
Formal Modeling and Verification of Context-Aware
Systems using Event-BH

Hong Anh Le1,∗, Ninh Thuan Truong2

1Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Ha Noi, Viet Nam
2VNU - University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam

Abstract

Context awareness is a computing paradigm that makes applications responsive and adaptive with their
environment. Formal modeling and verification of context-aware systems are challenging issues in the
development as they are complex and uncertain. In this paper, we propose an approach to use a formal
method Event-B to model and verify such systems. First, we specify a context aware system’s components
such as context data entities, context rules, context relations by Event-B notions. In the next step, we use the
Rodin platform to verify the system’s desired properties such as context constraint preservation. It aims to
benefit from natural representation of context awareness concepts in Event-B and proof obligations generated
by refinement mechanism to ensure the correctness of systems. We illustrate the use of our approach on a
scenario of an Adaptive Cruise Control system.

Received on 19 October 2014; accepted on 28 November 2014; published on 16 December 2014
Keywords: context awareness, refinement-based modeling, verification, Event-B

Copyright © 2014 Hong Anh Le and Ninh Thuan Truong, licensed to ICST. This is an open access article distributed
under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/),
which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/casa.1.2.e4

1. Introduction
Context awareness is a computing paradigm that makes
applications responsive and adaptive with their envi-
ronment. Context-aware systems potentially determine
their behavior and reduces human-computer interac-
tion by providing knowledge context information of
their user’s environment. Context awareness of an
application relates to adaptation, responsiveness, sensi-
tiveness of the application to changes of the context [4].
In a narrow view, a context-aware system is somehow
considered as an event-driven system, i.e. it receives
events emitted by context changes and responds to
these changes with the providing context knowledge.

Context-aware systems often use context rules to
adjust the behavior if the circumstances are changed.
Furthermore, the behavior of context-ware systems
is often complex and uncertain. That could be
unacceptable especially when context-aware systems
are implemented as safety-critical systems. The results
up to date have worked on modeling context awareness

HThis is the extended version of the paper published in ICCASA 2013
∗Corresponding author. Email: lehonganh@humg.edu.vn

with various approaches such as object role modeling,
ontology based modeling, logic based modeling [4,
17]. They also have proposed several frameworks
for context modeling. However, to the best of our
knowledge, there does not exist an approach that
models context awareness in several aspects such as
events of environments, context rules and uncertainty.

Formal methods are techniques used for modeling
and verifying systems. These techniques prove the
correctness of the system mathematically. The B
method [1] is a formal software development method,
originally created by J.-R. Abrial. The B notations are
based on the set theory, generalized substitutions and
the first order logic. Event-B [2] is an evolution of
the B method that is more suitable for developing
large reactive and distributed systems. Software
development in Event-B begins by abstractly specifying
the requirements of the whole system and then refining
them through several steps to reach a description of the
system in such a detail that can be translated into code.
The consistency of each model and the relationship
between an abstract model and its refinements are
obtained by formal proofs. Support tools have been

1 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e4

EAI Endorsed Transactions
on Context-Aware Systems and Applications Research Article

http://creativecommons.org/licenses/by/3.0/
mailto:<lehonganh@humg.edu.vn>

provided for Event-B specification and proof in the
Rodin platform.

In this paper, we propose to use Event-B as a formal
method to model and verify context-aware systems.
Event-B is a well-suite method for modeling such sys-
tems in comparison to others formal methods. The
contributions of our proposal are: (1) Natural represen-
tation of context-aware systems by Event-B concepts. A
set of translation rules are proposed to define context
awareness components formally. It is a refinement-
based method allowing to construct the system grad-
ually (2) After formalization, significant properties are
verified via proof obligations of refinement mechanism
automatically (or interactively) without any intermedi-
ate transformation.

The rest of the paper is structured as follows:
Section 2 provides some background of Context
awareness and Event-B. In Section 3, we introduce an
incremental approach to model a context-aware system
by formalizing its components using Event-B notations
and making use of its refinement. Section 4 presents a
scenario of an Adaptive Cruise Control system in order
to demonstrate our approach. Section 5 summarizes
some related works. We conclude and provide future
works in Section 6.

2. Backgrounds
As we use Event-B notation to formalize context-aware
systems, in this section, we introduce briefly some
background of Event-B and context awareness.

2.1. Event-B
Event-B [2] is a formal method for system-level
modeling and analysis. Key features of Event-B are
the use of set theory as a modeling notation, the
use of refinement to represent systems at different
abstraction levels and the use of mathematical proof to
verify consistency between refinement levels . A basic
structure of an Event-B model consists of MACHINE
and CONTEXT.

An Event B CONTEXT describes a static part where
all the relevant properties and hypotheses are defined.
A CONTEXT consists of carrier sets, constants, axioms.
Carrier sets, denoted by s, are represented by their
names, and are non-empty. Different carrier sets are
completely independent. The constants c are defined by
means of a number of axioms P(s, c) also depending on
the carrier sets s.

A MACHINE is defined by a set of clauses. A machine
is composed of variables, invariants, theorems and
events. Variables v are representing states of the model.
Invariants I(v) yield the laws that state variables v
must always be satisfied. These laws are formalized by
means of predicates expressed within the language of
First Order Predicate Calculus with Equality extended

by Set Theory. Events E(v) present transitions between
states. Each event has the form evt = any x where G(x, v)
then A(x, v, v′) end where x are local variables of the
event, G(x, v) is a guard condition and A(x, v, v′) is an
action. An event is enabled when its guard condition
is satisfied. The event action consists of one or more
assignments. We have three kinds of assignments for
expressing the actions associated with an event: (1) a
deterministic multiple assignment (x := E(t, v)), (2) an
empty assignment (skip), or (3) a non-deterministic
multiple assignment (x :| P(t, v, x′)).

To deal with complexity in modeling systems,
Event-B provides a refinement mechanism that allows
us to build the system gradually by adding more
details to get more precise model. A concrete Event-
B machine can refine at most one abstract machine.
A refined machine usually has more variables than
its abstraction as we have new variables to represent
more details of the model. In superposition refinement,
the abstract variables are retained in the concrete
machine, with possibly some additional variables.
In vertical refinement such as data refinement, the
abstract variables v are replaced by concrete ones
w. Subsequently, the connections between them are
represented by the relationship between v and w, i.e.
gluing invariants J(v,w).

In order to check if a machine satisfies a collection of
specified properties, Event-B defines proof obligations
(POs) which we must prove. Some of the proof
obligations relevant to discussion here are invariant
preservation (INV). INV PO means that we must prove
that invariants hold after event’s execution. The proof
obligation is as folows: I(v),G(w, v),A(w, v, v′) ` I(v′),
where I(v) is invariant, G(w, v) is guard of the event,
A(w, v, v′) is assignment clauses of the event.

2.2. Context-aware systems
The term “context-aware" was first introduced by Bill
Schilit [15], he defined contexts as location, identities of
objects and changes of those objects to applications that
then adapt themselves to the context. Many works have
been focused on defining terms of context awareness.
Abowd et al. [3] defined a context aware system is
a system that has the ability to detect and sense,
interpret and respond to aspects of a user’s local
environment and to the computing devices themselves.
Context-aware systems can be constructed in various
methods which depend on requirements and conditions
of sensors, the amount of users, and the resource
available on the devices. A context model defines
and stores context data in a form that machines can
process. Baldauf et al. [4] summarized several most
relevant context modeling approaches such as key-
value, markup scheme, graphical object oriented, logic
based and ontology based models. Chen [7] also defined

2 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e4

Hong Anh Le and Ninh Thuan Truong

three different approaches to achieving contextual data
as follows

• Direct sensor access: The systems directly gather
contextual data from built-in sensors. This
approach does not require any additional layer
but it is just suitable for simple cases not for
distributed systems.

• Middle-ware infrastructure: It introduced layered
architecture to separate business logic and user
interfaces of the system. The system is extensible
because it does not have to modify if sensors
access changes.

• Context server: It allows multiple clients to use
same resources. This approach is based on client-
server architecture. Collected contextual data is
stored in a so-called context-server. Clients use
appropriate network protocols to access and use
this data.

Figure 1. A layered conceptual framework for context-
aware systems [7]

Figure 1 illustrates a layered conceptual framework
for context-aware systems. The first layer consists of
physical or virtual sensors which are able to capture
context data from the environment. The second layer
is able to retrieve data from sensors using providing
API. Before storing the data in the fourth layer, it can
be preprocessed in the third layer which is responsible
for reasoning and interpreting contextual information.
Finally, the application layer actually implementing
reactions to different events which are raised by context
changes.

In this paper, we focus on a context-aware system
which directly use contextual data from physical
sensors. The system senses many kinds of contexts in
its working environment such as position, acceleration
of the vehicle and/or temperature, weather, humidity,
etc.. Processing of the system is context-dependent,
i.e it react to the context changes (for example: if
the temperature is decreased, then the system starts

heating). The system’s behavior must comply with
the context constraints properties (for instance: the
system does not start heating, even though the operator
executes heating function when the temperature is very
high).

3. Formalizing context awareness
In this section, we consider a simplified context-aware
system and represent its components in set theory. Base
upon these definitions, we then use Event-B notations
to formalize a context-aware system.

3.1. Set representation of context awareness
Firstly, we introduce a simple structure of context-
aware systems consisting of five components depicted
in Figure 2. A basic operation of the system is that
if there is any change from the environment that can
be detected using sensors, it sends events to the core
context-aware service. This component then uses both
context data entities and context rules to reason about
the situation. Finally, it reacts to environment via its
behaviors. During that process, the system still has to
preserve the constraints.

Context data

Environment Context−aware service

events

react

Context constraints

Context rules

Figure 2. A simple context-aware system

Definition 1 (Context-aware system). A context-aware system
is denoted by a 4-tuple, CaS = 〈E,R,CD,CC〉 where E
and R represent for the environment events and context
rules respectively, CD denotes context data entities and
its relations and CC states the system’s constraints.

Definition 2 (Environments). Environment is a set of events
stated by a set: E = {e}, where e is an event that is sent to
context aware core service.

We go further for definitions of context rules and
context entities. Let us assume that rules of context-
awareness are in the form of ECA (event-condition-
action), i.e. if an event e occurs in condition C then do
action A. Hence, we present definitions for each element
r, r ∈ R as follows

Definition 3 (Context rules). A context rule is used for
reasoning and describing the behavior of context-aware

3
EAI Endorsed Transactions on

Context-Aware Systems and Applications
09-12 2014 | Volume 1 | Issue 2 | e4

Formal Modeling and Verification of Context-Aware Systems using Event-B

Table 1. Modeling a context rule by an Event-B Event

IF (e)
ON (c) WHEN (e ∧ c)

ACTION (a) THEN (a) END

systems. It specifies the response actions when a specific
event is raised at any condition. Thus, the context rule
is denoted by 3-tuple r = 〈e, a, c〉, where e, c are event
and condition of the rule respectively, while a states
the action of the rule. Note that, the event e should be
included in the event set E.

Context data consists of context entities and their
relations. This component takes a role as a data storage
of the system.

Definition 4 (Context data). Context data is denoted by a 2-
tuple CD = 〈E,R〉, where E is a set of context entities
and R is a set of functions mapping between sets of
context entities.

3.2. Modeling context-aware system
Event-B is based on classical set theory, we thus use it to
model context-aware systems according to definitions
given in Subsection 3.1. We present transformation
rules between a context-aware system and an Event-B
model as follows:

• Rule 1: Context data is presented by a set of
context entities and their relations. The context
entities be treated as a collection of sets and
constants. Recall that, an Event-B context consists
of set, constant and axioms clauses. The axioms
clauses list various predicates of constants in the
first order logic formulas. Hence, we can formalize
directly a context data by an Event-B context.

• Rule 2: Each event that is emitted by the
environment component is represented by an
Event-B event. For example: A context-aware
system uses a sensor for detecting Wind speed.
The sensor regularly detects the environment and
this event is sent to the core service. Then, it is
then formalized by an event: detectWind.

• Rule 3: Since context rule structure has the form
of ECA, each rule r = 〈e, a, c〉 is mapping to an
Event-B event. Where e is event that the system
senses or received from its environment, c is
the additional conditions for reasoning. More
precisely, conjunction of e and c are guards of
Event-B event while a is mapped to the body of the
event (see Table 1). All these events are included
in either Event-B abstract machines or a refined
ones.

• Rule 4: A constraint of the context-aware
system is a desired property that the system
should maintain. That standpoint matches to the
meaning of Event-B invariants, we thus model
Context constraints by a set of invariants.

We summarize transformation rules used for model-
ing in Table 2

3.3. Incremental modeling using refinement
In fact, the development of context-aware systems
often starts from the scratch requirements, then it
is built gradually when we have new requirements
about context entities and reasoning. For example, more
sensors are attached in the system to get various kind
of context data. The system also has more context
rules to handle with these data. The updated system
still has to satisfy context constraints which has been
established. Therefore, it requires to have a suitable
modeling method for incremental development. As
we have described in Subsection 3.2, a context-aware
system is translated to an abstract Event-B model. It
is apparently suitable for modeling the initial stage of
a context-aware system. In this subsection, we answer
the question how our approach fits to incremental
development of such systems.

The refinement mechanism of Event-B makes it pos-
sible to model context-aware systems incrementally. We
already know that Event-B provides both superposition
refinement and vertical refinement. In the former, the
abstract variables are retained in the concrete machine,
with possibly some additional variables, hence it is
suitable for modeling a context-aware system which is
often extended by adding new sensors.

• Static part: For example, when a new sensor is
added to the system, we may have to deal with
new context data types. The context data can be
an extension of the old one. Applying Rule 1,
we formalize it as a new Event-B context which
extends the ones in abstract model.

• Dynamic part: We begin with abstract machines to
model the general behavior of the very beginning
system, after that we refine these machines by
concrete ones to represent new requirements of
the systems. For instance, adding new sensors
usually generate new appropriate events. Hence,
the system also needs more rule to react to
these events. In the refined machines, new added
variables can refer to new context data elements.
The events of a new refined machine can refine
the abstract ones to describe the system more
precisely. With the dynamic part, we need to
prove that a new model in the increment step
needs to satisfy the context constraints including
ones defined in the early stages. That proof

4 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e4

Hong Anh Le and Ninh Thuan Truong

Table 2. Transformation between context-aware systems and Event-B notations

Context-aware concepts Event-B notations
Rule 1 Context data CD Sets, Constants
Rule 2 Context rules r = 〈e, c, a〉 Events
Rule 3 Environments triggers E Events
Rule 4 Context constraints CC Invariants

Figure 3. Incremental modeling using refinement

can be achieved by using INV proof obligations
which states that invariant preservation PO can be
checked at any refinement. According to Rule 4
in Section 3.2, all constraints are represented by
Invariants, therefore a new constructed context-
aware system at any refined step preserves all
constraints of the initial step.

The proposed incremental modeling method is
illustrated in Figure 3.

4. A case study: Adaptive Cruise Control system
We demonstrate our approach by modeling a scenario
of an Adaptive Cruise Control (ACC) system. First, we
introduce the scenario, then we apply the modeling
method presented in Section 3.2 and then we verify
context constraint preservation properties of the
system.

4.1. Initial description
ACC controls car’s speed is based on the driving
conditions which are enhanced with a context-aware
feature such as target detection. The ACC system use
a sensor to detect target in front of the car. The car has
a maximum speed which is initially set to a value. If the
car does not detect a target then ACC increase the speed,
other wise decreases the speed with constant amount. If

the car is stopped and there is no target detected then it
is resumed with initial speed.

The ACC must conform to a context constraint such
that the speed is always in safe range, i.e the speed is
less or equal to the maximum speed.

4.2. Modeling ACC system
In this scenario, there are three sensors, following the
approach presented in Section 3, we specify the initial
system with one abstract machine and one context,
namely ACC M0 and Target.

• Applying Rule 1, context Target represents context
data received from the target detection sensor.
More precisely, the information sent by the sensor
let us know whether there is an object which is
currently in front of the car. We thus formalize
the context entities as a set TARGET DETECTION
which is equivalent to BOOL set.

• The sensor will periodically send context data to
the system by emitting events. We need to check if
context data contains the information of obstacle
objects. Hence, we specify two Event-B events
TargetDetected,TargetUndetected correspondingly.

• Context rules are used for specifying the system
behavior which depends on the context. We

5 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e4

Formal Modeling and Verification of Context-Aware Systems using Event-B

attract three rules from the initial description
and translate them to three corresponding events
following Rule 3.

• Applying Rule 4, the context constraint is
translated to invariant CXT CSTR.

Moreover, a variable speed in the model specifies the
speed of the car. The abstract context and abstract
machine Event-B specification of the ACC system
are partially illustrated in Figure 4 and Figure 5
respectively.

CONTEXT Target

CONSTANTS

TARGET DETECTION

MAX SPEED

INC

AXIOMS

axm1 : TARGET DETECTION = BOOL

axm2 : MAX SPEED ∈ N
axm3 : INC < MAX SPEED

axm4 : INC ∈ N

END

Figure 4. Abstract context of initial ACC system

Strengthen guards: With the initial description,
the generated INV POs of the translated Event-B
model are failed to prove. More precisely, with event
TargetDetected, PO TargetDetected/CXT CSTR/INV is
generated as follows:

speed < MAX SPEED ∧ target = FALSE `
speed + INC SPEED < MAX SPEED

It is failed if MAX SPEED + INC SPEED < speed <
MAX SPEED before event execution.

To make the model more precise, we strengthen the
context rules by adding more conditions. i.e. the event
guards have more clauses (Figure 6)

4.3. Refinement: Adding weather and road sensors
At this stage, the system has more sensors to be
aware more precisely of the current context situations.
Weather and road sensors are attached to the system.
Similarly to target detection sensor, they send the
context data periodically to the system. Context rules
of the system are also extended for reacting to new
added sensors as follows: “When a car travels in a
raining condition or sharp bend, ACC reduces car’s
speed". With new sensors, the system need to fulfil

MACHINE ACC M0

SEES Target

VARIABLES

speed

target det

INVARIANTS

inv1 : speed ∈ N
inv2 : target det ∈ TARGET DETECTION

inv3 : speed ≤ MAX SPEED

EVENTS

Initialisation

begin

act1 : speed := MAX SPEED

end

Event TargetDetected =̂

when

grd1 : target det = TRUE

then

act1 : speed := speed − INC

end

Event TargetUndetected =̂

when

grd1 : target det = FALSE

then

act1 : speed := speed + INC

end

END

Figure 5. Abstract machine of initial ACC system

the constraint such as “The speed can not be equal to
maximal speed if it is raining or the road is sharp".

Refined model: Following the method presented in
Section 3.3, context Weather Road extending context
Target represents context data of two new sensors. We
use two constant sets RAINING and SHARP to represent
context data from sensors. Machine ACC M1 is concrete

6 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e4

Hong Anh Le and Ninh Thuan Truong

EVENTS

Event TargetDetected =̂

when

grd1 : target det = TRUE
grd2 : speed > INC

then

act1 : speed := speed − INC

end

Event TargetUndetected =̂

when

grd1 : target det = FALSE
grd2 : speed < MAX SPEED − INC

then

act1 : speed := speed + INC

end

END

Figure 6. Events with strengthened guards

machine specifying the behavior of the system updated
with new requirements.

Since two new rules are appended to the require-
ments, two corresponding events are added for this
machine. The first one representing a new added rule is
not extended. This event RainSharp describes the behav-
ior of the system when sensors send data indicating that
it is raining or the road is sharp. While the second one
TargetUndetected refines event of the abstract model.
The context constraint is formalized as an invariant
cxt ct. The Event-B specification of the refined machine
and extended context is partially illustrated in Figure 7
and Figure 8 respectively.

MACHINE ACC M1

REFINES ACC M0

SEES Weather Road

VARIABLES

isRain

speed

target det

isSharp

INVARIANTS

inv1 : isRain ∈ RAINING

cxt ct : isRain = TRUE ∨ isSharp =
TRUE⇒ speed < MAX SPEED

inv3 : isSharp ∈ SHARP

EVENTS

Initialisation

begin

skip

end

Event TargetUndetected =̂

extends TargetUndetected

when

grd1 : target det = FALSE
grd2 : speed < MAX SPEED − INC
grd3 : isRain = FALSE
grd4 : isSharp = FALSE

then

act1 : speed := speed + INC

end

Event RainSharp =̂

when

grd1 : isRain = TRUE ∨ isSharp =
TRUE

then

act1 : speed := speed − INC

end

END

Figure 7. Refined machine for ACC system
7 EAI Endorsed Transactions on

Context-Aware Systems and Applications
09-12 2014 | Volume 1 | Issue 2 | e4

Formal Modeling and Verification of Context-Aware Systems using Event-B

CONTEXT Weather Road

EXTENDS Target

CONSTANTS

RAINING

SHARP

AXIOMS

axm1 : RAINING =
BOOL

axm2 : SHARP = BOOL

END

Figure 8. Extended context for ACC system

4.4. Verifying the system’s properties
The system should always satisfy context constraint
preservation properties. It means that the context con-
straint is preserved before and after using the context
rules to adapt context changes. With proposed method,
context constraints are translated to invariant clauses.
Consequently, we prove the system’s correctness by
proving proof obligations of such invariants.

The proof obligations (PO) for these invariants of
both abstract and refined machines as follows:

• Machine ACC M0: “TargetDetected/ctx ct1/INV"
(Figure 3) and “TargetUndetected/ctx ct1/INV"

• Machine ACC M1: “TargetUndetected/ctx ct/INV"
and “RainSharp/ctx ct/INV"

These POs are generated and proved automatically
with the Rodin tool as illustrated in Figure 9. Hence, the
ACC system always satisfies predefined context rules.

5. Related work
Many papers have been proposed for modeling
and verifying context-aware systems with various
approaches. Key-value data structure [13, 15] has
been used in early works as the simplest method
for modeling context awareness. This method exposes
many problems since it lacks of interoperability,
representation and reasoning mechanism.

Most research efforts that are based on mark-up
scheme model have defined and extended markup
languages. Henricksen et al. [10] proposed to represent
contextual data by Comprehensive Structure Context
Profiles (CSCP). Indulska et al. [11] extended CC/CP
model to define a set of CC/PP components and
attributes to express a various types of context

information and context relationships.
Some researchers following the graphical model
approach to model contextual data. Mostefaoui [14]
presented a three-layered data model for context.
Benselim and Hassina [5] recently presented an UML
extension for representing and modeling context by
creating some stereotypes that are described by several
tagged values and some constraints.

Almost all ontology-based approaches have used
high-level ontologies to formalize context information
and models. Shehzad et al. [16] introduced a formal
modeling method in context aware systems using OWL.
Ejigu et al. [9] also proposed ontology based reusable
context model that providing structure for contexts,
rules and their semantics. The problem with these
two pieces of work is that there was no verification
mechanism presented.

Besides, Kjaergaard et al. [12] proposed a CONAWA
calculus that provides mechanism for modeling and
interwovenning sets of context-information. However,
this approach has some limitations such as probabilistic
context information modeling and verification of the
system is not discussed yet.

More recently, Tran et al. [18] introduced a
ROAD4Context framework which is based on Role-
Oriented Adaptive Design (ROAD) [8] to model
context-aware systems. However, in order to verify the
system, it takes more intermediate steps to translate a
ROAD4Context model to a Petri net model and then
use SPIN to check the system’s behaviors. Furthermore,
the transformation rules are not presented generally.

In comparison to these works, our method is
different as we use Event-B as a modeling method.
The advantages of our method are that a context-aware
system can be modeled naturally by Event-B notations
because the ECA form of context rules is mapped
directly to an event. The Event-B refinement allows to
develop a context-aware system gradually and ensures
the correctness in each refinement stage. After the
modeling, the verification process does not require any
more translation step. Context constraints are proved
mathematically by proving proof obligations which are
automatically generated and proved in the supporting
tool Rodin.

6. Conclusions and Future Work
The use of context-awareness plays an important
role in reactive and interactive systems. Context
aware computing is applied in many fields such as
mobile, embedded systems, etc..Modeling and verifying
context-aware systems are difficult tasks due to their
complex behaviors. In this paper, we introduce a
refinement-based approach to model and verify such
systems. The advantages of our approach are natural
representation of context-aware concepts to model and

8 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e4

Hong Anh Le and Ninh Thuan Truong

Table 3. Proof of context constraint preservation

target det = TRUE⇒ speed < MAX SPEED
target det = TRUE
speed > INC TargetDetected/ctx ct1/INV
`
target det = TRUE⇒ speed − INC < MAX SPEED

Figure 9. Checking properties in Rodin

the use of invariant preservation proof obligations
generated by refinement mechanism in Event-B to
verify the correctness of the system. However, in
this paper, we just consider a simple case of context
awareness. Limitation of data types in Event-B method
is also a weak point when modeling complex context
data.

Our future research will concentrate on elaborating
the modeling systems with various kinds of context data
which can be done by incorporating new theory plug-
ins [6]. We are working on extending this approach with
modeling uncertainty in context-awareness. Developing
a tool that allows to translate context-aware systems to
Event-B model automatically is also one of our future
aims.

Acknowledgments
This work is partly supported by the project
no. QG.12.50 granted by Vietnam National University,
Hanoi (VNU).

References
[1] B method web site. http://www.bmethod.com, 2013.

[2] Event-b and the rodin platform. http://www.event-
b.org, 2013.

[3] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles. Towards a better understanding of
context and context-awareness. In Proceedings of the
1st International Symposium on Handheld and Ubiquitous
Computing, HUC ’99, pages 304–307, London, UK, UK,
1999. Springer-Verlag.

[4] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on
context-aware systems. Int. J. Ad Hoc Ubiquitous Comput.,
2(4):263–277, jun 2007.

[5] M. Benselim and H. Seridi-Bouchelaghem. Extended
uml for the development of context-aware applications.
In R. Benlamri, editor, Networked Digital Technologies,
volume 293 of Communications in Computer and
Information Science, pages 33–43. Springer Berlin
Heidelberg, 2012.

[6] M. Butler and I. Maamria. Practical theory extension in
event-b. In Theories of Programming and Formal Methods,
volume 8051, pages 67–81. Springer Berlin Heidelberg,
2013.

[7] H. Chen. An Intelligent Broker for Context-Aware Systems.
PhD thesis, University of Maryland, 2004.

[8] A. W. Colman. Role oriented adaptive design. PhD thesis,
Swinburne University of Technology, 2006.

[9] D. Ejigu, M. Scuturici, and L. Brunie. An ontology-
based approach to context modeling and reasoning

9 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e4

Formal Modeling and Verification of Context-Aware Systems using Event-B

in pervasive computing. In Pervasive Computing and
Communications Workshops, 2007. PerCom Workshops ’07.
Fifth Annual IEEE International Conference on, pages 14–
19, 2007.

[10] K. Henricksen, J. Indulska, and A. Rakotonirainy.
Modeling context information in pervasive computing
systems. In Proceedings of the First International
Conference on Pervasive Computing, Pervasive ’02, pages
167–180, London, UK, UK, 2002. Springer-Verlag.

[11] J. Indulska, R. Robinson, A. Rakotonirainy, and K. Hen-
ricksen. Experiences in using cc/pp in context-aware
systems. In Proceedings of the 4th International Conference
on Mobile Data Management, MDM ’03, pages 247–261,
London, UK, UK, 2003. Springer-Verlag.

[12] M. B. Kjaergaard and J. Bunde-Pedersen. Towards
a Formal Model of Context Awareness. In First
International Workshop on Combining Theory and Systems
Building in Pervasive Computing 2006 (CTSB 2006), 2006.

[13] C. L.-P. Michael Samulowitz, Florian Michahelles.
Capeus: An architecture for context-aware selection and
execution of services. In K. ZieliÅĎski, K. Geihs,
and A. Laurentowski, editors, New Developments in
Distributed Applications and Interoperable Systems, vol-
ume 70 of IFIP International Federation for Information
Processing, pages 23–39. Springer US, 2002.

[14] S. Mostefaoui. A context model based on uml and
xml schema representations. In Computer Systems and
Applications, 2008. AICCSA 2008. IEEE/ACS International
Conference on, pages 810–814, 2008.

[15] B. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In In Proceedings of the
Workshop on Mobile Computing Systems and Applications,
pages 85–90. IEEE Computer Society, 1994.

[16] A. Shehzad, H. Q. Ngo, K. A. Pham, and S. Y. Lee. Formal
modeling in context aware systems. In In Proceedings of
The 1 st International Workshop on Modeling and Retrieval
of Context (MRCâĂŹ2004), 2004.

[17] T. Strang and C. Linnhoff-Popien. A context modeling
survey. In In: Workshop on Advanced Context Modelling,
Reasoning and Management, UbiComp 2004 - The
Sixth International Conference on Ubiquitous Computing,
Nottingham/England, 2004.

[18] M. H. Tran, A. Colman, J. Han, and H. Zhang.
Modeling and verification of context-aware systems.
In Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference - Volume 01, APSEC ’12, pages
79–84, Washington, DC, USA, 2012. IEEE Computer
Society.

10 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e4

Hong Anh Le and Ninh Thuan Truong

	1 Introduction
	2 Backgrounds
	2.1 Event-B
	2.2 Context-aware systems

	3 Formalizing context awareness
	3.1 Set representation of context awareness
	3.2 Modeling context-aware system
	3.3 Incremental modeling using refinement

	4 A case study: Adaptive Cruise Control system
	4.1 Initial description
	4.2 Modeling ACC system
	4.3 Refinement: Adding weather and road sensors
	4.4 Verifying the system's properties

	5 Related work
	6 Conclusions and Future Work

