
EAI Endorsed Transactions on
Context-aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e2

EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

1

Modified Virtual Air Guitar: A Concept Realized using

Image Processing Techniques

J. R. Santiago1, S. J. Samuel2,* and R. Sawn2

1Department of Electrical Engineering, Santa Clara University, Santa Clara, California, USA
2Department of Computer Engineering, Xavier Institute of Engineering, Mahim, Mumbai, India

Abstract

Even amidst the hustle and bustle of busy lives, numerous people dream of playing a musical instrument. Unfortunately,

many may never get a chance to touch one. But this doesn’t stop them from ‘air drumming’ or playing ‘air guitar’

passionately while listening to their favorite tunes. To encourage this passion for music, especially in the absence of a real

instrument, we introduce to you the Virtual Air Guitar. This application allows one to showcase their guitar skills,

regardless of their knowledge of playing a real guitar. It uses color tracking to detect inputs and a sound module

incorporating the Karplus Strong algorithm to generate musical notes as an output. As a result, a simple webcam and

brightly colored gloves are required to use the application. This application has enormous potential as a base for interactive

guitar games, teaching music, and of course, to compose guitar based songs.

Keywords: Virtual Air Guitar (VAG), Image Processing, Color Tracking, Karplus Strong Algorithm (KSA).

Received on 02 December 2014, accepted on 23 December 2014, published on 12 March 2015

Copyright © 2015 Santiago et al., licensed to ICST. This is an open access article distributed under the terms of the Creative Commons

Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any

medium so long as the original work is properly cited.

doi: 10.4108/casa.2.3.e2

*Corresponding author. Email: stanlyjohnsamuel@yahoo.com

1. Introduction

The yearning to create original music or to recreate

tunes we love, is a fairly common and extremely

powerful one. Most people would jump at the

opportunity to play a song on a guitar, if only they

knew how to play, or if they had access to a guitar.

Using a computer application to provide a similar,

virtual experience loses all its appeal if the user has

to provide inputs using the traditional mouse and

keyboard. The act of pushing keys on the keyboard

does not have the feel of playing an actual guitar,

and is far removed from the rewarding experiences

that musical instruments provide.

A better alternative, made possible by advances in

image processing, is using visual inputs and moving

your hands in the same way one would if playing a

real instrument. Color detection, and the subsequent

tracking of that color can be used to monitor the

locations of the player’s hands. The player would

need to wear gloves, and the gloves would need to

be appropriately colored to stand out from the

background and the rest of the player’s body. Even

wrapping a ribbon around one's hands would work.

The best part about this approach is that many

people already love to play ‘air guitar’ which makes

the associated appeal universal. We have simply

built upon joy of pretending to play, and made it

possible to receive musical output, like you would

from a real guitar.

A simple line made of differently colored

segments is a basic representation of the fretboard of

a guitar. It can be thought of as one string, which is

capable of producing different notes depending on

which segment you ‘pluck.’ This is realized by

monitoring the coordinates of the gloves with the

color tracking algorithm in real time and generating

a musical note; the sound is generated when the

point representing the right hand passes through a

segment of the string. Each differently colored

segment has a unique note assigned to it. The notes

thus generated using the Karplus-Strong algorithm

simulate the sound produced when a string is

plucked. For the purpose of our prototype, we picked

the four notes used in the easily recognizable intro of

an immensely famous song: Smoke on the Water.

The frequency of each note was then assigned to a

separate segment on the 'string'. After just a few

minutes of practice we were able to successfully

play the entire intro. Our aim was provide the virtual

guitar experience to anybody with a computer or

laptop, and a webcam.

http://creativecommons.org/licenses/by/3.0/

EAI Endorsed Transactions on
Context-aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e2

J. R. Santiago et al.

2

2. Related work

Lucas S. Figueiredo et al. have presented an open-

source framework for developing guitar-based

games using gesture interaction. [1] The goal of this

work was to develop a robust platform capable of

providing seamless real time interaction, intuitive

playability and coherent sound output. Each part of

the proposed architecture was detailed and a case

study was performed to understand the ease with

which it could be used. Tests were performed in

order to validate the proposed platform. The results

proved to be successful: all tested subjects could

reach the objective of playing a simple song during a

small amount of time and they were satisfied with

the experience.

Matti Karjalainen et al. explain the framework of

guitar based games and the working of the Virtual

Air Guitar by using a pair of gloves, webcam and an

additional foot pedal to change the sounds while

playing. [2] However, it is not always possible to

have an additional pedal, as including it would

impose several obstacles upon the marketing of this

concept. To overcome this, we have a created a

prototype of the Virtual Air Guitar which does not

include any extra parts and works only on a webcam

and colored gloves. The proposed plan is to include

gesture touch controls on the screen to change the

sound, which replaces the need for an extra pedal.

This is planned in the next phase.

Steven Gelineck et al. describe how an immersive

and interactive application is created by

implementing physical models of a flute and a drum

with the capability of changing dimensions in real-

time. [4] A flute-like controller is able to measure

how hard a person blows into the instrument and lets

the user control different tones using buttons

connected to a sensor box. A mallet is tracked using

color tracking in order to measure the time and the

intensity of the mallet hitting the virtual drum.

Virtual models of both instruments are also

developed and implemented in 3D stereo using

Virtools. The virtual flute is experienced as an

extension of the physical instrument using a

magnetic system which maps the movements of the

user to the position and rotation of the virtual flute.

The virtual drum is experienced as hovering in the

air ready for the mallet to hit it. Both instruments are

capable of changing size and shape to match the

sound synthesis models. To further immerse the

user, visual feedback of the sound is produced. The

intensity and color of lights and particles are altered

to visualize changes in amplitude and frequency.

Jyri Pakarinen et al. modify the work done by

Matti Karjalainen et al. by extending their energy-

compensated time-varying digital waveguide model

of a guitar to generate sounds using a slide tube

touching the lunch. [2][3] This model requires an

external slide tube and a reflecting ring, which we

eliminated in our model. The camera recognizes the

equipment, and records the plucking and pulling-off

motions and the distance between the hands. Sounds

are then produced, using this recorded information

as an input. The output of this Virtual Slide Guitar

can also be modified using features that allow the

user to tune the instrument, change the simulated

slide tube material, tweak the contact-sound module,

balance between static and dynamic components,

and select an output effect.

3. Working methodology and
implementation

3.1. Image Processing Module

This algorithm works (see Figure 1) by initiating the

image acquisition module, which starts the video

capture frame by frame. The module is given the

address of the adapter of the webcam and the

resolution of each frame to be captured. This

resolution is dependent on the webcam

configuration. Once the module is initiated, we

perform a series of operations on each frame. We

first take a snapshot of the given frame and flip the

image generated. Flipping the image gives a ‘mirror

reflection’ for the user when that frame is displayed

on the screen. This is essential for webcam based

games. Next, we isolate and extract the red

components of the image. Then we filter the noise to

remove unwanted signals. Once this step is done,

there can be many red objects in the room (assuming

one is not wearing red clothing and the background

behind the user is not red, which is a potential

disadvantage). We then filter out all images which

are less than 300 pixels because these objects would

be too small to be our required red component. Now,

we only mark the largest and the second largest red

components with a bounding box and calculate the

centroid of these components. We do this because

the red objects which are closest to the webcam are

the gloves, and this proximity to the camera makes

them the largest red objects in the frame. The

centroid has an important role which will be

explained subsequently. Now, among these two red

components, the right and the left component is

marked accordingly. Next, a line is passed through

EAI Endorsed Transactions on
Context-aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e2

Modified Virtual Air Guitar: A Concept Realized using Image Processing Techniques

3

the centroid of the left hand. This line represents the

fretboard of a guitar. The line is further divided into

a number of guitar frets depending on the song to be

played. For the purpose of this paper, we have

selected the classic rock song ‘Smoke on the Water’;

only four notes are required to play the song. Hence,

the line is divided into four frets, represented using

four different colors in the figure. The four notes

with their respective frequencies have been

presented in Table 1.

This is the body text with indent. This is the body

text with indent. This is the body text with indent.

This is the body text with indent. This is the body

text with indent. This is the body text with indent.

This is the body text with indent. This is the body

text with indent. This is the body text with indent.

This is the body text with indent. This is the body

text with indent.

Table 1. Notes used in the song ‘Smoke on the
Water’

Note Color Frequency

A2 Yellow 110.0 Hz

C3 Blue 130.8 Hz

D3 Green 146.8 Hz

Eb3 Red 155.6 Hz

These frequencies are given as inputs to the sound

module, which generates the waveform and plays the

resulting sound when the following events occur:

When the right hand is above the colored line, no

sound is played. However, when the right hand

crosses the line from top to bottom i.e. when the

centroid of the right hand crosses the line, a sound is

played. This sound depends on which colored

segment of the line the centroid of the right hand is

passed through (see Figure 2).

Figure 2. Project Output

Figure 1. Project Flowchart - Part one

EAI Endorsed Transactions on
Context-aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e2

J. R. Santiago et al.

4

Figure 3. Project Flowchart - Part two

3.2. Sound Module

The sound module uses the Karplus Strong

Algorithm and discrete time filters to achieve

realistic guitar tones as outputs, which are generated

based on the input frequency given. [5] For example,

if the input frequency given is 110.0 Hz, then the

‘A2’ note is generated at run time by the module.

This is the major modification from the paper “An

open-source framework for air guitar games,” where

the notes are already recorded in a WAV file

beforehand and played. [1] The advantage is that

there is no need to store many sound files and the

required sound can be generated without the need of

independently recorded sounds. This is immensely

helpful if we need to generate different tones for the

same note. Different tones can be created using a

combination of distortion, delay, reverb, compressor,

flanger and other effects.

The sound module works as follows (see Figure

4). We begin by setting the basic frequency i.e. of

the ‘A2’ note at 110 Hz. This is the basic frequency

which we will use to generate the other notes using

the Twelve-Tone Musical Scale (see Table 2.).

In Table 2, the Unison interval is the ‘C’ note.

However, in our project we set the Unison interval

as ‘A’ (technically ‘A2’). The Unison interval has

semitone number 0. Thus, ‘A’ note has a semitone 0,

‘A#/Bb’ note has a semitone 1, ‘B’ note has a

semitone 2 and so on in that sequence. Now, based

on the Unison interval (i.e. ‘A’ note), we can

calculate the first harmonic frequencies (see Figure

5) of the remaining notes given in Table 1 using the

formula:

[required first harmonic frequency] =

[frequency of Unison interval] * [equal

temperament corresponding to the required

frequency’s semitone]

For example, if we need to recreate the ‘C3’ note

i.e. the third semitone from ‘A2’ note, we will use

the above formula as follows:

[first harmonic frequency of C3] =

[frequency of A2]* [equal temperament

corresponding to semitone 3]

Viz. [First harmonic frequency of C3] =

110*1.189 Hz

Viz. [First harmonic frequency of C3] = 130.79

Hz

Viz. [First harmonic frequency of C3] = 130.8 Hz

Viz. the original value for C3 given in Table 1.

EAI Endorsed Transactions on
Context-aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e2

Modified Virtual Air Guitar: A Concept Realized using Image Processing Techniques

5

Figure 3. Project Flowchart – Sound Module

Similarly, we can calculate the first harmonic

frequency of the other notes using the Twelve-Tone

Musical Scale. When a guitar string is plucked or

strummed, it produces a sound wave with peaks in

the frequency domain that are equally spaced. These

are called the harmonics and they give each note a

full sound. We generate sound waves containing

these harmonics with discrete-time filter objects.

Table 2. Twelve Tone Musical Scale

No. of
Semitones

Interval
Name

Notes Equal
Temperament

0 Unison C 20/12=1.000
1 Semitone C#/Db 21/12=1.059

2 Whole tone D 22/12=1.122

3 Minor third D#/Eb 23/12=1.189

4 Major third E 24/12=1.260

5 Perfect
fourth

F 25/12=1.335

6 Tritone F#/Gb 26/12=1.414

7 Perfect fifth G 27/12=1.498

8 Minor sixth G#/Ab 28/12=1.587

9 Major sixth A 29/12=1.682

10 Minor
seventh

A#/Bb 210/12=1.782

11 Major
seventh

B 211/12=1.888

12 Octave C 212/12=2.000

The feedback delay is calculated using the first

harmonic frequency. Then the transfer function of

the IIR filter, whose poles approximate the

harmonics of the given note, is calculated using the

feedback delay. This filter is then used to generate

the final signal which contain the harmonics of the

given note. This signal can then be generated using

any inbuilt sound player that recognizes such

signals. This is how a signal can be generated using

a discrete time filter.

Figure 5. Harmonics of the notes used in 'Smoke on
the Water'

EAI Endorsed Transactions on
Context-aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e2

J. R. Santiago et al.

6

4. Performance evaluation and efficiency

We have evaluated the performance of the

application based on tests which measure latency.

MATLAB has an inbuilt profiler which gives the

time required for an individual function to execute.

Latency was calculated as the time taken for the

program to provide an output in the form of sound

after a particular note was played i.e. when the

centroid of the right hand crosses the rendered guitar

string.

The application was tested on an Intel Core i5-

3337U clocked at 1.8Ghz (Up to 2.5Ghz with Turbo

Boost technology), 4GB of RAM equipped with an

NVidia GEFORCE 710M GPU. The latency

measured was between 0.5s and 1.5s which

compromises real time experience slightly. Higher

response times can be potentially be achieved with a

better computing system comprising of a high end

CPU, RAM and GPU.

Since this application is an initial prototype built

on MATLAB (building the application in OpenCV

would provide better response times), the immersive

experience was decreased due to this slight latency.

However, the appeal was preserved. Users were very

curious and interested in how a guitar works.

5. Future work/scope

The Virtual Air Guitar is a project, an application

that can be built upon almost endlessly, depending

upon what purpose the application shall serve.

 There are many aspects of it that can be improved

upon and new ones that can be added, making it the

perfect interactive controller-free game, or with

more refinement, even a tool for educating people

about the guitar, when a real, physical instrument

isn't available. For example, more frets can be added

to allow it to produce a wider range of notes.

Options can be added that allow you to manipulate

the tone and pitch, and process the sound output to

produce special effects like distortion, and echo. The

application can also be modified to detect any color

that the user selects, instead of only being able to use

red.

 Apart from the addition of such features, the

efficiency of the application can be improved so that

it can run well, and in a responsive manner even on a

PC having a low hardware configuration. This is due

to the fact that our application is developed using

minimal graphics.

 In terms of gaming and entertainment, significant

changes can be made to provide a challenging source

of recreational activity. The objective of the game

could be to play the notes displayed on screen, in the

correct sequence and with correct timing. Depending

upon how accurately the player can play the tune,

they win points and clear levels, which get

progressively tougher.

As mentioned before, our MATLAB simulation

suffers from slight latency while generating the note

using the Karplus Strong Algorithm when the

centroid of the hand crosses the line. This is because

MATLAB contains a lot of inbuilt functions which

are invoked repeatedly during runtime, introducing

restrictions upon real time playability. Thus, plans to

convert this project into OpenCV language for future

iterations are currently in progress.

Another disadvantage of color detection is the

detection of color to an extent to which it can hinder

playability. For example, detecting red color in this

project imposes certain restrictions. One cannot use

this project while having a red background, and the

person must not wear red clothing either, as the

algorithm will select these red objects as the largest

red components, rather than the users’ gloved hands.

To overcome these problems, we plan to include

gesture recognition mechanisms in future iteration.

One of the more noteworthy proposed

modifications, is adding gesture based on-screen

controls which open up interactive menus which the

user can use to change various features. For

example, a user can change tones of his virtual guitar

by simply moving his hand to the top right corner of

the screen where a plethora of sound options like

delay, reverb, phaser, flanger and wah can open up

onto the screen. The user can then change the

settings as needed. He can move his hand to the top

left corner and select from a wide variety of

predefined songs to learn from and the songs’

tutorials can be fed into this application. Each area

on the screen can be assigned different

functionalities depending on usage. The possibilities

are endless and await future exploration.

References

[1] Cavalcanti, A.S., Figueiredo, L.S., Kelner, J., Teichrieb,

V., and Teixeira, J.M.X.N. 2009. An open-source

framework for air guitar games. In Proceedings of the 8th

Annual Brazilian Symposium on Games and Digital

Entertainment (Rio de Janeiro, Brazil, October 08 - 10,

2009), IEEE, 74-82. DOI=

http://dx.doi.org/10.1109/SBGAMES.2009.17.

[2] Huovilainen, A., Jänis, P., Kanerva, A., Karjalainen, M.,

and Mäki-Patola, T. 2004. Virtual Air Guitar. Journal of

the AES. 54, 10 (October. 2006), 964-980.

EAI Endorsed Transactions on
Context-aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e2

Modified Virtual Air Guitar: A Concept Realized using Image Processing Techniques

7

[3] Pakarinen, J., Puputti, T., and Välimäki, V. 2008. Virtual

Slide Guitar. Computer Music Journal. 32, 3 (August.

2008), MIT Press Cambridge, MA, USA, 42-54. DOI=

http://dx.doi.org/10.1145/964696.964697.

[4] Bottcher, N., Gelineck, S., Martinussen, L., and Serafin, S.

2005. Virtual Reality Instruments capable of changing

Dimensions in Real-time. Enactive 2005. Aalborg

University, Copenhagen, Denmark.

[5] Karplus, K., and Strong, A. 1983. Digital Synthesis of

Plucked-String and Drum Timbres. Computer Music

Journal. 7, 2 (Summer. 1983), MIT Press Cambridge, MA,

USA, 43-55. DOI= http://dx.doi.org/10.2307%2F3680062.

[6] Jaffe, D.A., and Smith, J.O. 1983. Extensions of the

Karplus-Strong Plucked-String Algorithm. Computer

Music Journal. 7, 2 (Summer. 1983), MIT Press

Cambridge, MA, USA, 56-69. DOI=

http://dx.doi.org/10.2307%2F3680063.

[7] Anand, A.B. 2010. Tracking red color objects using

Matlab. Amrita School of Engineering, Bangalore, India.

[8] Virtual Air Guitar website: http://airguitar.tml.hut.fi/.

[9] Virtual Air Guitar Co.: http://www.virtualairguitar.com.

[10] Twelve-Tone Musical Scale:

http://thinkzone.wlonk.com/Music/12Tone.htm.

