidate neighbors as y∗ based on the model of balls into

non-uniform bins, where Cx = y1, y2, ..., y|Cx |
. The probability of

selecting neighbor yi is directly proportional to P t+1
x,yi

We use the largest difference dmax in payoff between
any two users in the network to guarantee that Pt+1

x,y ∈

[0, 1]. Equation 3 implies that the probability of User
x following the strategy of a neighbor (User y) is
proportional to the payoff difference between users x
and y, when User y’s utility is higher than User x’s. This
probability value is evaluated for all members of the
candidate neighbor set Cx.
Each user’s decision to maintain or change his/her

strategy depends on Pt+1
x,y values for the entire candidate

neighbor set Cx. The probability of User x maintaining
its original strategy, as derived from [19], is given by

Qt+1
x =

∏

y∈Cx

(1 − P t+1
x,y ) (4)

Conversely, the probability of User x changing its
strategy between t and t + 1 is given by

Qt+1
x = 1 −

∏

y∈Cx

(1 − P t+1
x,y ). (5)

After evaluating all probabilities and deciding to
change his/her strategy, each user selects the neighbor
to mimic in the update process. A higher Pt+1

x,y value for
candidate y translates to a higher probability of being
selected as the mimic object y∗. The implementation of
selecting y∗ is based on a mathematical model called
balls into non-uniform bins [3], in which the probability2

P(yi ) of a ball falling into a certain bin is proportional
to the size of the bin. In Fig. 2, the size of the each bin
is exactly equal to P t+1

x,y /∆, where ∆ =
∑

y∈Cx
Pt+1
x,y . In total,

there are |Cx| bins. Therefore, the probability of the ball
falling into ith bin is given by

P(yi ) = Pt+1
x,yi/∆ (6)

After the mimic object is determined, the specific
attribute to mimic is randomly selected from the
attributes with different sign values.
The algorithm for updating the attribute sign flag is

shown in Algorithm 1.

2In this paper, we use y to refer to a general user, and we use yi to
refer to a specific user.
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Algorithm 1: Algorithm for updating profile
attribute sign flag

Input: Initial sign flag iSF
Output: Final sign flag f SF

1 Assign iSF for each node;
2 do
3 for each node do
4 Find the set of candidate neighbors Cx;

5 Evaluate P t+1
x,y for all members of candidate

set;
6 Evaluate probability of changing strategy

Qt+1
x ;

7 Generate a random number rand ∈ [0, 1];

8 if rand< Qt+1
x then

9 /∗ Decision is made to change strategy ∗/
10 Select neighbor y∗ from Cx;
11 /∗ Neighbor is selected using balls into

non-uniform bins ∗/
12 Change single bit from SFx to mimic

SFy∗ ;

13 end

14 end
15 All nodes update sign flags synchronously;

16 while any node changes sign flag;
17 return f SF

4.3. Working case for risk-free scenario

In this subsection, we describe a working case of a risk-
free scenario of our model, in which the influential
range is restricted to a user’s friends (neighbors). Fig.
3a shows the topology structure of the network in
this example, which consists of 8 users, whose profile
attributes and associated weights are shown in Fig. 3b.
The profile attributes include (Name, Gender, Age,...,
Hometown) with weight vector (w1, w2, w3, ..., w7) =
(0.02, 0.06, 0.10, 0.14, 0.18, 0.22, 0.28). Fig. 3c shows the
initial sign flags for all 8 users. For example, User 5 has a
sign flag S5 = (1100110) which means that only his/her
name, gender, education and occupation are revealed.
In the next few paragraphs, we show how User 5 may
change their strategy in our model.
In the first step, every user calculates their utilities

from Equation 2. This involves a comparison of the
users’ revealed attributes with each neighbor. User 5
has two neighbors: User 1 and User 2 with initial sign
flags S1 = (1000110) and S2 = (0110011) respectively.
The attributes pairs between any two users are obtained
by using bit-wise AND operation between the users’
sign flag vectors. The bit-wise AND operation between
S1 and S5 is (1000110), which means that both User
1 and User 5 disclosed attributes 1, 5 and 6. The
summation of the weights of attribute pairs (Equation
2) is therefore given by w1 + w5 + w6, which evaluates

to 0.42. Similarly, the summation of the weights of
attribute pairs between S2 and S5 is 0.28. The positive
utility for any user is obtained by summing the
weighted pair sums for all his/her neighbors. In this
case, the positive utility for User 5 is the sum of the
weighted attribute pairs between User 5 and both User
1 and User 2. This evaluates to 0.42 + 0.28 = 0.70. In
a similar fashion, the utilities are evaluated for all the
network users. Table 1 shows the positive utilities for
Users 5, 1, and 2.

In the second step, each user evaluates the probability
P t+1
x,y of mimicking his/her neighbors according to
Equation 3. The maximum range between the utility
values for the network nodes dmax is found to be 1.38.
User 5 only has to consider User 1 and User 2 when
evaluating these probability values. P1

5,1 evaluates to

0.41 while P1
5,2 evaluates to 0.49.

In the third step, each user decides whether to change
or maintain his/her strategy by using Equation 5 which
utilizes the probabilities evaluated in the step above.
For User 5, Q1

5 evaluates to 0.6991. If a randomly

selected number in the range [0, 1] is less than Q1
5, then

User 5 decides to change his/her strategy. Otherwise,
User 5 maintains his/her strategy. In our case, User 5
decides to change his/her strategy.

In the fourth step, users who decided to change
their strategies select a candidate neighbor to mimic.
Candidate neighbors should exhibit higher utility
values than the user itself. The probability of User x
selecting a specific neighbor y is directly proportional
to Pt+1

x,y for that neighbor. Since Users 1 and 2 both
have higher utilities than User 5, they are both viable
candidates for User 5 to mimic. After normalizing P1

5,1

and P1
5,2, the bin sizes for User 1 and User 2 are 0.46 and

0.54 respectively (cf. Equation 6 and Fig. 2). In our case,
User 5 selects User 2 as the mimic object.

In the fifth step, each user who decided to change
their strategy selects which attribute to reveal or
withhold to resemble their mimic object. Comparing
User 5 and User 2’s sign flags reveals that they differ
in four positions, i.e. 1, 3, 5, and 7. User 5 can mimic
User 2 in one of the following ways: revealing attribute
3, revealing attribute 7, withholding attribute 1, or
withholding attribute 5. In our case, User 5 decides to
reveal attribute 7.

All five steps are repeated in each iteration until
no single user changes his/her strategy between two
successive iterations. The system is then said to have
converged.

Fig. 3d shows the sign flags for all 8 users after a
single iteration. Fig. 3e shows the sign flags for the
whole network after convergence. In this simulation,
convergence is achieved after 11 iterations.
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1

3

4

5

2

7

6

8

(a)

w1 w2 w3 w4 w5 w6 w7

(0.02) (0.06) (0.10) (0.14) (0.18) (0.22) (0.28)

Name Gender Age Religion Education Occupation Hometown

(b)

Node w1 w2 w3 w4 w5 w6 w7
User 1 1 0 0 0 1 1 0
User 2 0 1 1 0 0 1 1
User 3 1 1 0 0 1 0 0
User 4 0 1 0 1 0 0 1
User 5 1 1 0 0 1 1 0
User 6 0 1 0 1 0 1 1
User 7 1 0 1 0 1 0 0
User 8 1 0 0 1 1 1 0

(c)

Node w1 w2 w3 w4 w5 w6 w7
User 1 1 0 0 0 1 1 0
User 2 0 1 1 0 0 1 1
User 3 1 0 0 0 1 0 0
User 4 0 1 0 1 0 0 0
User 5 1 1 0 0 1 1 1
User 6 0 1 1 1 0 1 1
User 7 1 1 1 0 1 0 0
User 8 1 0 0 1 0 1 0

(d)

Node w1 w2 w3 w4 w5 w6 w7
User 1 0 1 1 0 0 1 1
User 2 0 1 1 0 0 1 1
User 3 1 1 1 0 1 1 1
User 4 0 0 0 1 0 0 1
User 5 0 1 1 0 0 1 1
User 6 0 1 1 0 0 1 1
User 7 0 1 1 0 0 1 1
User 8 0 1 1 0 0 1 1

(e)

Figure 3. (a) A sample network consisting of 8 users
connected to each other, (b) each user has a profile

with 7 attributes with a weight vector (w1, w2, ..., w7) =
(0.02, 0.06, 0.10, 0.14, 0.18, 0.22, 0.28), (c) initial sign flags
for all 8 users that indicate which attributes are revealed and

which attributes are withheld (a “1" indicates an attribute revealed

while a “0" indicates an attribute withheld), (d) after every user
compares his strategy with that of his neighbors, every user

updates their strategy, (e) the illustrated system converges after
11 iterations and gives the resultant sign flags for all users.

5. Simulations settings

In this section, we describe the underlying simulation
settings. The simulations deal with risk-included and
risk-free cases of the weighted evolutionary game.

Table 1. The Process of Calculating Payoff Value and

Choosing Mimic Object from the Candidate Neighbors.

User Neighbor AND result Weighted result Positive utility P t+1
x,y

User 5
User 1 1000110 w1 + w5 +w6 = 0.42

0.70 N/A
User 2 0100010 w2 +w6 = 0.28

User 1

User 2 0000010 w6 = 0.22

1.26 0.41

User 3 1000100 w1 +w5 = 0.2

User 4 0000000 0

User 5 1000110 w1 + w5 +w6 = 0.42

User 8 1000110 w1 + w5 +w6 = 0.42

User 2

User 1 0000010 w6 = 0.22

1.38 0.49

User 5 0100010 w2 +w6 = 0.28

User 6 0100011 w2 + w6 +w7 = 0.56

User 7 0010000 w3 = 0.10

User 8 0000010 w6 = 0.22

Note: Maximum utility max = 1.38

Minimum utility min = 0

Maximum range between any two nodes’ utilities dmax = 1.38

(w1, w2, ..., w7) = (0.02, 0.06,0.10,0.14,0.18, 0.22,0.28)

The simulation is designed to consider user profiles
with 7 attributes (m = 7). Each user can choose to reveal
or to withhold each of these attributes. A 7-bit flag
is assigned to each user, which corresponds to the
attributes. For example, the flag 1000110 for User 1
means that Attributes 1, 5 and 6 are revealed while
Attributes 2, 3, 4, and 7 are withheld.
We begin by randomly assigning the attribute flag

to all users of the network. During each iteration,
each user has two options: maintain his/her attribute
flag, or change it (by revealing or withholding a single
attribute).
To consider different levels of the risk, we choose 3

different benefit-to-risk ratios (BRRs), which are 1 : 0,
1 : 15, and 1 : 30 (cf. Table 2). While all the attributes
are assigned to different weights, the weight vector for
the attributes is assumed to be the same for each user of
the network. Additional simulation settings are shown
in Table 2. We run the simulation for each configuration
500 times. After averaging 500 simulation results, we
obtain the dynamic curves in each of the considered
networks, which include random, small-world, scale-
free, and Facebook friend networks.
The size and average node degree for each network

are all listed in Table 3.
In Fig. 4, the visualized graphs for the random,

small-world, and scale-free networks are shown. The
visualized graphs for the Facebook friend networks
are depicted in Fig. 5. The Facebook graphs (FB1 and
FB2) are obtained using the SocialMediaData function in
Mathematica. Fig. 5a and Fig. 5b are from two different
Facebook accounts.

6. Results

In this section, we describe the results derived from
simulations of the weighted evolutionary game on a
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(a) Random network (b) Small-world network (c) Scale-free network

Figure 4. The network topologies used in the simulations. The average node degree for each network is 4, and each network includes

100 nodes.

(a) FB1 (b) FB2

Figure 5. The Facebook friend networks used in the simulations. Network FB1 and FB2 are comprised of 151 and 502 nodes
respectively.

Table 2. Values Assigned to Specific Parameters in order to

Obtain the Presented Results

Parameter Value

m 7

wP : wN 1 : 0, 1 : 15, 1 : 30

W (0.02, 0.06, 0.10, 0.14, 0.18, 0.22, 0.28)

random network, a small-world network, a scale-free
network and two Facebook friend networks.

The attribute dynamic curves for random network,
small-world network, scale-free network, FB1, and
FB2 are shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9,
and Fig. 10 respectively. Each dynamic curve shows
how the proportion of the entire population that
discloses any specific attribute changes with time. Each

Table 3. The Properties of Networks in the Simulation

Network Size Average Node Degree

Random network 100 4

Small-world network 100 4

Scale-free network 100 4

FB1 151 15.0

FB2 502 49.0

dynamic plot consists of 7 curves corresponding to
7 attributes, Attr#1, Attr#2, ..., Attr#7, which are
numbered according to their importance (weight), i.e.
Attr#7 is the most important attribute, while Attr#1 is
the least important attribute.

There are 6 sub-figures (Figs. a-f) in each figure. The
3 sub-figures in the left column (Figs. a, c, e) correspond
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to the simulation results when we consider the benefit
and risk only within the users’ friends. The 3 sub-
figures on the right side (Figs. b, d, f) correspond to
simulation results when we consider both the users’
friends and friends-of-friends. The 2 sub-figures in each
row have the same benefit-to-risk ratio (BRR). The top
(Figs. a, b), middle(Figs. c, d) and bottom(Figs. e, f)
rows correspond to BRR values of 1 : 0, 1 : 15, and 1 :
30 respectively, where (BRR = 1 : 0) represents risk-free
scenario.

The first observation is a general reduction in
attribute revelation with an increase in risk. Consider
Fig. 6 which shows the attribute dynamics in a random
network: comparing Figs. 6a, 6c, and 6e shows that
increasing the risk causes less users to reveal attributes.
Fig. 6a shows that over 85% of the population reveal
all their attributes by 100 iterations when there is
no risk. Introducing risk causes users to reveal less
attributes. In fact, Fig. 6e shows that all users withhold
all their attributes by 50 iterations when BRR = 1 : 30.
The small-world, scale-free, and Facebook networks (cf.
Figs. 7, 8, 9, and 10) all exhibit similar observations.
While this observation might seem intuitive, it provides
some form of vindication for our model.

The second observation is that the networks generally
exhibit larger drops in attribute revelation when the
range of influence is restricted to friends as opposed
to when friends-of-friends are also considered. For
example, Figs. 7a and 7b show almost identical levels
of revelation without risk. However, increasing the risk
leads to more attributes withholding in Fig. 7c and 7e
than it does in Figs. 7d and 7f. This means that risk
plays a more dominant role in attribute disclosure when
only the friends of a user are considered.

The third observation is that increasing the users’
range of influence generally results in increased levels
of attribute revelation. Consider Fig. 8 which captures
attribute dynamics in a scale-free network: comparing
the left (Figs. 8a, 8c, 8e)and right columns (Figs. 8b,
8d, 8f) shows that maximum revelation is obtained
by as early as 40 iterations for all attributes when
friends-of-friends are considered (Figs. 8b, 8d, 8f). In
contrast, the risk-free scenario with friends (Fig. 8a)
only obtains maximum revelation for some of the
attributes, while Figs. 8c and 8e do not obtain maximum
revelation for any attributes at all. This observation can
be attributed to the process of enlarging the influential
range. Increasing the range results in an increase in the
number of users who can hide any specific user which
leads to a reduction in risk. Increasing the range also
allows for more users who share the same attributes
which leads to an increase in the user’s benefit.

The next observation is related to the friends
influential range (Figs. a, c, and e). Increasing the risk
factor has a larger effect on attribute disclosure in the

random and small-world networks than in the scale-
free and Facebook networks. Comparing Figs. 6 and
7 to Figs. 8, 9 and 10 shows that BRR = 1 : 30 causes
complete attribute withholding in the random and
small-world networks in contrast to partial attribute
withholding in the scale-free and Facebook networks.
The final observation is related to the effect of

network topology on attribute disclosure with the
range of influence restricted to friends. We find that
network topology plays a more considerable effect
on the privacy in risk-included scenarios than in a
risk-free scenario for the random, small-world, and
scale-free networks. Comparing Figs. 6a, 7a and 8a
shows that the networks exhibit similar performance
in the risk-free environment (BRR = 1 : 0). However,
comparing Figs. 6c, 7c and 8c as well as Figs. 6e, 7e
and 8e shows that the performance is different for
different networks. For example, Figs. 6e and 7e show
complete attribute withholding while Fig. 8e shows
partial attribute disclosure.

7. Conclusions

In this paper, we analyze the behavior of users in a
social network regarding how they choose their privacy
settings. We model a basic social network and define
a game-theoretical model on top of it, in which users
are able to adjust their privacy settings according to
certain strategy options. In order to make the model
more realistic, we include weights corresponding to the
importance that users attach to certain attributes.
With the resulting weighted evolutionary game

model, we aim to investigate the influence of various
factors, such as attribute importance, benefit, risk and
network topology, on the privacy settings employed in
social networks.
The results show that the most important attributes

exhibit higher levels of revelation than the least
important attributes. This finding is more evident in
random and scale-free networks than in small-world
networks.
We also find that increasing the risk exhibits limited

effect on the privacy dynamics of the network if
we consider the benefit and risk from friends-of-
friends. In the Facebook friend networks, which include
more users and feature higher average node degree,
increasing risk coefficient only slightly affect the level
of attribute disclosure.
The approach presented in this paper provides an

initial approach to study and understand the dynamics
of privacy settings in social networks.
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(a) Random network (BRR=1:0, IR={F})
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(b) Random network (BRR=1:0, IR={F}∪{FoF})
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(c) Random network (BRR=1:15, IR={F})
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(d) Random network (BRR=1:15, IR={F}∪{FoF})
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(e) Random network (BRR=1:30, IR={F})
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(f) Random network (BRR=1:30, IR={F}∪{FoF})

Figure 6. Attribute dynamics for the weighted evolutionary game in random network. The figures in left column correspond to applying

Friends as the influential range of the utility function.
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(a) Small-world network (BRR=1:0, IR={F})
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(b) Small-world network (BRR=1:0, IR={F}∪{FoF})
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(c) Small-world network (BRR=1:15, IR={F})
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(d) Small-world network (BRR=1:15, IR={F}∪{FoF})
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(e) Small-world network (BRR=1:30, IR={F})
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(f) Small-world network (BRR=1:30, IR={F}∪{FoF})

Figure 7. Attribute dynamics for the weighted evolutionary game in small-world network. The figures in left column correspond to

applying Friends as the influential range of the utility function.
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(a) Scale-free network (BRR=1:0, IR={F})
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(b) Scale-free network (BRR=1:0, IR={F}∪{FoF})
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(c) Scale-free network (BRR=1:15, IR={F})
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(d) Scale-free network (BRR=1:15, IR={F}∪{FoF})
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(e) Scale-free network (BRR=1:30, IR={F})
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(f) Scale-free network (BRR=1:30, IR={F}∪{FoF})

Figure 8. Attribute dynamics for the weighted evolutionary game in scale-free network. The figures in left column correspond to

applying Friends as the influential range of the utility function.
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(a) FB1 (BRR=1:0, IR={F})
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(b) FB1 (BRR=1:0, IR={F}∪{FoF})
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(c) FB1 (BRR=1:15, IR={F})
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(d) FB1 (BRR=1:15, IR={F}∪{FoF})
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(e) FB1 (BRR=1:30, IR={F})
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(f) FB1 (BRR=1:30, IR={F}∪{FoF})

Figure 9. Attribute dynamics for the weighted evolutionary game in FB1. The figures in left column correspond to applying Friends

as the influential range of the utility function.
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(a) FB2 (BRR=1:0, IR={F})
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(b) FB2 (BRR=1:0, IR={F}∪{FoF})
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(c) FB2 (BRR=1:15, IR={F})
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(d) FB2 (BRR=1:15, IR={F}∪{FoF})
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(e) FB2 (BRR=1:30, IR={F})
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(f) FB2 (BRR=1:30, IR={F}∪{FoF})

Figure 10. Attribute dynamics for the weighted evolutionary game in FB2. The figures in left column correspond to applying Friends

as the influential range of the utility function.
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