
Mobile Agent Communication in Highly Dynamic
Networks: A Self-Adaptive Architecture inspired by
the Honey Bee Colony
Phuong T. Nguyen1,∗, Volkmar Schau2, Wilhelm R. Rossak2

1Research and Development Center, Duy Tan University, Da Nang, Vietnam
2Department of Computer Science, Friedrich-Schiller-Univerität Jena, Ernst-Abbe-Platz 2-4, D-07743 Jena,
Germany

Abstract

Communication is considered as a building block for mobile agent systems. In highly dynamic networks,
thanks to environmental stimuli such as changes in connection quality and network topology, performance of
communication between mobile agents may be degraded considerably. With focus on attaining fault tolerance
and reliability, we propose a context-aware architecture for agent communication model inspired by the honey
bee colony. To validate the hypothesis, a software prototype has been designed and implemented according to
the proposed mechanism. Encouraging experimental results on a test system show that our approach brings
benefits to a colony of agent platforms.

Received on 29 October 2014; accepted on 28 November 2014; published on 16 December 2014
Keywords: Context-Awareness, Mobile Agents, Agent Communication

Copyright © 2014 Phuong T. Nguyen et al., licensed to ICST. This is an open access article distributed under the terms
of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/casa.1.2.e5

1. Introduction
Communication between mobile agents has been
identified as an important issue in mobile agent
technology, alongside other technical aspects of mobile
agent technology, such as migrations and control
mechanisms [9],[10],[11]. Under certain circumstances
mobile agents can benefit from sending communication
messages instead of migrating to remote platforms
[9],[13].

For systems working in highly dynamic networks,
agent communication is expected to adapt to environ-
mental stimuli which appear only at execution time.
Communication should deal not only with interoper-
ability and location-transparency, but also with adapt-
ability. Several studies have been published so far which
address the design of an appropriate, highly flexible
model for mobile agent communication. However, to
the best of our knowledge none of the suggested solu-
tions has been able to achieve the necessary perfor-
mance and quality attributes to count as a practical

∗Corresponding author. Email: phuong.nguyen@duytan.edu.vn

solution. In most cases, these existing approaches seem
to neglect the inherent dynamics of modern networks.
Thus, in our view adaptive mobile agent communi-
cation remains a challenging topic. We are interested
in developing an adaptive communication model for
mobile agents which is suitable for tasks in highly
dynamic networks.

In this paper we present an adaptive communication
for mobile agents in highly dynamic networks. The
main objective is to develop a model for agent
communication that supports fault tolerance and
reliability as the key qualities. Being inspired by
the exotic behaviours of the honey bee colony,
we suggested building a self-organizing network in
the agent platform colony. Based on the proposed
theory, we design, implement a software prototype
for supporting mobile agent communication in highly
dynamic networks. To validate our hypothesis, we also
perform some evaluations for the software prototype in
a laboratory scale test system.

The paper is organized as follows. In Section 2
we present the motivations as well as the aims of
our work. Background on swarm intelligence is going

1

Research Article
EAI Endorsed Transactions
on Context-Aware Systems and Applications

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<phuong.nguyen@duytan.edu.vn>

P.T. Nguyen et al.

to be introduced in Section 3. Section 4 provides
a biological background concerning the honey bee
colony. Our proposed approach is highlighted in
Section 5. Afterwards, we present our method for
improving an existing consensus algorithm in Section 6.
Section 7 deals with the implementation of the
software prototype. Experimental evaluation results are
introduced in Section 8. Finally, Section 9 concludes the
paper.

2. Motivations and Objectives

2.1. Motivations
For the support of mass casualty incidents (MCI)
rescue, a project has been executed by Friedrich Schiller
University Jena and its partners. The project, named
SpeedUp1, consists of two main areas: SpeedUp Practice
and SpeedUp Technology. SpeedUp Technology is
responsible for the IT support of rescue forces in
MCI situations so that in disaster events, rescue
actions can be performed in a more effective way.
The IT solution supports the usual rescue measures
by providing a framework for improved information
handling, additional preprocessed sensor data, and a
basis for a highly flexible communication infrastructure
[12]. In SpeedUp the mobile agent concept has been
selected as one of the main technologies on the
communication infrastructure level.

Our work was motivated by a system working
in a communication infrastructure for emergency
rescue scenarios [6]. Figure 1 illustrates the so-
called mass casualty incident (MCI). In this scenario
work conditions change dramatically as new tasks
appear, rescue staff are unlikely to process incoming
information in an effective way. Moreover, since each
team performs tasks with its own criteria and under
control of its own authority, conflicts in their goals
might arise at anytime. As a consequence, performing
rescue operations based on experience without any
additional technical supports seems to be an impossible
task. In an MCI rescue scenario, there are multiple
regions of working staff being scattered over a wide
area. In a region, the movement and relocation
of rescue personnel make the availability of their
devices unstable. Changes in network topology trigger
other stimuli, such as changes in connection quality,
in routing strategy, and in communication pattern.
These stimuli generally adversely affect communication
performance. A question arises: How to organize the
logical connection among platforms in an operationally
feasible manner to cope with these stimuli? Given that

1The project was funded within the Federal Government’s program
"Research for Civil Security" by the German Federal Ministry of
Education and Research (BMBF), http://www.speedup-projekt.de

communication between mobile agents is important,
it is expected that agent platforms can self-manage in
order to be adaptive to perturbations, thereby attaining
fault tolerance and reliability in message transferring.
We consider the issues as our research problem.

Figure 1. Communication in MCI rescue scenarios

In our work, we propose a model for agent
communication that focuses on the cooperation aspect
of agent interaction and supports reliability and fault
tolerance as the key qualities, while keeping up an
acceptable overall performance at the same time.
We design, implement, and evaluate in this project
environment a prototype for adaptive mobile agent
communication in highly dynamic networks.

2.2. Aims
We have been participating actively in designing and
implementing a communication infrastructure for the
support of rescue personnel in MCIs. The IT solution
supports the usual rescue measures by providing
a framework for improved information handling,
additional preprocessed sensor data, and a basis
for a highly flexible communication infrastructure.
Essentially, we are aiming at providing necessary
information to the right personnel so that in disaster
events, rescue actions can be performed in a more
effective way. The main contributions of our work are
summarized as follows:

• Introduction of a self-organizing mechanism for
the management of working regions in highly
dynamic networks.

• Development of a communication model that is
able to adapt in a mostly autonomous fashion to
topological changes of the underlying network.

• Implementation of a software prototype for the
proposed communication model that is adaptive
to environmental stimuli.

2 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

• Improvement of overall qualities of mobile agent
collaboration concerning fault tolerance and
reliability.

• General speaking, the proposed model is suitable
for mobile agents working in highly dynamic
networks of the SpeedUp-Type.

3. Swarm Intelligence
Swarm intelligence is considered as a branch of
biomimicry which covers a wide range of applications,
including architecture, mechanical engineering, nano
technology, and computer science. The main idea of
swarm intelligence in computer systems is to emulate
activities in nature so that they can have alike features.
As a result, they can react to environmental changes and
therefore be resilient to perturbations.

In MCI rescue scenarios, rescue forces may be
distributed widely. Each geographical location forms
most likely a technological region in which different
forces work together to do rescue tasks. The key
point is how to manage the dynamics of mobile agent
platforms in these regions efficiently, as they join and
quit spontaneously, or they swarm onto a new location.
We expect a technique that can help the system fulfil
the following requirements:

• The control of the whole system does not rely
on any central component, it is distributed to all
constituent members.

• The system is able to adapt automatically to the
surrounding environment.

• The system is resilient to errors, it can get to a
stable status after changes or damages through
autonomous interaction of its members.

By bearing on these points, our analysis converges on
the concept of self-organization [18]. Self-organization
is the way a system adjusts its behaviour to adapt to the
surrounding environment. Through interaction among
the constituent members on a local scale, the system
reaches a globally sensible pattern. The control of a self-
organizing system does not rely on any specific member,
it is distributed to all of them [15].

Self-organization has been proven to help a system to
alleviate "The complexity problem" [18], it is a common
phenomenon in nature. Throughout thousands of
years of evolution, biological systems have adapted
themselves to a changing environment. Plants’ leaves
always lean to the direction where they can get sunlight,
roots grow towards water sources and nutrients. In the
animal world, flocks of bird and fireflies, schools of
fishes, swarms of honey bees are typical examples of
self-organization [15]. The common property for these
examples is that there is no central control or external

intervention to the control of the community, the final
decision is made based on the communication among
individuals. Robustness, flexibility and adaptability are
the outstanding characteristics of natural systems [17].
Through the interaction among its members a system
can gain stability, and it is able to recover when error
occurs. The whole system fits itself "bottom-up" to
the environmental stimuli. It becomes more robust
since the control of the whole system does not rely
on any individual component. New members can be
integrated seamlessly into the system. Furthermore, the
disappearance of members does not cause the whole
system to stop working, it can scale flexibly to the
number of members.

4. Biological Background

4.1. Overview
The bee colony is a typical example of self-organization
in nature. A bee population consists of a queen bee
who is reproductive, some male drones, and thousands
of female workers. Worker bees undertake the most
important tasks of the whole colony, they build the hive,
keep it clean, regulate the temperature, search for food
sources, and find a new resident location when the bee
colony needs to split up.

Teamwork is the distinctive character of the colony,
honey bees are a well-organized team and they work
in strict disciplines. The control of the whole colony
is not dependent on any individual, even the queen
bee. This is done through the interaction among
thousands of worker bees, when and how many bees
the queen bee must create is actually controlled by
the workers. The queen bee has only an indirect
role in organizing the colony, she gives birth to bees.
The self-organizing model of honey bees has inspired
much work in computer science and shown to improve
considerably computational performance in particular
circumstances [3],[4],[5].

Regarding the network model in MCI rescue
scenarios, we found that the honey bee community and
the community of agent platforms have a substantial
coincidence of behaviour. If we call honey bees and
agent platforms simply members, then the following
clauses hold for both communities:

• Members work in a distributed environment.

• Members cooperate to perform common tasks.

• Members work to maximize the global work
performance.

• Congestion occurs when the population grows.

Furthermore, honey bees have efficient mechanisms
to deal with their daily routine as follows:

3

Mobile Agent Communication in Highly Dynamic Networks: A Self-Adaptive Architecture inspired by the Honey Bee Colony

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

P.T. Nguyen et al.

• Control of the colony takes place without any
external intervention.

• The colony can respond dynamically to the
surrounding environment.

• The colony is still able to work, if some of the
workers are missing.

• The colony can adjust its population to avoid
conflict and maintain reproduction.

The fact that the two phenomena have a lot in
common and honey bees possess a good mechanism to
deal with their daily routines encourages us to apply
honey bee behaviour to manage the dynamics of a
networked environment that reflects a SpeedUp-Type of
system. In the next sections, we are going to provide the
reader with an overview of the honey bee colony, and
then introduce our approach.

4.2. Bee Communication
Bees can produce honey only after they collect enough
nectar and pollen. Since food sources are normally
distributed far away from their hive, foraging is a
vital skill of honey bees. Foraging takes place in the
summer, bees spread out to search for food sources.
Each individual bee may find different food sources, but
as time goes by, the colony tends to head for rich food
source in which they can get more nectar and pollen. It
is exciting to know that a honey bee has a mechanism to
notify other bees. A worker bee can communicate with
her colleagues to inform about the food sources she has
found. A scout bee, after finding a new food source,
returns to the hive and performs a waggle dance to notify
other honey bees about the food source [25]. It has been
shown that, with the waggle dance, a forager provides
the following information to her colleagues [26]:

• Direction to the food source compared to the sun.

• Distance to the food source.

• The amount of food: the more exciting and the
longer she dances, the richer the food source is
[2],[16].

With this information, other honey bees are able
to know where and how far they must fly in order
to get to the food source. Rich food sources attract
more honey bees to come and get pollen than other
sources that contain lower amounts of food. Thanks
to this information sharing, the honey bee colony
can maximize the amount and quality of food. The
discovery of bee communication brought the biologist
Karl von Frisch the Nobel Prize for Physiology or
Medicine in 1973 [27].

4.3. Swarming
Swarming in bee colony occurs when the bee population
increases and causes congestion and difficulties in
maintaining good hygiene in the beehive. Swarming
is also one of the honey bees’ instincts, they maintain
reproduction by splitting.

Before swarming, worker bees build a cup in which
the old queen lays eggs, in order to raise a new queen
bee. When the new queen bee arrives, the old queen
bee takes a number of workers with her and they fly
to a new temporary location, e.g. a tree branch, that is
near to their hive. The swarm remains on the temporary
residence for a short time while waiting for a new
residence. Scout bees, which are the most experienced
foragers in the swarm, are then deployed to find new
suitable locations. When the exploration is finished,
every scout bee returns to the bee cluster to inform the
whole colony about the place she has found. This is
done by the same waggle dance the scout bee does when
she informs the community about food sources.

The scouts fly back and forth until the number of
honey bees that gather at a site constitutes a quorum,
then the scout bees return to the swarm and the swarm
decides to leave for the new location [1]. The relocation
may prolong, if the colony finds the new location does
not satisfy expected requirements regarding available
space, light intensity and hygiene conditions. The
swarm will continue to depart for the next location.
Eventually, it is summoned to the new residence.

5. A Context-Aware Architecture for Mobile Agent
Communication
5.1. Network Model
Figure 2 depicts the SpeedUp communication infras-
tructure. The components are described as follows:

• Agent Platform: A software platform which pro-
vides executing environment for mobile agents.

• Lightweight Agent Platform: A special type of
agent platform which is energy limited, such as
PDAs and smart phones.

• Region: A group of platforms that work in the
same geographical location.

• RegionMaster: A platform that has enough
computing power to perform self-organizing
tasks, manages agent’s location information for
the whole region.

• Global System: The highest logical view and
consists of all regions of the system.

Based on the self-organizing behaviours of the honey
bee colony, we proposed a model for agent communica-
tion which is able to cope with environmental stimuli

4 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

Internet

RegionMaster

Agent Platform

Lightweight Agent Platform

region

L

L

N
M

N

N

N

M
L

N

NN

N

M

L

Master Node

Normal Node

Lightweight Node

Physical Representation

Logical Representation

M
L

LL

L

region

region

region
region

region

Figure 2. SpeedUp communication infrastructure

[8]. In the algorithm, two mappings from the honey
bee colony to the rescue scenario network model will
be employed. In the first mapping, RegionMaster is
considered as the beehive and mobile agents are scout
bees. All other platforms of the region are viewed as
potential beehives. In the second mapping, we consider
all agent platforms as honey bees, and RegionMaster
as the queen bee. Our solution is going to bear on the
following issues:

• The distributed nature of mobile agents.

• The parameters related to fault tolerance and
reliability of communication between mobile
agents.

• The scalability of the system with regards to the
availability of heterogeneous end devices.

• The dynamics of the network.

In the SpeedUp architecture, regions of working
devices are the prime elements which make up the
global system. In our view, these facets should be
handled in an effective way. Environmental stimuli
affect the overall performance, therefore they need
to be monitored so that the system can self-adjust
accordingly. Since mobile agent communication is
communication between individual agents, issues
related to direct agent communication must be
managed adequately from the start. Communication
for mobile agents should reuse existing results from
agent communication research. The main objective
is, therefore, a model for agent communication that

focuses on the cooperation aspect of agent interaction
and supports fault tolerance and reliability as the key
qualities.

5.2. Getting the Blueprint of a Region
The first mapping is inspired by bee communication. It
is used for measuring the connection quality between
an agent platform and all the remaining platforms of
a region at a point in time. The connectivity map of the
region can be constructed once a calculating process has
been performed for all nodes of a region.

In this view, RegionMaster plays the role of the
beehive and mobile agents are scout bees. Figure 3
illustrates how agents are sent to scout network. At
regular intervals, RegionMaster deploys scout agents
to all platforms of the region to get information about
them. A RegionMaster is responsible for monitoring
its region and regions are surveyed independently.
Information related to connectivity and and platform’s
performance will be collected by scout agents.

L

L

N M

N

N

L

L N

region

SA1

SA2

SA3

Agent

Agent Trace

Migration

N

M

L

Master Node

Normal Node

Lightweight Node

Communication

Figure 3. Scout agents collect network’s information

When a scout agent arrives at a platform, it sends
ping messages to all nodes of the region, including
RegionMaster to measure the transfer time between
the current platform and every other platform. After
collecting the node’s information, the agent migrates to
the next platform. At the new platform, the scout agent
performs the same routine. The process repeats until
the last node of the itinerary has been visited.

A platform holds a boolean value split to indicate
whether it expects its region to split or not. At each
platform once a scout agent has obtained the transfer
time to all neighbours by sending and receiving ping
messages, it calculates the average transfer time τavg .

τavg =
1
n

n−1∑
i=1

t(i) (1)

In which n is the number of nodes in the region,
t(i) is the transfer time between the current platform
and the ith neighbour platform. Since every node in a
region has the same number of neighbours, this value is
the measure of the closeness between a node and other

5

Mobile Agent Communication in Highly Dynamic Networks: A Self-Adaptive Architecture inspired by the Honey Bee Colony

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

P.T. Nguyen et al.

nodes in the region. Once the value is calculated, the
platform compares the τavg with the transfer time to
RegionMaster τRM . If τRM >> τavg then it records this
state. If the state is observed for a number of times then
RegionMaster expects that the region will be splitted;
it sets the value split to true. The two values τavg and
split will then be given to the scout agent. Eventually,
the agent migrates back to RegionMaster and submits
all the information it has collected. RegionMaster then
performs self-organizing tasks based on information
fetched from all the scout agents it deployed.

5.3. Re-Organizing a Region
The second mapping is inspired by bee swarming. In
this view, RegionMaster plays the role of the queen
bee, and other platforms of the region are worker
bees. This mapping is used to impose a self-orgarnizing
mechanism on the platforms.

For the rescue scenario network model, in a
region RegionMaster is responsible for performing self-
organizing tasks and handling location information of
all mobile agents working in the region. If the number
of agent platforms in a region is large and too many
requests are sent simultaneously, a bottleneck may
occur at RegionMaster. The phenomenon resembles the
necessity for swarming in the honey bee community.
The platform population exceeds the region’s capacity
thus causing degradation in connection quality. As a
result, it needs to be adjusted, the colony requires some
kind of "swarming." Like in the bee colony, the region
will be splitted into two regions. One of the nodes
will be promoted to be a new RegionMaster. The new
RegionMaster organizes to form a new region from the
nodes it inherits. The two regions are then independent
from each other, but logically connected.

Each agent platform plays a contributory role in
organizing the region. A final decision of splitting the
region is made based on a consensus of the platforms in
the region. In mapping 1, at every platform, the scout
agents collect the boolean value split. RegionMaster
counts the number of platforms that want the region
to be segregated. If the number constitutes a quorum,
the region is about to be splitted. Like the queen bee
chooses her successor, RegionMaster promotes a new
RegionMaster from the candidates nominated the by
scout agents. Afterwards, RegionMaster broadcasts the
name of the new RegionMaster to all platforms. Every
platform decides itself, which region it belongs to by
sending a joining message to the new RegionMaster.

5.4. Managing Mobile Agent’s Location
The mobility of agents may cause message losses
when communication executes, especially in large
scale and dynamic networks. The management of
mobile agents’ location should also be adaptive to

the network topology changes. With respect to the
dynamic region architecture established by the self-
organizing algorithm, we introduce a technique for the
management of mobile agent’s location.

L

N

M

N

N

M

N N

N

N

M

L

Master Node

Normal Node

Lightweight Node

M
L

L

L

region

region

region

1

N

7

3 4

6

4

5

2

8

L

5

Communication

Figure 4. Location query

Figure 4 depicts an example of location searching
where agent α wants to communicate with agent
β whose location is unknown. The circled numbers
depict the steps that are to be executed. Agent α
asks the platform where it is currently in for the ID
of agent β. This platform checks its cache to see if
there is any information regarding the location of the
requested agent (1). When the address is already in the
cache, the platform returns the address to the agent.
Otherwise, the platform queries its RegionMaster (2).
RegionMaster then looks into its cache for the address
(3). When the address is found, RegionMaster returns
it to the requesting party (7); if not, RegionMaster
broadcasts a query to all RegionMasters of the global
system (4). Each RegionMaster of the global network
checks its cache for the address (5). Whenever the
address is found by one of the RegionMasters, it will
be sent back to the requesting RegionMaster (6). This
RegionMaster in turn forwards the address to the
requesting platform (7). After the location of the agent
β has been determined, the agent sends message to the
targeted platform (8).

If a region is splitted, RegionMaster advertises the
change to all other RegionMasters to notify other
RegionMasters of the new region’s appearance.

6. Fault Tolerance: A Honey Bee inspired
Approach for Building Consensus
6.1. Finding consensus in distributed systems
The proposed mechanism seems to rely much on
RegionMasters, which may generate a single point of
failure. In a region, RegionMaster acts as the beehive,
where scout agents unload information they collect.
It also performs self-organizing tasks for the whole
region. If RegionMaster goes haywire or disconnects
suddenly, the node community has no information

6 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

about the network and, therefore, cannot re-organize
wherever necessary. As a result, a constructive approach
to fulfil the fault tolerance requirement is needed. This
leads to the problem of finding consensus in distributed
systems, all nodes promote a new RegionMaster by
exchanging messages.

The problem of building consensus is described in
detail as follows: A set of n ≥ 2 nodes P = {p1, p2, .., pn}
has to negotiate by using asynchronous message passing
and decide on the same value from a common set
of inputs. In the scope of this paper, we discuss
binary consensus, that means the input values v ∈ {0, 1}
[21],[22],[23],[24].

The properties of consensus [23]:

• At most f nodes may fail. The failed nodes are
called faulty nodes; the working nodes are called
non-faulty or correct nodes. Once fails a node
remains faulty for ever.

• Each node p broadcasts its proposal as a message
to all other nodes.

• A node makes a decision based on the set of
messages it received.

• A message never fails once it has been sent. It
arrives eventually at the targeted receivers.

• A node p can send its report or proposal value v to
some nodes, and it may crash before sending the
message to the remaining non-faulty nodes. As a
result, some nodes have v and some not.

A consensus algorithm needs to satisfy three key
requirements as follows [22]:

• Termination: Every node must ultimately decide.

• Agreement: All non-faulty nodes decide on the
same value.

• Validity: The chosen value must be the input of at
least one of the nodes.

No matter how simple the definition is, the solution
for the problem remains a challenge in distributed
computing. In [14] Fischer, Lynch and Paterson prove
that with an asynchronous message passing system,
there exists no deterministic algorithm for solving the
problem of consensus in presence of node failures.

6.2. Ben-Or’s algorithm for finding consensus
Ben-Or proposes a practical solution to solve consensus
using randomization. In his approach, it is assumed that
at most f < n/2 nodes may fail during execution. The
algorithm is described in the pseudo code as follows
[21],[31]:

Algorithm 1 Ben-Or’s Consensus Algorithm

1: procedure BenOrConsensus(vp)
2: x← vp
3: k ← 0
4: while true do
5: k ← k + 1
6: Report(k,x)
7: WaitFor(k,∗) from n-f nodes . * is either 0 or

1
8: if there are more than n/2 messages

containing v then
9: Propose(k,v)

10: else
11: Propose(k,abstention)
12: end if
13: WaitFor(k,∗) from n-f nodes
14: if there are at least f+1 messages containing

v then
15: Decide(v)
16: else if there is at least 1 message containing

v then
17: x← v
18: else
19: x← ChooseRandom(0,1)
20: end if
21: end while
22: end procedure

• Procedure Report(k, x) broadcasts a message
containing information about the current round
k and the proposed value to all other non-faulty
nodes.

• Procedure WaitFor(k, ∗) waits for all incoming
messages containing k and a report/proposal
value.

• Procedure P ropose(k, v) broadcasts a proposal
value v in round k to all non-faulty nodes.

• Procedure Decide(v) makes a decision on the
value v.

• Procedure ChooseRandom(0, 1) returns either 0 or
1 with equal probability.

A comprehensive proof for the correctness of Ben-
Or’s algorithm can be found in [31].

6.3. A proposal for improving the convergence speed
The original Ben-Or’s algorithm may reach a pretty slow
convergence given that nodes do not choose the same
value in the randomization phase. Regarding the prob-
lem of reaching an eventual agreement among nodes in

7

Mobile Agent Communication in Highly Dynamic Networks: A Self-Adaptive Architecture inspired by the Honey Bee Colony

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

P.T. Nguyen et al.

distributed computing, we witness a substantial coin-
cidence between consensus in distributed systems and
consensus in the honey bee colony as shown in Table 1.

Bee Colony Distributed Systems
Bees Nodes
Sites Values
Scout bees nominate a
site by dancing

Nodes propose a value by
broadcasting messages

Bees select a site if the
number of bees around
the site exceeds a thresh-
old

Nodes decide on a value
v if they receive more
than f report messages
containing v

All bees reach an eventual
agreement for a site

All nodes eventually
decide on the same value

Table 1. Analogies

The fact motivates us to propose some amendments
to the original consensus algorithm. We callMp(k) is the
set of messages received by node p at round k; Cp(k, 0)
is the cardinality of the set of messages that contain 0
and Cp(k, 1) is the cardinality of the set of messages that
contain 1. When Cp(k, 0) = Cp(k, 1) we say it is a tie for
the two sets.

As we have seen in Algorithm 1, it is expected that the
majority of nodes will report the same value in Line 6
and then a quorum can be reached in Line 14. However,
a node proposes a value only when it receives more than
n/2 messages containing the same report value, that
means only when the majority requirement is satisfied.
Otherwise it proposes the value abstention, which does
not help to build a consensus.

We may "waste" the chance that nodes report the
same value in round k + 1 given that almost n/2
messages containing the same value v are sent in
Line 13. This should be considered as a room for
improvement [7].

It should be noted that from rounds k > 1, the value
x reported in Line 6 is the result from either Line 15
or 17 or 19 in round k − 1. We propose a way to guide
the nodes to opt for the most sensible value v instead of
choosing a random value. We consider the case that the
majority requirement is not satisfied: Cp(k, v) < n/2; but
there is a plurality of nodes that report v, that means:
Cp(k, 1 − v) < Cp(k, v) < n/2.

The honey bee inspired algorithm for building a
consensus is illustrated in the pseudo code Algorithm
2. The procedures and functions of the pseudo code are
explained as follows:

• Function P lurality(0, 1) returns 0 if Cp(k, 0) >
Cp(k, 1) and returns 1 if Cp(k, 0) < Cp(k, 1).

• Procedure Follow(v) indicates that a node prefers
a value v.

• Function Evaluate(0, 1) calculates a correla-
tive value between the cardinalities Cp(k, 0)
and Cp(k, 1); a proposal is Evaluate(0, 1) =
abs(Cp(k, 0) − Cp(k, 1)).

• Procedure Decrease(strength) subtracts a speci-
fied number from strength.

Algorithm 2 Honey Bee Consensus Algorithm

1: procedure HoneyBeeConsensus(vp)
2: x← vp
3: k ← 0
4: strength← 0
5: while true do
6: k ← k + 1
7: Report(k,x)
8: WaitFor(k,∗) from n-f nodes
9: if there are more than n/2 messages

containing v then
10: Propose(k,v)
11: else
12: if strength ≤0 and Cp(k, 0) , Cp(k, 1)

then
13: v ← Plurality(0,1)
14: Follow(v)
15: strength← Evaluate(0,1)
16: end if
17: Propose(k,abstention)
18: end if
19: WaitFor(k,∗) from n-f nodes
20: if there are more than f messages containing

v then
21: Decide(v)
22: else if there is at least 1 message containing

v then
23: x← v
24: else
25: if strength >0 and Follow(v) then
26: x← v
27: Decrease(strength)
28: else
29: x← ChooseRandom(0,1)
30: strength← 0
31: end if
32: end if
33: end while
34: end procedure

7. Implementation
This section deals with the implementation of the
software prototype for an adaptive communication
framework for mobile agents in highly dynamic
networks of the SpeedUp-Type. The implementation

8 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

Ellipsis is an open source mobile agent system
developed by the Chair of Software Engineering of
Friedrich Schiller University Jena. Ellipsis provides a
framework for hosting and executing mobile agents
and runs on any operating system that supports
Java, thereby adhering to the slogan "write once,
run anywhere." Ellipsis can be deployed on any
device as long as the device is equipped with
Java Virtual Machine (JVM). We base our design
and implementation on Ellipsis and the software
architecture in conjunction with the mobile agent
system is depicted in Figure 5. The following sections
provide an overview of the software components.

Ellipsis

Agency

Java Virtual Machine

Operating System

Agent Applications

AgentLoader

JBoss AS, JMX, MBean

MigrationEngine

NetworkMonitor

LocationManager

Communicator

NetworkOrganizer

AgentEngine

CX

AgentModule

Figure 5. Software Architecture

7.1. NetworkMonitor
NetworkMonitor observes the agent platforms of a
region. It collects connectivity information between a
platform and its neighbours and information of the
platforms. NetworkMonitor undertakes the following
tasks:

• Managing a dynamic list of agent platforms.

• Deploying scout agents periodically to get update
on the network situation.

• Receiving and replying ping messages.

• Calculating the values τavg and split.

Ethernet
Header IP Header TCP Header Application Data Ethernet

Footer

22 bytes 24 bytes 20 bytes variable 4 bytes

IP Address avgLatencyType Split Perf.….

Record h

Control
Token

100 bytes

IP Address avgLatencyType Split Perf.

Record 1

MTU = 1500 bytes

MSS = 1456 bytes

Figure 6. Packet Format

7.2. NetworkOrganizer

NetworkOrganizer re-organizes the logical network
based on the conditions percepted by NetworkMonitor.
This component is present at every platform of a region.
However its role is dependent on the type of the
platform. In a RegionMaster, NetworkOrganizer has the
following functions:

• NetworkOrganizer receives the list of platforms
from NetworkMonitor.

• NetworkOrganizer selects a new RegionMaster
from the candidates nominated by NetworkMoni-
tor. It broadcasts the ID of the new RegionMaster
to all platforms of the region to conduct a poll.

• NetworkOrganizer activates a platform when the
platform has been promoted to the post of a
RegionMaster.

• NetworkOrganizer notifies other NetworkOrga-
nizers of the changes by sending broadcast mes-
sages.

In a normal platform, NetworkOrganizer performs
the succeeding tasks:

• It receives a proposal for a node to be the new
RegionMaster from RegionMaster.

• It chooses which region the corresponding
platform should belong to by measuring the
latencies to the proposed platform and to
RegionMaster.

• It sends the ID representing the chosen platform
back to RegionMaster.

9

Mobile Agent Communication in Highly Dynamic Networks: A Self-Adaptive Architecture inspired by the Honey Bee Colony

Mobile Agent Communication in Highly Dynamic Networks: A Self-Adaptive Architecture inspired by the Honey Bee Colony

Making a decision of splitting region by counting
the boolean values split.

of the software prototype will bear on the honey bee
inspired alogrithm with the aims and objectives of
the targeted qualites: fault tolerance and reliability in
transferring agent messages.

•

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

P.T. Nguyen et al.

7.3. LocationManager
LocationManager manages location information of
mobile agents, it updates location of mobile agents
when they migrate, answers location query and queries
agent’s location information. LocationManager holds
a cache for storing location information. Essentially,
the component performs its function to answer the
question: Which agent locates where?

The following tasks are undertaken by LocationMan-
ager:

• Interfacing to Ellipsis to manage a dynamic list of
location information for mobile agents.

• Receiving and answering location query from
other nodes as well as from agents.

• Sending location information query to other
LocationManagers.

7.4. Communicator
The software entity Communicator is responsible
for initializing connection between platforms and
transferring messages between agents. It encodes,
decodes, and transfers agent messages over the
network. This component maintains two caches of agent
messages at every platform, one for incoming messages
and one for outgoing messages.

Communicator has the following functions:

• Establishing connection between two agent plat-
forms.

• Encoding the envelope and the payload of an ACL
message at the sender side.

• Sending byte streams containing ACL messages
over the network.

• Decoding the envelope and the payload of ACL
messages at the receiver side.

8. Experimental Evaluation

8.1. Setup
We deploy a laboratory scale test network with the
presence of eight computers connected through a
local Gigabit Ethernet LAN 1000 Mbps network. Each
computer corresponds to an agent platform and is
equipped with the software framework as well as
other essential softwares. The system configuration is
specified in Table 2.

The agent platforms representing by their alias
are going to be used throughout the succeeding test
scenarios.

Alias OS RAM Processor
D1 Fedora 12 2.0 GB AMD 2.2 GHz
D2 Debian 6.0.4 4.0 GB Intel 2*2.0 GHz
D3 Debian 6.0.4 4.0 GB Intel 2*2.0 GHz
D4 Debian 6.0.4 4.0 GB Intel 2*2.0 GHz
FJ Fedora 12 3.0 GB Intel 2*2.8 GHz
PT Windows 7 4.0 GB Intel 2*2.4 GHz
T1 Fedora 12 2.4 GB Intel 2*2.4 GHz
T2 Windows XP 1.0 GB Intel 1.7 GHz

Table 2. Hardware configuration of the experiments

8.2. Feasibility
In a dynamic network environment the cost for
monitoring network might be considerably high.
Monitoring activities may place a burden on the
network traffic, thereby reducing overall system’s
performance. The proposed mechanism is beneficial
only if network monitoring gains a good performance
whilst keeping a reasonable running cost. The issues
need to be addressed throughtfully.

The feasibility of the proposed mechanism means
that it maintains a reasonable cost for monitoring
while providing necessary information for the self-
organizing tasks. To validate the feasibility, scout agents
are deployed to monitor network and the parameters
regarding processing time and exploration time will be
measured. One round of exploration happens when a
scout is created at a RegionMaster, travels through all
nodes of the region, performs its routine and migrates
back to RegionMaster. The following information is
going to be acquired:

• The time needed for a scout agent to accomplish
its tasks at a platform: tprocessing .

• The time needed for an agent to perform one
round of exploration: texploration.

The processing time at an agent platform is the
duration from when an agent arrives until it completes
its tasks and leaves for the next node. It is calculated as
follows:

tprocessing = tl − ta (2)

where ta is the time when a scout arrives at a platform
and tl is the time when it leaves for the next node of its
itinerary.

The processing time is made of:

tprocessing = tRT T + ts + td (3)

in which

• tRT T is the period of time from the first ping
message sent until the last response received.

10 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

• td is the time to deserialize a scout agent from an
incoming stream of byte.

• ts is the time to serialize a scout agent into a byte
stream to be sent over the network.

By measuring the processing time, we examine how
fast a scout agent performs its tasks at a specific
platform.

The average exploration time is computed:

texploration = tend − tbegin (4)

where tbegin and tend are the time when a scout starts
and completes one round of exploration, respectively.
This paramater indicates how often a scout agent
supplies a RegionMaster with up-to-dated information
for the self-organizing activities.

D2

D1

PT

D3

D4

RegionMaster

Normal Node

T2

T1

FJ

region

Agent

Itinerary

Agent Trace

Figure 7. Network Setup

Figure 7 shows the logical connection for the first
evaluation test. In this scenario, one scout agent is
created at RegionMaster. The RegionMaster assigns the
list of agent platforms {D1, D2, D3, D4, FJ, P T , T 1, T 2}
to the scout agent. One round of surveillance takes
place when the agent is sent by RegionMaster, travels
around the nodes of the region, performs its routine at
every node and then migrates back to RegionMaster.

To get a more reliable result, by every platform
a measurement is done for 80 times. The box plot
diagram in Figure 8 depicts the processing time
tprocessing of the platforms. This parameter represents
the time that the agent needs to perform its tasks at
that platform. It is dependent on the processing power
of agent platforms as well as the latencies to the other
platforms, which are in turn dependent on the network
connection speed. It can be seen that, except platform
T 2 that has a higher processing time because of its
limited processing power (as specified in Table 2), the
processing time for the other platforms is considerably
low. It guarantees that the processing activities place
comparatively little burden on the system performance.

To measure texploration, the agent is sent around
the network for different numbers of rounds r. In

D1 D2 D3 D4 FJ PT T1 T2
0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

Agent Platform

Processing Time

Figure 8. Processing time

the second experiment r is set to different values,
i.e. r = {100; 200; 300; 500; 1000; 2000; 3000; 5000}. The
average exploration time is given by:

texploration =
tend − tbegin

r
(5)

This parameter demonstrates how fast the scout
agent can supply RegionMaster with up-to-date infor-
mation about the network. If the agent needs a long
time to perform its tasks at the platforms or to hop from
platform to platform, the information submitted to
RegionMaster might be out-of-date. As a consequence,
the reactions produced by RegionMaster would not be
adequate.

However, the measurement results show that this
is not the case. In the diagram in Figure 9, the
curve represents the accumulated exploration time.
The straight line which depicts the average time for
finishing one round of surveillance (second/round)
provides evidence that the parameter is stable, no
matter how many rounds the agent has migrated. This
indicates that the scout agent produces no overhead
when it works in the long run.

100 200 300 500 1000 2000 3000 5000
0

1000

2000

3000

4000

5000

6000

7000

Exploration Time

Total measured time
Number Of Rounds

Ti
m

e
(s

ec
)

0

1

2

3

4

5

6

7

8

9

10

1,33 1,24 1,3 1,3 1,3 1,24 1,29 1,21

Average speed

S
pe

ed
 (s

ec
/ro

un
d)

Figure 9. Average time for a scout agent to explore the region

11

Mobile Agent Communication in Highly Dynamic Networks: A Self-Adaptive Architecture inspired by the Honey Bee Colony

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

P.T. Nguyen et al.

8.3. Self-Organizing
In a dynamic network it is a common occurrence
that a group of platforms leaves other platforms of
the same region and swarms onto a new location,
causing the connectivity to change correspondingly.
Under the circumstances, maintaining a fixed logical
connection between the abandoning platforms and the
stationary platforms is not an optimal solution. It is
more sensible to re-organize the colony to adapt to the
new structure. The abandoning platforms should form
a new region while the stationary platforms group into
a second region. A reasonable re-organizing manoeuvre
helps facilitate a harmonious correlation between the
platforms, thereby balancing network load and saving
processing time.

In network applications, a service is identified by
the combination of an IP address and a network
port. A traffic shaper controls network bandwidth by
delaying traffic to meet pre-defined requirements. A
traffic can be precisely allotted to a service by referring
to the service’s identification. By traffic shaping, two
important factors for a service are determined. A
minimum usable bandwidth (MiUB) which is the
guaranteed bandwidth that the service can consume
and a maximum usable bandwidth (MxUB) which is
the bandwidth that the service can reach as long as there
is free bandwidth available.

D1

T1

FJ

D4

D3

region

PT

T2

D2

5

1
2

3

4
6

7

Figure 10. The network layout and bandwidth shaping imposed
on ping services

The logical network layout for this test scenario is
depicted in Figure 10. In the beginning, platform D2 is
configured as RegionMaster. A scout agent is deployed
to survey the region. We use traffic shaping to simulate
the occurrence when the platforms, together, move
far away from RegionMaster and swarm onto a new
location, resulting in a decrease in the corresponding
bandwidths.

In this test scenario, the traffic shaper which is
comprised of software packages tc (traffic control),
iptables and iproute in Linux distributions is used to
regulate the traffic of the ping messages exchanging
service between RegionMaster and the platforms

{D1, D3, D4, FJ, T 1} on TCP port 3242. Table 3 lists
the corresponding values MiUB and MxUB for
every connection representing by the circled numbers
depicted in Figure 10.

Con. (1) (2) (3) (4) (5) (6) (7)
MiUB
(Mbps)

0,512 1 2 20 54 1000 1000

MxUB
(Mbps)

1 2 3 30 60 1000 1000

Table 3. Bandwidth allotted to each link

The bandwidth degradation will have a certain effect
on the communication between agent platforms. While
bandwidth shaping is being activated, there are changes
in network connectivity within the region. The platform
colony re-organizes to react to the changes in network
bandwidth. Every platform sets the value split based on
the ratio τ = τavg /τRM . In this experiment the splitting
threshold is set to τ < 50%. Since more than a half of the
agent plaforms set split = true, the region is bisected.
Two regions emerge from the original region. Figure 11
depicts the splitting process, those platforms with a
ratio τ ≥ 50% namely {D2, P T , T 2} group into Region
1; Region 2 is made of the platforms with τ < 50% i.e.
{D1, D3, D4, FJ, T 1}.

T1

PT

D2

FJ

D4

D3

D1

T2

Region 0

D1

D4

D3 T1
Region 2

PT T2

D2

FJ

Region 1

t (ms)
t = 10 t = 18

Figure 11. The self-organizing process of the platform colony

Table 4 displays the metrics measured for Region
1 and Region 2 before and after splitting. The
measurement unit for the ratio τ is %. According to
the metrics shown in the tables, both Region 1 and
Region 2 benefit from the splitting, the ratio τ grows
markedly and exceeds the threshold 50%. An increase
in the ratio τ implies that the connection from each
platform to RegionMaster has been improved. All the
platforms reset split to f alse.

The metrics show that after network connectivity
degrades, the splitting helps the platforms improve
connection quality to RegionMaster significantly. Since

12 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

Before splitting After splitting
Platform τ(%) Split τ(%) Split

Region 1
D2 — false — false
PT 75,0 false 75,0 false
T2 120 false 83,3 false

Region 2
D1 14,8 true — false
D3 16,8 true 75,0 false
D4 15,7 true 100 false
FJ 38,9 true 87,5 false
T1 29,4 true 83,3 false

Table 4. Metrics measured for Region 1

RegionMaster is responsible for performing the self-
organizing tasks of the whole region, an improvement
in connectivity will lead to an increase in performance
of the system. This test supports the hypothesis
that the software framework can assist the system
to react appropriately to changes happening in the
surrounding environment. In our judgement, the
features demonstrate that the software framework
complies with one of the requirements: the ability to
self-organize in a changing environment.

8.4. Context-Awareness
In the next experiment, platform FJ is configured as
RegionMaster, a scout agent is deployed to survey
the region. In this scenario, the connectivity between
RegionMaster and the remaining platforms is going to
be degraded using software. This aims to investigate the
countermeasures of the system given that the quality
of the connection to RegionMaster has declined. Since
RegionMaster is responsible for the management of the
whole region, the deterioration adversely affects system
performance, processing speed may considerably slow
down. Given the circumstances, it is expected that the
software prototype helps the platform colony to re-
organize and recover from the degradation.

To conduct this experiment, a simulation of connec-
tivity degradation is required. A certain network traffic
between RegionMaster and the other platforms will be
created, resulting in a smaller bandwidth left to the
remaining platforms. For the purpose of creating net-
work traffic, we utilize the open source software Iperf
[28]. This tool is used for measuring throughtput and
performance of a network. It can also be used to pro-
duce both TCP and UDP data streams over networks;
data sent by the client will be received and eventually
discarded by the server.

Since Iperf consumes a certain bandwidth on the
connection between RegionMaster and the rest of
the region, there is smaller bandwidth left for other

applications. As a result, each agent platform will
experience effects from the traffic generator. The
latencies between the platforms and RegionMaster
grow sharply. These changes are sensed by the scout
agent every time it visits the platforms. Every platform
sets the value split based on the ratio τ = τavg /τRM ;
where τavg is the average latency and τRM is the latency
to RegionMaster, respectively. In this experiment the
splitting threshold is set to τ < 50%.

Table 5 shows the ratio and the corresponding value
split for every platform. At the end of a round of
exploration, the scout agent goes back to RegionMaster
and submits information it collected. Based on this
information, RegionMaster makes a decision.

Platform τavg /τRM (%) Split
D1 47,8 true
D2 47,6 true
D3 37,5 true
D4 27,5 true
FJ — false
PT 37,5 true
T1 44,4 true
T2 29,7 true

Table 5. Metrics measured at the time of self-organizing

Since most of the platforms set the value split to
true the region is splitted. The new region structure
is depicted in the central part of Figure 12. There
is only one platform staying at the old region, this
is RegionMaster. The remaining nodes join the new
region with D2 promoted to be the new RegionMaster.
In this case, an adaptation has been made, the old
RegionMaster relinquishes its leadership in the only-
one platform region and becomes an inferior node of
the new region. Eventually, a new region emerges from
the original region.

T2
PT

D1

T1

D4
D3

D2

FJ

region
PT T1

D4

D3 D1

T2D2

region

FJ
PT

T1

D4

D3

D1

T2

D2

region

FJ

t = 0 t = 5 t = 8
t (ms)

Figure 12. Exchange in role of the command node

Figure 13 displays the latency to RegionMaster τRM
of every platform in three phases. For a platform, the
left column is the latency before Iperf is activated;

13

Mobile Agent Communication in Highly Dynamic Networks: A Self-Adaptive Architecture inspired by the Honey Bee Colony

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

P.T. Nguyen et al.

D1 D2 D3 D4 FJ PT T1 T2
0

5

10

15

20

25

30

35

40

45

Average latency to the RegionMaster

Before Iperf is invoked While Iperf is working After self-adjusting

Agent Platform

Ti
m

e
(m

s)

Figure 13. Average latencies to RegionMaster

the middle column represents the time while Iperf is
operating and the right column is the latency of the
platform after the self-adapting process has occurred.
In the beginning and while Iperf was working FJ
was RegionMaster so τRM (FJ) = 0. Similarly, after D2
has taken its job as RegionMaster τRM (D2) = 0. As
usual expected, while Iperf is being executed, the
latencies to RegionMaster measured for every platform
increase significantly. However, once D2 takes over as
RegionMaster, the latencies decrease proportionally.

D1 D2 D3 D4 FJ PT T1 T2
0

5

10

15

20

25

30

35

Average latency

Before Iperf is invoked While Iperf is working After self-adjusting

Agent Platform

Ti
m

e
(m

s)

Figure 14. Avarage latencies of all platforms

Figure 14 shows the average latencies τavg of every
platform in three phases: Before Iperf is executed,
while Iperf is being executed and after the adaptation
has been made. These latencies also shift in the same
pattern as by τRM . Before additional bandwidth was
produced, the average latencies had been at a normal
level. While Iperf was operating the latencies rose
markedly. After the region has been restructured, these
values resume to a normal level. It can be seen that the
network monitoring activities supply the framework
with up-to-date information about network situation,
thereby facilitating the decision making process. The
measurement results suggest that the swap in role of
RegionMaster from FJ to D2 brings a more stable
connectivity to every platform compared to that of the

old arrangement, right after Iperf started producing
bandwidth.

8.5. Fault Tolerance
We decided to export the test program to run
on simulation environment, since a more precise
evaluation result can be obtained if performance tests
are performed with presence of several network nodes.
The software Network Simulator NS2 is a discrete
event simulation framework. It was written in the
programming languages C++ and Python and has been
used widely for simulating applications running in
wired and wireless networks. NS2 supports various
routing protocols, including TCP, UDP, multicast. NS2
is normally utilized for testing distributed network
applications on a laboratory scale. Tcl (Tool Command
Language) is used as the language for scripting
simulation scenarios in NS2 [30].

AgentJ is a software tool for embedding real
applications written in Java in the NS2 simulation
environment. AgentJ allows Java source code to execute
on NS-2 with minor modification. Essentially, AgentJ
works as a bridge between Java source code and
NS2 [32]. The use of AgentJ is practical given that
there is a need for simulating program written in
Java with solicitation of a large number of nodes.
The combination NS2 and AgentJ provides us with a
convenient way to simulate evaluation tests without
needing to setup a real network with multiple
computers.

Figure 15. NS2 Simulation with a handful of network nodes

Network Animator (NAM) is a tool embedded in NS2
to visualize simulation. Figure 15 depicts an example
of multicast network nodes in NAM, a circle represents
a network node and a line between one pair of nodes
corresponds to a link between them. In a multicast
scenario, every node is connected to all other nodes.
For a clear representation, in the figure we depict

14 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

only a network with a handful of nodes, however in
simulation, we can increase the number of network
nodes to meet our requirement.

We setup NS2 and AgentJ in the Linux Distribution
Fedora 12. Network crash is simulated by shutting
down some nodes randomly during execution given
that at most f < n/2 nodes may fail. A node fails with
a probability of a randomized value ranging from 0 to
1.

In the evaluation, the number of nodes is set to the
following values n = 5, 10, 15, 20, 25, 30 and the number
of failed nodes f ∈ {0, bn/2c}. We ran the tests with
different sets of input values and with repetition. This
aims to cover a wide range of possibilities of execution.

For the implementation, Function Evaluate(0, 1) in
Line 15 is determined as Evaluate(0, 1) = abs(Cp(k, 0) −
Cp(k, 1)). Once a node starts to follow a value v, it
assigns the difference to the strength value strength =
Evaluate(0, 1). Every time it is called, Procedure
Decrease(strength) subtracts 1 from strength until it is
smaller than 0.

The outcomes of the execution are shown in Table 6
and Table 7. For each table, the first row represents
the number of nodes taking part in building consensus
n. The second row is the number of nodes that fail
during execution f . The third and fourth rows r1 and r2
are the corresponding numbers of rounds that Ben-Or’s
algorithm and the honey bee inspired version reach a
consensus, respectively.

n 5 10 15
f 0 1 2 0 3 4 4 6 7
r1 1 1 12 1 10 20 4 23 60
r2 1 1 2 1 2 2 2 2 2

Table 6. Performance Comparison for n = 5, 10, 15

n 20 25 30
f 6 8 9 8 10 12 10 12 14
r1 17 32 189 32 291 1319 112 1531 7554
r2 2 2 2 2 3 2 4 2 2

Table 7. Performance Comparison for n = 20, 25, 30

At first sight, it can be seen that, the larger the
number of nodes is, the more difficult a consensus can
be reached. If no node fails, that means f = 0 then both
approaches can gain a swift consensus. When failure is
present, there are differences in performance. By the
original Ben-Or’s algorithm, if the number of failed
nodes increases, the number of rounds that it gains a
consensus increases correspondingly. Especially, when
f is nearly approaching n/2 a large number of rounds
can be seen.

Both tables show that the honey bee inspired
algorithm has a considerably better computational
performance, especially when network nodes fail en
masse. Compared to Ben-Or’s algorithm, it can gain
a consensus after a small number of rounds of
exchanging messages. In addition, its performance is
stable towards the number of failed nodes. We witness
an improvement in performance when applying the
honey inspired mechanism.

9. Conclusion
In this paper, we have introduced our proposed
architecture for mobile agent communication in highly
dynamic networks. Our research was motivated by a
mobile agent system working in networks for rescue
forces in a mass casualty incident. In this type
of networks, connection instability militates against
successful transmission of agent messages. To facilitate
message transmission, it is necessary to organize
the logical connection among agent platforms in an
operationally feasible manner. Our work aims to
develop a communication model for mobile agent
systems that is able to deal with the inherent dynamics
of modern networks.

We found inspiration from the honey bee colony
where honey bees have a special mechanism to reach
self-organization. The organization of the whole colony
is done through the interaction among thousands of
bees. The behaviours of honey bees inspire us to
employ the self-organizing model on the colony of
agent platforms. We proposed a solution to a network
management mechanism where network organizing
tasks are performed in an autonomous manner.

Mobile agents are sent over the network to gather
network and platform information. Information col-
lected by mobile agents gives a base for managing
the network. Each agent platform plays a contributory
role in organizing the region. A final decision to re-
organize the network is made based on a consensus of
the platforms. In a platform colony, though the master
node plays an important role, it is replaceable. Thanks
to a failure detector, whenever it fails a second plat-
form can substitute for it and system’s operation is not
interrupted. Based on the existing mobile agent system
Ellipsis, the software prototype for an adaptive model
for mobile agent communication has been designed and
implemented.

The software prototype was deployed to run in a
system of a laboratory scale where conditions of a real
dynamic network had been simulated using various
software tools. The experiments demonstrated that
the software prototype provides the system with the
ability of being self-adaptive. It helps the system to
react adequately to environmental stimuli as well as
to take suitable measures to counteract unexpected

15

Mobile Agent Communication in Highly Dynamic Networks: A Self-Adaptive Architecture inspired by the Honey Bee Colony

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

P.T. Nguyen et al.

network degradation. In addition, given that network
failure happened, the system can achieve fault tolerance
and maintain a reasonable processing cost for message
coding and transferring. From our perspective, the
software framework fulfils the basic requirements.

It is our firm belief that the honey bee inspired model
cannot only be utilized for mobile agent systems. It
can also be applied in other types of P2P network,
where it is necessary to network member nodes in a
flexible manner. The model can be used to solve other
types of problems in network management, such as for
discovering resources in P2P networks [29].

References
[1] Seeley, T.D. and Kirk Visscher, P. (2003) Choosing a

home: How the scouts in a honey bee swarm perceive
the completion of their group decision making Journal of
Behavioral Ecology and Sociobiology, vol. 54, pp. 511–520

[2] Seeley, T.D. and Kirk Visscher, P. (2004) Group decision
making in nest-site selection by honey bees Journal of
Apidologie, vol. 35, pp. 101–116

[3] Nakrani, S. and Craig, T. (2004) On Honey Bees and
Dynamic Server Allocation in Internet Hosting Centers
Journal Adaptive Behavior - Animals, Animats, Software
Agents, Robots, Adaptive Systems , pp. 223–240

[4] Karaboga, D. and Bahriye, A. (2009) A survey: algorithms
simulating bee swarm intelligence Journal Artif. Intell. Rev.,
pp. 61–85

[5] Pham, T. and Afify, A. and Koc, E. (2007) Manufacturing
Cell Information using the Bees Algorithm In Proceedings
Innovative Production Machines and Systems Virtual
Conference

[6] Nguyen P.T. and Schau V. and Rossak W.R. (2011)
Towards an Adaptive Communication Model for Mobile
Agents in Highly Dynamic Networks based on Swarming
Behaviour. The 9th European Workshop on Multi-agent
Systems (EUMAS)

[7] Nguyen P.T. (2013) Building Consensus in Context-Aware
Systems Using Ben-Or’s Algorithm: Some Proposals for
Improving the Convergence Speed. In Proceedings of
the Second International Conference on Context-Aware
Systems and Applications, ICCASA 2013, pp. 87–96

[8] Nguyen P.T. and Schau V. and Rossak W.R. (2013) A
Context-Aware Model for the Management of Agent Platforms
in Dynamic Networks. In Proceedings of the Second
International Conference on Context-Aware Systems and
Applications, ICCASA 2013, pp. 77–86

[9] Finin, T. and Labrou, Y. and Peng, Y. (1998) Mobile
Agents can Benefit from Standards Efforts in Inter-agent
Communication IEEE Communications Magazine, vol. 36,
pp. 50-56

[10] Braun, P. (2003) The Migration Process of Mobile Agents
PhD Dissertation, Friedrich Schiller University Jena.

[11] Baumann, J. (2000) Control algorithms for mobile agents
PhD Dissertation, the University of Stuttgart.

[12] FSU Jena (2011) The SpeedUp Project (2011)
http://www.speedup-projekt.de

[13] Baumann, J. and Hohl, F. and Radouniklis, N. and
Rothermel, K. and Strasser, M. (1997) Communication

Concepts for Mobile Agent Systems In Proceedings of the
First International Workshop on Mobile Agents

[14] Fischer,M.J. and Lynch, N.A. and Paterson,M.S. (1983)
Impossibility of Distributed Consensus with One Faulty
Process Proceedings of the 2nd ACM SIGACT-SIGMOD
symposium on Principles of database systems, pp. 1–7

[15] Heylighen, F. (1999) The Science Of Self-Organization
And Adaptivity The Encyclopedia of Life Support Systems,
vol. 62, pp. 253–280

[16] Seeley, T.D. and Buhrman, S.C (2001) Nest-site selection
in honey bees: how well do swarms implement the best-
of-N decision rule? Journal of Behavioral Ecology and
Sociobiology, vol. 49, pp. 416–427

[17] Yeom, K. (2010) Bio-inspired self-organization for sup-
poting dynamic reconfiguration of modular agents Journal
of Mathematical and Computer Modelling, vol. 52, pp.
2097–2117

[18] Heylighen, F. and Gershenson, C. (2003) The meaning of
self-organization in computing IEEE Intelligent Systems.

[19] FIPA (2002) ACL Message Representation in String
Specification

[20] FIPA (2002) ACL Message Representation in Bit-Efficient
Specification

[21] Ben-Or, M. (1983) Another Advantage of Free Choice
(Extended Abstract): Completely asynchronous agreement
protocols Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing

[22] Vavala, B. and Neves, N and Moniz, H. and Veríssimo,

P. (2010) Randomized Consensus in Wireless Environments:
A Case Where More is Better Proceedings of the 2010 Third
International Conference on Dependability, pp. 7–12

[23] Aspnes, J. (2003) Randomized Protocols for Asynchronous
Consensus Journal of Distributed Computing, vol. 16, pp.
165–175

[24] Aspnes J. (2002) Fast deterministic consensus in a noisy
environment Journal of Algorithms, vol. 45, no. 1, pp. 16–
39

[25] Thom, C., Gilley, D.C., Hooper, D., Esch H.E.: The Scent
of the Waggle Dance. PLoS Biology (2007)

[26] Hayes, J.: Pleasure chemical controls bee dance. Cosmos
Online (2007)

[27] Gadagkar,R.: The Honeybee Dance-Language Contro-
versy. Resonance: Journal of Science Education, vol. 1, pp.
63–70 (1996)

[28] NLANR/DAST: Network Performance Measurement.
http://sourceforge.net/projects/iperf/, (2012)

[29] Mittelbach F. and Goossens M (2004) The LATEX
Companion (Addison-Wesley), 2nd ed.

[30] The Network Simulator NS2,
http://www.cs.virginia.edu/ cs757/slidespdf/cs757-
ns2-tutorial1.pdf

[31] Aguilera, M.K., Toueg,S.: The correctness proof of Ben-
OrŠs randomised consensus algorithm (2011)

[32] Taylor, I., Downard, I., Adamson, B., and Macker,
J. AgentJ: Enabling java NS-2 simulations for large
scale distributed multimedia applications. In Second
International Conference on Distributed Frameworks
for Multimedia DFMA 2006, Penang, Malaysia, pp.1-7,
(2006)

16 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e5

http://sourceforge.net/projects/iperf/

	1 Introduction
	2 Motivations and Objectives
	2.1 Motivations
	2.2 Aims

	3 Swarm Intelligence
	4 Biological Background
	4.1 Overview
	4.2 Bee Communication
	4.3 Swarming

	5 A Context-Aware Architecture for Mobile Agent Communication
	5.1 Network Model
	5.2 Getting the Blueprint of a Region
	5.3 Re-Organizing a Region
	5.4 Managing Mobile Agent's Location

	6 Fault Tolerance: A Honey Bee inspired Approach for Building Consensus
	6.1 Finding consensus in distributed systems
	6.2 Ben-Or's algorithm for finding consensus
	6.3 A proposal for improving the convergence speed

	7 Implementation
	7.1 NetworkMonitor
	7.2 NetworkOrganizer
	7.3 LocationManager
	7.4 Communicator

	8 Experimental Evaluation
	8.1 Setup
	8.2 Feasibility
	8.3 Self-Organizing
	8.4 Context-Awareness
	8.5 Fault Tolerance

	9 Conclusion

