
A Context-dependent Service ModelH

Naseem Ibrahim1,∗, Vangular Alagar2, Mubarak Mohammmed2

1Albany State University, Albany, GA, USA
2Concordia University, Montreal, QC, Canada

Abstract

In service-oriented systems a service invariably is bound to a contract. This contract includes the functionalities and
quality of services guarantees that the provider can make. But such guarantees are not absolute. A service cannot guarantee
its contract in all situations. It can only guarantee its contract in a predefined set of conditions. These conditions are usually
related to the context of the service provider and requester. Yet, most of service-oriented applications use only service
functionality as the basis of providing services and building system compositions. To remedy this situation, in this article
both functionality and contract of a service are integrated into a single concept, called ConfiguredService, and formalized
as a higher-order data type. The service part that includes the functionality, nonfunctional properties, service parameters,
and data of the service requester, is loosely coupled to the contract part that includes trustworthiness claims, legal and
business rules governing the service provision, and the context information pertaining to the provider and receiver. This
loose coupling allows the creation of many ConfiguredServices, which share the same functionality but possess different
contract parts. To facilitate dynamic service adaptation, we introduce a syntax and semantics for extending or modifying
a ConfiguredService.

Received on 08 October 2014 ; accepted on 29 October 2014; published on 16 December 2014
Keywords: ConfiguredService Model, Context-dependence, Trustworthy Services, Composition Methods, Formal Verification

Copyright © 2014 Naseem Ibrahim et al., licensed to ICST. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/casa.1.2.e3

1. Introduction

Service-Oriented Computing (SOC) [22] is a promising
computing paradigm that uses service as the fundamental
element for a rapid, low-cost development of large-
scale distributed service applications in heterogeneous
environments. From the recent reports [23][1] it is evident
that SOC paradigm is the dominant development paradigm
that is adopted by small and medium businesses, as well as
many large business enterprises such as Amazon AppStore,
Google, and Microsoft Market place.

An architectural model of SOC in which service is a
first class element is called Service-Oriented Architecture

(SOA) [19]. The main activities in SOA are service

publication, service discovery and service provision. Service

publication refers to the process of defining service contracts
by service providers and publishing them through available
service registries. Service discovery is the process of finding
services that have been previously published and that meet

HPlease ensure that you use the most up to date class file, available from
EAI at http://doc.eai.eu/publications/transactions/

latex/
∗Corresponding author. Email: naseem.ibrahim@asurams.edu

the requirements of a service requester [39]. Service provision

refers to the process of executing a selected service.

In SOA, a service provider defines the contract that
can be guaranteed by a service. This contract includes the
functionalities and quality of services guarantees that the
provider can make. But such guarantees are not absolute.
A service cannot guarantee its contract in all situations.
It can only guarantee its contract in a predefined set of
conditions. These conditions are usually related to the context

of the service provider and requester. Legal rules also play
a crucial role in constraining the publication and discovery
of services. For example, a wireless phone provider may
include in the service contract a guarantee of excellent
quality, but this guarantee is not absolute. It may have a
constraining condition stating that in order to ensure excellent
quality, the consumer should be located within 1000 meters
from cell phone stations. This constraint is related to the
contextual information of the service consumer. In addition,
local legal rules may black-out wireless service in secure-
critical locations. Such legal rules should be an essential part
of every contract.

Almost all current approaches use only functional and
nonfunctional properties to enable the publication, discovery

1

EAI Endorsed Transactions
on Context-Aware Systems and Applications Research Article

EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
http://doc.eai.eu/publications/transactions/latex/
mailto:<naseem.ibrahim@asurams.edu>

Naseem Ibrahim et al.

and provision of services. Failure to include contextual
information and legal rules will only mislead the consumer to
believe in the advertised excellent quality of wireless service,
regardless of where the consumer is domiciled which is not
true.

Typical application domains where service-based systems
should offer high quality of service are Health Care, Power
Distribution, On-line Banking, On-line Shopping, and On-
line Education. Services offered by these systems must be
rich, trustworthy, and context-dependent in order to expand
their customer base and add economic value. In this article
we describe a rich, trustworthy, context-dependent service
model, called ConfiguredService. We show how the service
functionality and its properties, service contract, and service
context are structured in a ConfiguredServic model and
develop a formal representation of it.

1.1. Setting for Our Work

In SOC literature many informal definitions for the term
“service” exist, most of them inspired by business and
telecommunication service domains. Broy et al. [31] have
defined a service as a partial function and component as
a total behavior. This definition implies that a component
can offer finitely many services, and a service is created by
the interaction of many components. They view SOA as a
collection of services (functions) and their compositions. In
our previous research [36, 38], we took the trustworthiness
definition of Avizienis et al. [7, 8] as a compound property
consisting of safety, security, reliability, and availability,
and have discussed a method for formally developing
trustworthy component-based systems. This method adds
non-functional and trustworthiness specifications to the
functional specification of Broy et al. [31]. For simplicity,
we can have a component implementation with one external
interface, one service, and one contract. Alternately, we
can realize a service as an interaction of many components
when a component implementation has many interfaces,
where an interface provides one service bound to a contract
at its interface. We defined the specifications of the
trustworthiness features in the component contract when
the component has one interface, and in the interface
contract when the component has many interfaces. We
used UPPAAL [9] to formally and incrementally verify the
trustworthiness of component compositions. That is, our
previous research [36, 38] has orchestrated a trustworthy
Service Creation Layer (SCL), constructed as a composition
of trustworthy subsystems that are formally verifiable. The
definition of ConfiguredService in this article is anchored on
SCL.

Services in typical service domains, such as Health Care,
Power Distribution, On-line Banking, On-line Shopping,
involve heterogeneous object types. Consequently, services
in such domains are not as easy to describe as services in
small embedded systems. We need a rich service definition.
We reckon that large service-oriented systems must be built

Non-Functional
and Trustworthiness

Specifications

Formal Verification

Service
Provider

Matching Ranking

Functional
Specifications

Trustworthy
Funcational
Design

Implementation

Service Creation Layer (SCL)

Trusted
Authority

Service Provision Layer (SPL)

Trustworthy
Funcational
Implementation

Contex-dependant
Contract

Configured Service

Static
Composition

Dynamic
Composition

Service
Requester

Service Request Layer (SRL)

Query

Function Specification

Service

Service Type

Composition

Negotiation Execution

Service Delivery Layer (SDL)

Figure 1. Layered SOA

in a modular fashion in order to tackle the complexity arising
from the creation, deployment, and delivery of complex
services in rich application domains. Layered architectures,
as those explained in [12, 25], are effective ways to
break the complexity barrier and promote component-based
development across all layers. The layered architecture
that we follow in our research is shown Figure 1. Each
layer is intended to perform activities that are related
to one set of related requirements of the service-centric
system. SCL is accessible to every service provider (SP)
and the trusted authority (TA). A SP creates trustworthy
services at SCL. That is, a SP provides implementation
for components which implements service functionality
respecting the trustworthiness contract. The TA should verify
that the implementation provided by a SP respects the
trustworthiness claims of the SP. Once verified, the TA
certifies the service for publication in Service Provision Layer

(SPL).

In a service-oriented application, service is a first class
element. Moreover the application must be user-centric in
order that users may browse, query, retrieve, negotiate, and
get services without any regard to how such services were
created. Based upon the service descriptions, users must be

2
EAI Endorsed Transactions on

Context-Aware Systems and Applications
09-12 2014 | Volume 1 | Issue 2 | e3

A Context-dependent Service Model

able to compare services that have the same functionality and
select the service that best suits their expectations. To suit
this objective, in our research we have designed SPL, the
Service Publication Layer, in which ConfiguredServices are
published. In order to publish a ConfiguredService in SPL,
a SP first creates a trustworthy functional implementation at
SCL and gets it certified by the TA. Next, the SP creates
one or more ConfiguredServices by including the certified
functional implementation and adding different contract types
with it. These ConfiguredServices are communicated to the
TA who publishes the ConfiguredServices after verifying that
the claims included in them are identical to those that have
been verified earlier. Thus, by varying contracts to each
certified functional implementation the SP configures many
ConfiguredServices. The SP can create new ConfiguredSer-

vices at SPL by composing certified ConfiguredServices. The
structure of a composite ConfiguredService is the same as
the structure of a simple ConfiguredService. Hence, Con-

figuredServices published in SPL are ready to be queried,
browsed, compared, communicated and transacted by service
requesters. Moreover, ConfiguredServices in SPL are first
class objects in the system and SPL design is user-centric.

In this article we focus only on SPL and explain the
structural and semantic significance of ConfiguredService,
compositions of ConfiguredServices, and the production of
flexible contracts in order to make the system both service-
centric and user-centric. Service Request Layer (SRL) is
where a service requester (SR) interacts to get services. We do
not discuss this aspect in this paper. An extensive discussion
on Service registry structure, query types, and service ranking
algorithms are discussed in [3, 5, 26]. The primary reasons for
explaining the layered SOA are to focus on the setting of the
research reported in this article, and bring out the advantages
of layering to ConfiguredService model.

• There is clear separation of goals. Each layer addresses
one goal.

• Implementation details are hidden away from clients
who will query and retrieve only ConfiguredServices

from SPL. Consequently, a SP has the freedom to
choose an implementation platform for SCL that best
fits his goals.

• Trustworthy component-based methodology used in
SCL provides many additional advantages to service
development process. Component designs can be
modified without affecting the ultimate result. The
service function is formally verified for trustworthiness
properties before it is included in a ConfiguredService.

• Given that a ConfiguredService in SPL has been
certified by the TA, it is sufficient to verify contract
fulfillment at service execution times.

• There is a clear formal path that goes from functional
and non-functional specification to component and
contract specification (SCL), to ConfiguredService

specification and their compositions (SPL), and finally
to service matching and ranking (SRL). SCL, as
illustrated in our previous work [36, 38] has been
formalized. We explain in this paper how the SPL layer
can be formalized. Algorithms for service matching and
service ranking are explained in [26]. Consequently,
we are demonstrating that formalism can effectively
be used through all the layers in developing a service-
oriented system.

1.2. Contributions and Significance

Our contributions are structured as follows.

• Context and Trustworthiness Concepts: In Section 2
we explain the two basic concepts “context” and
“trustworthiness”. Their formal representations are
justified.

• Service Model: In Section 3 we informally explain the
structure and semantics of ConfiguredService model,
and illustrate it with an example chosen from car rental
service domain. A formal notation for ConfigureService

and a semantics based on the formalism are given
in Section 3.2. In Section 3.3 the formalism is
applied to the car rental example explained earlier. In
Section 3.4 we introduce a formal syntax for extension

and enrichment of ConfiguredServices. The purpose of
this notation is to make precise service modifications
during service negotiation, and reduce communication
complexity between SP and SR at service negotiation
time.

Another significant component of this paper is the critical
survey and comparison of related work reported in Section 4.
In Section 5 we conclude our paper highlighting our
contributions, and list several ongoing research activities. We
use many acronyms in this paper. Table 1, which lists these
acronyms, will provide a ready reference point for the reader.

2. Basic Concepts of Contract

Service functionality is created by a SP at SCL. In SPL,
contract part is added by SP to the service functionality to
produce a ConfiguredService. Trustworthiness, context, and
legal rules are the three parts that make up a service contract.
In the following sections we make precise the meanings of
the terms “context” and “trustworthiness”. Legal rules are
specified in a logic of context, as explained in Section 3.1.

2.1. Context

Context is a rich concept, and its implicit meaning, derived
from the Latin words con (meaning “together”) and texere

(meaning “to weave”), is “weaving together”. There exists
a large body of literature on context, and many definitions
proposed by different researchers can be found in [10]. The
survey article [43] gives a history of context, as studied

3
EAI Endorsed Transactions on

Context-Aware Systems and Applications
09-12 2014 | Volume 1 | Issue 2 | e3

Table 1. List of Acronyms

Acronym Meaning Section
SOC Service-Oriented Computing 1.1
SOA Service-oriented Architecture 1.1
SCL Service Creation Layer 1.1
SP Service provider 1.1
TA Trusted authority 1.1
SPL Service Provision Layer 1.1
SRL Service Request Layer 1.1
SR Service requester 1.1
SDL Service Delivery Layer 1.1
SC Service Context 2.1
SRC Service Requester Context 2.1
SPC Service provider Context 2.1
ST Service Trust 2.2
PT Provider Trust 2.2
SLA Service Level Agreement 3.1
SSR Service Selection Rules 3.1
SDR Service Delivery Rules 3.1
SER Service Execution Rules 3.1
SXR Service Exception Rules 3.1
CSL ConfiguredService Specification

Language
4

CDL ConfiguredService Description
Language

4

by linguists and researchers in AI, long before it entered
into “context-aware” system research. In these studies, a
representation for context was not necessary because it
was used mainly for logical reasoning and interpretation.
For context-aware computing applications Schilit et al [11]
was the first to propose a set of determinants for defining
contexts. For Human Computer Interaction (HCI) research
an easy to understand definition of context was put forth by
Dey et. al [18]. However in these early studies no formal
representation of context was suggested. From these research
we infer the three important determinants “where, who,
and what” for defining a context. In our research we have
two other essential determinants “why, when”. In principle,
any number of determinants may be included in a context
specification, and the only criterion for choosing them is to
make context a meta-information that can qualify either data
or information or an entity of interest in the system.

Within SOC we can regard context as any element that
could affect the service provision and execution operations.
For a specific application, contexts are to be determined
by domain experts with the goal to make the system
behave as intended in achieving its QoS criteria. Since the
three important entities in any SOA are service, service
requester (SR), and service provider (SP), and each entity is
influenced by its own set of contexts there are essentially three
context categories. These are Service Context (SC), Service
Requester Context (SRC), and Service provider Context
(SPC). Contexts in each category will have the same set of

determinants, however contexts in different categories may
share information.

A SRC context qualifies the status of the requester SR
while requesting or receiving the service. For example, the
location and time parameters characterize the context of a
SR while requesting or receiving a service. A context of
SRC category becomes known only when a SR accesses
a ConfiguredService. A context of type SPC will qualify
information on service provider source and quality of service
provided by a SP. As an example, a SP may have license to
provide services within 10 km of the location where SP is
registered. This information will be included by the SP in
SPC context. A context of type SC qualifies information that
defines restrictions on requesting a service, service source,
and service delivery restrictions. Examples include contexts
that will filter services based on location, profile of people in
a location, and time constraints for service delivery.

If we demand context-aware computing within SOC then it
is necessary to treat context as a first class entity and be able to
make decisions based on context rules. With this in mind we
have introduced ContextInfo and ContextRule in the context
part of a ConfiguredService. In ContextInfo we include
SPC context that qualifies location and status parameters of
the SP. A SP may be able to provide a service in many
contexts, and it is not feasible to enumerate all such contexts
within a ConfiguredService. So, we decided to introduce
ContextRules in a ConfiguredService. The significance is
that the ConfiguredService is available only in contexts in
which the ContextRules are true. Consequently, validating
ContextRules become necessary to determine the relevant
contexts for service availability and service delivery.

Context Representation. We use the formal
representation of Wan [42] to specify ContextInfo as
a context. The notation used by Wan [42] for binding
ContextInfo from many dimensions is based on relational
algebra semantics. A context c is represented as an
aggregation of ordered pairs (Xj , vj), where Xj is a
dimension and vj is the tag value along that dimension.
Formally, if DIM = {X1, X2, . . . , Xn} is a finite set of
dimensions, and τj is the type associated with dimension
Dj , then any value vj ∈ τj can be associated with Xj in a
context representation. The collection of pairs is written
within [...]. That is, [X1 : v1, X2 : v2, . . . , Xk : vk] is a
context in which k entities (dimensions), each associated
with a value, are weaved together. An example of SPC
context is [CS : airticket, SPL : Chicago], where service

description dimension CS is associated with service name,
and service provider location dimension SPL is associated
with the location of service provider. An example of SRC
context is [SRL :Montreal, SDT : 02/22/2013, RS :
Internet, PU : business], where SRL, SDT, RS, and
PU respectively are the dimensions for service receiver

location, service delivery time, resources, and purpose.
If necessary, these two contexts can be combined as
[CS : airticket, SPL : Chicago, SRL :Montreal, SDT :

4
EAI Endorsed Transactions on

Context-Aware Systems and Applications
09-12 2014 | Volume 1 | Issue 2 | e3

Naseem Ibrahim et al.

A Context-dependent Service Model

02/22/2013, RS : Internet, PU : business], provided there
is a ContextRule that allows a SP in Chicago to sell an air
ticket for a SR inMontreal.

The inclusion of ContextInfo and ContextRule in a
ConfiguredService has two additional advantages. First, we
can formally validate claims encoded as a ContextRules in
different contexts. Thus in our model, the logical evaluation
of legal rules and trustworthiness claims can be automated.
Second, the notation of context to represent ContextInfo can
be viewed as an abstract data type, and can be imported as first
class citizen in programming languages and in system design.

2.2. Trustworthiness

Trust adds economic value in a service transaction. The two
kinds of trust included in a ConfiguredService are Service

Trust (ST) and Provider Trust (PT). The ST specification
should be formally verifiable by the SR, and the PT
specification should be verifiable by the TA. There is no
common consensus on defining PT attributes. We use “trust
recommendations” from peer groups as PT attributes.

It is imperative that a user buys a ConfiguredService

with the full confidence that the service included in it
will perform according to ST attributes listed in it. ST
specification should faithfully translate the trustworthiness
features of the service created in SCL layer. Towards this we
used the formal component-based approach [36] in SCL to
develop trustworthy services. The development cycle is based
on the process model [37] introduced by Mohammad and
Alagar. This is a goal-based model in which the dependability
criteria is specified at domain level and the system is
developed to satisfy the criteria. That is, we brought in
domain engineering as the first step in engineering services
because trustworthiness criteria are specific to a domain.
Moving down from the domain level to the design level,
the trustworthiness criteria defined at the domain level are
refined to a trustworthiness criteria for the design artifacts by
selectively and incrementally adding design level properties.
The evidence is provided by a formal proof or verification
or some convincing manual activity to establish that (1) the
trustworthiness criteria arrived at the design level is satisfied
by the design principles (conflict-free completeness), and (2)
the trustworthiness criteria arrived at the design level implies
the domain level trustworthiness criteria (consistency). Our
approach conforms to the recommendation in the report [28],
where Jackson has argued that goal-based development
approach should be preferred to process-based development
for developing dependable systems. We provide sufficient

evidence for dependability through formal verification.
Consequently, the ST attributes listed in a ConfiguredService

are formally verifiable. Thus, users can verify the ST claims
and be convinced that the service given by the black box
specification in a ConfiguredService will behave as claimed
by a SP.

3. ConfiguredService Description

In this section, first we informally introduce the Configured-

Service concept and explain the rationale for its structure.
Next, we formalize ConfiguredService, provide its semantics,
and illustrate these concepts with an example.

3.1. Structure of ConfiguredServices

The definition of ConfiguredService captures ‘what a service
is’ and ‘what requirements are to be met for providing it
in different contexts’. Figure 2 shows the structure of a
ConfiguredService, consisting of the two parts Service and
Contract. In its service part is loosely coupled to its contract
part, so that the same service functionality may satisfy
different contracts in different contexts.

Functionality of service, data related to service, service
attributes, and nonfunctional properties are grouped under
‘service’. Thus the functional behavior of the service defined
in terms of pre and post conditions do not change. Personal
data of a service requester may be included in this part in
order to personalize the ConfiguredService, once the client
selects the service for delivery. Service requester data will be
used in the validation of pre and post conditions.

The ‘contract’ part in a ConfiguredService, although
roughly resembles service level agreement (SLA) in Web
Services, is more expressive. It is endowed with a much richer
structure in order that legal rules, trustworthiness claims, and
context information that bind the service can be stated in
a structured manner. Trustworthiness properties include ST
and PT specifications. The former is a compound property
of safety, security, reliability, and availability guarantees of
the service. It is imported from SCL. PT is a statement on
peer and client recommendations on the service provider.
Since trustworthiness properties will significantly influence
the consumer’s intent to buy the service they must satisfy
the contexts associated with customer groups. Motivated by
this need we decided to include context within contract
part. Just by changing the contract part we can create many
different ConfiguredServices, all providing the same service
functionality, to suit different contexts of service delivery.
As an example, providing a wireless Internet connection
that costs 5$ per hour is a single service. This service
might be associated with one contract stating that the quality
of reception is excellent, provided the service requester is
located within 50 meters from the base station. The same
service may be associated with another contract stating that
the quality of reception is good, provided the service requester
is located beyond 50 meters but within 100 meters from
the station base. Thus, we have two ConfiguredServices,
each providing Internet service but with different contracts.
Alternatively, it is possible to have one ConfiguredService

(providing Internet service) in which more than one quality
claim is included, where each claim is bound to a context rule.
However, when such a ConfiguredService is personalized to a
service requester, the contract will include only one quality
factor, namely the one that is valid for the context of service

5 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

ConfiguredService Service Contract

ContextRule

ContextInfo

Dimension

Legalissues NonFunctioal Function

Signature

Precondition

Postcondition

MethodID

Parameter

Complex

Simple

Safety

Security

Reliability

Availability

OtherNF

hasA

is-A

1 1

n 1
n

n

1

1

n Zero or manyConcept

1 Exactly one

Result

Address

Price
ProviderTrust

1

1

n

1

1

n

n
n

Value

ContextTrustworthiness

ServiceTrust

Client Recom.

Org. Recom.

Price Guarantee

Attributes

n 1
n

1

Figure 2. ConfiguredService Structure

requester. So, we decided to create and publish different
ConfiguredServices, each specifying a set of quality claims
that are valid for the context information included in the
contract.

We emphasize the significance behind the separation of
nonfunctional properties from trustworthiness properties in
ConfiguredService model. The nonfunctional properties listed
in ‘service part’ represent static quantifiable information for
a service. An example is the service cost. It may be argued
that service cost might vary for different service requester
groups, and so cost being ‘dynamic’ should be part of the
contract section. Our response to this argument is that the
cost itself is fixed, however under some exceptions discounts
might be offered. These arise from business policies which
are changeable. Typical examples include “offering discount
to senior citizens and students with authenticated ID cards”.
They can be coded as business rules, which constrain the price
with respect to age. If the base cost changes, or in general
some of the attributes change, but the service functionality
itself is not changed, then a new ConfiguredService is created
using the syntax introduced in Section 3.4.

In general, a legal rule included in the Legal Issues section
of Contract is a business rule constraining service availability
and service delivery. The set of legal rules in our model are
classified as follows:

1. (SSR: Service Selection Rules) The rules in the set
SSR are necessary to validate service selection by a
client.

2. (SDR: Service Delivery Rules) The rules in the set
SDR should be validated at the moment the selected
service is delivered to a client.

3. (SER: Service Execution Rules) The rules in the set
SER are to be applied during service execution.

4. (SXR: Service Exception Rules) The rules in this set
are to be applied only when abnormal situations arise.

Sets SSR and SDR must be non-empty. Sets SER and SXR
may be empty for certain service domains. Service requester
information, service requester context, service attributes, and
service provider context are used to validate rules in the
set SSR. Each rule in the set SDR must evaluate to true in
the service context and service requester context at service
delivery time. If SER , ∅, then every rule in it is to be
enforced during service execution contexts. If SXR , ∅,
then each rule in it specifies a reaction to be triggered when
an exception arises. Typical rules of this type are those
that govern contract termination before service delivery and
contract violation rules during or after service execution. An
essential difference between SER and SXR rules is that a SXR
rule may never be fired while every SER rule will be enforced.

We emphasize that every legal rule is a ContextRule, in the
sense that it includes context information either implicitly or
explicitly. By restricting to predicate logic and bringing in
context-dependence we are in effect using a logic of context as
the semantic basis for Legal Rules in a contract. This approach
follows the earlier works of McCarthy [35] and many others
reviewed by Ackman [2]. In Section 3.2 we make precise the
logic of context as a semantic basis for contract evaluation.

We use the context notation explained in Section 2.1
to define contexts in the Contract section, and express a
context rule as a predicate logic expression. For example, the
rule VERYWARM = (Temp ≥ 28) ∧ (Humid ≥ 67)
might be used to determine whether or not to provide air
conditioning service. The rule VERYWARM is true in
infinity of contexts and false in another infinite set of contexts.
As examples, VERYWARM is true in context [TEMP :
28, HUMID : 70] and it is false in context [TEMP :
26, HUMID : 65]. Therefore, the system must validate a
context rule in every context of its operational cycle in order

6 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

Naseem Ibrahim et al.

A Context-dependent Service Model

that it may decide whether or not service is to be provided.
Thus, context rules are statements in the logic of context.

The abstract model in Figure 2 is represented both as
a table, for browsing during service discovery, and as an
XML file, for communicating services between different
system components. The table structure of a Car-Rental

ConfiguredService is shown in Table 2. The structure
of this table is in one-to-one correspondence with the
ConfiguredService structure hierarchy shown in Figure 2.

3.2. Formalism and Semantics of
ConfiguredService

In this section we give an informal semantics for the elements
in the ‘service’ and ‘contract’ parts of a ConfiguredService,
their formal notations, and suggest a formal semantics based
on it. The information content in different sections of Car
Rental example in Table 2 should be understood with
reference to this semantics.

Let TYPE denote a set of types. A type T ∈ TYPE is
the carrier set of data elements. Let N denote the universe
of names used as identifiers. Attribute names AN, variables
VN, and other entity names EN are disjoint subsets of N.
The function φ : N → TYPE assigns a unique type φ(n) =
Tn for n ∈ N. A type is uniquely associated with a set of
values and operators on it. That is, for every n ∈ N, φn =
(VALn,OPn), and for n′ ∈ N, n , n′ , VALn , VALn′

and OPn , OPn′ .

Semantics of Service Part. The Service part has the
three sections Functionality, Nonfunctional properties and
Attributes. The service functionality has been pre-created by
the SP and a client can only use it as is. That is, a client
has no direct access to function implementation. As such, the
functionality section includes only the function precondition

and postcondition. The precondition must be made true by the
SR and the postcondition will be made true by the SP. A non-
functional property is a constraint on the manner in which the
service is delivered. Pricing information, which can itself be
a complex property expressing different prices for different
amount of buying, is an example of nonfunctional property.
For some types of services, such as video downloading, the
amount of storage required and speed of downloading may
be included as nonfunctional properties. A set of Attributes

is listed in the ‘Data’ section. Every attribute is typed and is
represented as a name-value pair. Attributes provide sufficient
information to describe a service. The service, when delivered
to a client, should have these attributes. At service selection
time the information in the Service part is augmented with SR
information in order to personalize the service for the SR.

Formalism of Service Function

Formally, a service description in a ConfiguredService is
a 3-tuple σ = <f , κ, α>, where f is the service function, κ
is the set of nonfunctional properties, and α is the set of
service attributes. The set α of service attributes is formalized

as below.

α = {(n, v) | (n ∈ AN) ∧ (v ∈ VALn)}

A non-functional property may be multi-dimensional,
involving many constraints on one aspect. We should make
each property atomic, in the sense that it involves one aspect
only. With this perspective we can formalize the set of atomic
non-functional properties as below.

κ = {(n, v) | (n ∈ EN) ∧ (v ∈ VALn)}

The function f has been pre-created by the SP to provide
the service that has the features specified in the sets α and
κ. The postcondition po becomes true only after successful
service provision. The precondition pr should be made true,
either by the SP or by the SR, in order to make the function
available. Information collected from the SR prior to service
agreement personalization should be sufficient to make the
precondition true. As such, pr can be evaluated only after the
client agrees to buy the ConfiguredService.

Semantics of Contract. The Contract part is divided
into the three sections Trustworthiness, Legal Issues and
Context.

1. Trustworthiness: The trust that consumer groups
have on the service provider, is specified in section
ProviderTrust (PT). Although there is no agreed
upon definition for PT we allow the inclusion of
any verifiable trust recommendations of users and
peers. Service trust (ST) section enumerates safety,
security, availability, and reliability claims of the
service provider. Safety means timeliness guarantee
and an assurance that no damage will happen during
service execution. In Table 2 the statement “automatic
seat belt alarms” means that an alarm rings and disables
the ignition if seat belt is not worn before attempting
to start the engine, and the keyword “ABS” is used
to indicate that the car is equipped with Anti-lock

Braking System which prevents a car from skidding
while driving in hazardous conditions. Security is
a composite of data integrity, authenticity, and
confidentiality properties. Data integrity is concerned
with the techniques to ensure the correctness of data
after communication. Confidentiality is concerned with
the privacy of user information. Authentication refers
to verifiable client identity. These three virtues are
inherent in finger-print locking system. The term “auto
shut” refers the mechanism whereby the car doors are
automatically locked once the car starts moving. Such
a feature may be regarded either as a safety property or
security property. Availability and reliability [36] are
defined in terms of failures and repairs. A failure is
defined as a deviation from the correct service behavior.
A repair is defined as a change from incorrect service
to correct service. Hence, availability is specified as
the maximum wait time until the service returns back

7 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

Table 2. Car Rental Example

Name: Rent_Car
Function: Pre: valid(credit_card) ∧ valid(driving_license)

Post: Confirm ∧ Deliver
Product Type Data:

Size: Compact; Passenger Capacity:5
Data Number of Doors: 4; Luggage Capacity: 4

Service Fuel Tank: 35 gallon
Provider Data:

Company Name: U-Rent-A-Truck
Non-Functional: Rental Cost: 35$ per day

Product and Service Trust (ST)
Safety: automatic seat belt alarms, ABS
Security: finger-print locking, auto shut

Trust Reliability: no breakdown record
Attributes: Availability: guaranteed availability of car size

Provider Trust (PT)
Client Recommendation: 4/5
Organizational Recommendation: (AAA, highly recommended)

Contract: SSR: {Collision and Liability insurance: client insurance}
Legal: SDR: {Rental Duration of Vehicle: 30 days maximum,

Rental Discount: 15% for AAA members and Military Personnel}
SER: {Driving Violations: renter pays before returning the car,
Return of Vehicle: must be returned to rental location,
Fuel: gas tank must be full at return time,
Driving Range: Inside the state of rental}
SXR: Service Exception Rules: {. . . }
ContextInfo:

Context Service Provider Context: [Loc : Toronto]
Service Delivery Context: [Date :<data of contract>,
T ime :<time of rental>]
ContextRule:

SSR: {Consumer Related: age ≥ 21}
SDR: {Delivery Related: (time of rental + 5 minutes) ≤ car-delivery-time ≤
(time of rental + 30 minutes)}
SER: {Return Related: car-return-time ≤
contract-termination-time + 60 minutes}

to operate correctly, and reliability is defined as the
guaranteed maximum number of failures in a unit of
time.

In Table 2 the term “no breakdown record” implies
maximum reliability, and the term “guaranteed avail-
ability” means availability without waiting time. The
SP imports trustworthiness properties implemented in
SCL to the ConfiguredService. Since trustworthiness
properties included in the contract part have been
formally verified in service implementation in SCL a
SR should trust the peer reviews listed under PT in
order to believe the features stated under ST. Should
this not happen, the SR can invoke the services of TA
(see Figure 1) in order to get the claims listed under ST
verified.

2. Legal issues: This section lists SSR rules that are
enforced at service selection time, SDR rules that are

enforced at service delivery time, SER rules that are
enforced during service execution period, and SXR
rules that are enforced when exceptions arise. Rules
are context-dependent, in the sense the validity of a
rule should be evaluated in contexts that are implicit
in the statement of the rule. As an example, the
SSR rule in Table 2 is to be evaluated at the SR
context which includes the profile of the SR, after the
precondition of the service function evaluates to true.
The SSR evaluation consists of validating the insurance
certificate of the SR on the date of car rental.

In general, a legal rule is a formal statement of either
a business policy to be enforced in certain contexts,
or a trade law imposed by the governments who have
jurisdiction over the regions where the business is
conducted. Such rules, in their full generality, are often
complex and require a “legal language” to express
precisely. As an example, the business rule “an agreed

8 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

Naseem Ibrahim et al.

A Context-dependent Service Model

upon contract may be terminated without penalty by
either SP or SR within 48 hours from signing” in
SXR cannot be put into any of the three sets SSR,
SDR, and SER. Such rules are hard to be mechanically
verified, unless a full sensor network supports context-
awareness activities in the service model.

3. Context: Both ContextInfo and ContextRules are spec-
ified in the contract section of contract. In Table 2, the
context [LOC : Toronto] is a SP context, and [Date :
<dateof contract>, T ime : <timeof check − out>] is
the context structure in which tag information will
be inserted when the service is personalized to a SR.
For example, if the car is rented on 01/21/2014 at
9 hours the service provision context will be updated
to [LOC : Toronto,DATE : 01/21/2014, T IME : 9].
We assume that a context toolkit [43] is linked to our
system to assist the service model to automatically
identify synonyms in dimension names and tag types.
The three ContextRules specified in Table 2 are verifi-
able. The first context rule age ≥ 21 should be verified
at SR contexts at service selection time. This rule is
verifiable when the attributes of SR are provided for
service personalization. The second rule uses the two
system variables check-out-time (meaning the instant
of contract execution) and delivery-time (meaning the
instant at which the car is delivered to the client).
Since values for these variables will be known from the
service delivery context the predicate can be evaluated.
The third context rule is verifiable in the context of car
return.

Formalism of Service Contract

We use the following additional set of notations:

• PR: a set of propositions in the trust domain

• PD: a finite set of predicates involving dimension
names, variables, and constants

• CP: a finite set of consumer peer groups

• BO: a finite set of business organizations

• RR: a finite set of ordered numbers used for ranking

• TC: a finite set of typed contexts

Formally, a service contract is a 3-tuple ρ = (τ, λ, γ). The
components of ρ are explained below.

1. The trustworthiness part τ of contract ρ is
written τ = (trST , trPT). The service trust trST
is a set of ordered pairs, where a pair lists “a
trustworthiness feature”, and “claims for that
feature” expressed as propositions. trST = {(x, y) |
x ∈ {Saf ety, Security, Reliability, Availability},
y = {prop | prop ∈ PR}}.
Formally, trST is a relation. We specify provider

trust trPT , which is a set of recommendations
from consumers and peer groups, as two functions
(ordered pairs) (ce, pe), where ce : CP→ RR, and
pe : BO→ RR. That is, there can be only one
recommendation from a peer group.

2. The component λ is the set of legal rules, specified
by extending Logic program notation with context rule.
That is, λ = {U : H ⇐ B | U,H ∈ PD}, where H
is called the head (consequent) of the rule and B is
called the body (antecedent) of the rule, the“left arrow
⇐” means “IF . . . THEN”, and U is a “context rule
(situation) expressed as a conjunction of predicates”.
In general, the body of a rule can be a conjunction of
one or more conditions; no disjunction is allowed in
the body. The head of a rule is an action specification,
expressed declaratively. Negations may appear in the
body, but not in the head of a rule. The semantics of
U : H ⇐ B is “for every context c in which U is true
apply the action H, provided the guard B can be made
true by system variables, and the information included
in the ConfiguredService description”. Since several
contexts may satisfy U , the notation U : H ⇐ B is
more compact and expressive. The rule U : H ⇐ B is
not relevant in a context c in which U is either false
or cannot be evaluated due to insufficient information.
To evaluate U in c we require U to be expressed as a
conjunction of predicates involving dimension names
(of contexts), variables whose values are either tag
values of dimensions or data (of service, SR and SP)
in the ConfiguredService, and constants. The evaluation
steps are as follows:

• if a dimension name in U is a DIMENSION in
c then replace it by the tag value associated with
it in context c,

• substitute the variables in U by their respective
values, as provided either in the ConfiguredSer-

vice or in the environment of evaluation,

• if U still has dimension names or variables then
U cannot be evaluated in the context c; otherwise
U is now a proposition which evaluates to either
true or false.

3. We specify γ as an ordered pair (β, δ), where β ⊂ PD

is a set of context rules and δ ⊂ TC is a set of contexts.
The set δ includes only service provider contexts,
because service provision contexts are specified as
context rules. Service selection situations that arises in
the system must satisfy at least one context c ∈ δ.
Every rule in β has to be evaluated in a context of the
set SRC.

3.3. Car Rental Formalism

In this section we apply the formalism suggested in the
previous section to a selected subset of Service and Contract

9 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

parts of car rental ConfiguredService shown in Table 2. We
have chosen a small subset of a simple example in order to
clearly explain the features of the service model. A more
comprehensive example appears in [26].

We assume that CARTYPE, a finite enumerated type, is
predefined. The rest of the types we need are NT (denoting
natural numbers) and ST (string type). Thus, TYPE ==
{CARTYPE,NT,ST}. We assume that contexts relevant for
service selection, service delivery, and service execution are
constructed by the system. The information collected from
the SR should be sufficient to evaluate the precondition. This
information also enables the construction of SSR contexts
and some of SDR contexts. Expert opinion should be sought
in choosing a set of dimensions, because collectively they
must be sufficient to validate rules. Some of the contexts that
should be constructed for validating SSR and SDR rules in
the contract section of Table 2 are shown below.

• Context for validating Driving License (SSR)
c1 = [SR_Name : , Driver_License_Num : ,
State_Name : , Age : , Exp_Date :]

• Context for validating Collision and Liability
Insurance (SSR)
c2 = [SR_Name : , Policy_Num : , Insu_Company : ,
Coverage : , Exp_Date :]

• Context for Credit Card Validation (SSR)
c3 = [Card_Holder_Name : , Card_Name : ,
Card_Num : , Exp_Date :]

• Context for Car Delivery (SDR)
c4 = [Date_of _Rental : , T ime_of _Rental : ,
Rental_Dur : , Contract_Num :]

• Context for Car Return (SER)
c5 = [Return_Date : , Return_Time : ,
Return_Loc : , Contract_ Number :],

The tag fields corresponding to the dimensions in the above
contexts should be collected at service selection and service
delivery times. Below we give the formal representation for
Car Rental ConfiguredService.

• Formalizing Service Function:

The precondition is expressed as a conjunction
of two predicates, and they can be evaluated at
service selection time, using contexts c1 and c3.
Using attributes and nonfunctional properties listed
in Figure 2 the SP must ensure the validation of
the postcondition. Necessarily such validations can be
done only manually.

• Formalizing Data and Nonfunctional parts:

φ(Size) == CARTYPE, φ(CompanyName) == ST,
and φ maps the rest of the names in Data and
Nonf unctional parts to NT.

• Formalizing Trustworthiness part:
We use proposition names that are short hands for

specifying the trustworthiness features. As an example,
we use Seat_Belt_Alarm_Exists as the proposition
to assert the feature “automatic seat belt alarms” for
safety feature. With this assumption we formally write
trST == {(saf ety, Seat_Belt_Alarm_Exists),
(saf ety, ABS_Exists),
(Security, Finger_Print_Locking_Exists),
(Security, Auto_Shut_Exists), . . .}.
The organizational trust recommendation trPT is the
set
{(client_group, 4/5), (peer_group,
Highly_Recommended)}.

• Formalizing Legal Part:

We use the proposition Approve with “commonsense
semantics”. That is, it becomes true upon approval of
the satisfaction of business rules.
1. Formalizing SSR rule “Collision and Liability
Insurance”:
U :: H ⇐ B, where U == (Client_Name =
SR_Name) ∧ (Current_Date ≺ Exp_Date), H ==
Approve, and B == (State_Liability_Amount ≤
Coverage). The symbol ≺ is the precedence operator
defined on “date abstract data type”. The rule U
is to be evaluated in context c2. To evaluate B
the State_Liability_Amount, which is domain
information, should be known.
2. Formalizing SDR rule “Rental Validation”:
U :: H ⇐ B, where U == (Rental_Period ≤ 30),
H = Approve, and B == True. The context to validate
U is c4.
3. Formalizing SER rule “Fuel”:
U :: H ⇐ B, where U == (Return_Loc = Loc),
H == Approve, and B == (f uel = 35). The context
to validate U is c5. Dimension name Loc from SP
context defined in Car Rental ConfiguredService is
used inU to enforce that the car is returned to the same
location where it was rented.

• Formalizing Context Part:

Contexts in ContextInfo part are already in formal
notations. The SSR context rule “Consumer Related”
requires the evaluation (Age ≥ 21) at SR context.
We use the notation V Θ c to mean “V is to be
evaluated in context c”. With this notation, this rule
is formally written as (Age ≥ 21)Θc1, where the
tags for the dimensions of context c1 will become
known at service selection time. The context rule
“Delivery Related” is formalized as VΘc4, where
V == ((timeof rental + 5) ≤ car − delivery − time ∧
car − delivery − time ≤ (timeof rental + 30)). From
context c4 the tag value of dimension Return_Time
is substituted for the variable timeof rental, and for
the system variable car − delivery − time the time
at which the car is delivered to the customer (which
is generated by the system) is substituted and the
predicate is resolved.

10
EAI Endorsed Transactions on

Context-Aware Systems and Applications
09-12 2014 | Volume 1 | Issue 2 | e3

Naseem Ibrahim et al.

A Context-dependent Service Model

3.4. Extension and Enrichment

A SP might improve on certain quality features of a published
ConfiguredService, without changing the functionality, and
republish it with or without additional contractual obligations.
It is also customary for a SR to negotiate on selected
ConfiguredServices, requesting additions or deletions to
certain contractual items. In both instances, the functionality
of a ConfiguredService is not allowed to change. In
this section we propose two templates as mediums for
preparing modifications to a ConfiguredService. The syntax
and semantics of each template are explained. During
a negotiation both SP and SR may create modified
ConfiguredServices, because both are aware of the structure
of published ConfiguredServices. In giving the semantics
we use the formal notation introduced earlier, although the
template itself will be created in the natural language. Based
on the semantics a tool might be built to automate the creation
of modified ConfiguredServices for publication.

Extension. Informally, a ConfiguredService ω is an
extension of a ConfiguredService ω1, if ω is realized by
the addition of new attributes, nonfunctional properties,
legal rules to those that are already in ω1. Notice that no
new trustworthiness property is to be added. The syntax in
Figure 3 is a shorthand for modification through extension.
The first statement in the figure gives the name of the
ConfiguredService created. The includes clause cannot be
empty, and should list only one ConfiguredService. New
information for Service and Contract parts should be listed
for each sub-part in the extended-by clause. At least one sub-
clause within extended-by clause should be non-empty.

The result is to create the new ConfiguredService ω, whose
description is constructed by copying the information listed
under the clause extended-by into the respective parts of ω1.

Semantics of Extension: We use the formal notations
introduced in Section 3.2. Let ω = (σ, ρ), where σ = (f , α, κ)
and ρ = (τ, λ, γ) be the new ConfiguredService. It is created
by extending ω1 = (σ1, ρ1), where σ1 = (f1, α1, κ1), ρ1 =
(τ1, λ1, γ1) with the information listed in Figure 3. The
extension semantics is f = f1, α = α1 ⊎ αn, κ = κ1 ⊎ κn,
τ = τ1, λ = λ1 > λn, δ = δ1 ∪ δn, and β = β1 > βn, where
the operators ⊎ and > have the following semantics.

• Semantics of ⊎: Let X and Y denote two sets
of ordered pairs. For an ordered pair (u, v), let
f irst((u, v)) = u, and second((u, v)) = v. Let dom
and ran be unary operators defined on any set of
ordered pairs, which respectively extract the set of
first and second components from the ordered pairs in
X. That is dom(X) = {f irst(t) | t ∈ X}, and ran(X) =
{second(t) | t ∈ X}. We define X ⊎ Y = X ∪ {t | (t ∈
Y) ∧ ((f irst(t) < dom(X))}.

• Semantics of >: Let X, Y1 and Y2 be sets of rules,
where (1) the rules in each set are classified into

ConfiguredService ω
includes ConfiguredService ω1
extended-by {

Service

Data Attributes αn : . . .
Nonfumctional κn : . . .

Contract

Legal Rules λn :
SSRn : . . .
SDRn : . . .
SERn : . . .

Context γn:
ContextRules βn :

SSRn : . . .
SDRn : . . .
SERn : . . .

ContextInfo δn : . . .
}

Figure 3. ConfiguredService Extension Syntax

SSR, SDR, and SER rules, and each rule is formalized
as U :: H ⇐ B. Writing X = {SSR, SDR, SER}, Y1 =
{SSR1, SDR1, SER1}, and Y2 = {SSR2, SDR2, SER2},
the set X = Y1 > Y2 is calculated as

SSR = SSR1 ∪
⋆ SSR2,

SDR = SDR1 ∪
⋆ SDR2,

SER = SER1 ∪
⋆ SER2,

where ∪⋆ means set union with the inherited rules
marked in the result. The applicability of an inherited
rule is determined only when context information
becomes known. An inherited rule that is applicable
is “unmarked ” and retained, whereas an inherited rule
that is not applicable is removed.

Enrichment. Informally, a ConfiguredService ω is an
enrichment of a ConfiguredService ω1, if ω is realized by
changes to some or all of attributes, nonfunctional properties,
trustworthiness properties, legal rules, and context part of
ω1. The trustworthiness part is added to the syntax in
Figure 3 to get the enrichment syntax shown in Figure 4.
New information denoting changes to Service and Contract

parts should be listed for each sub-part in the enriched-

with clause. The rest of syntactic constraints are similar
to the extension syntax. The result is to create the new
ConfiguredService ω, whose description is constructed by
overwriting the information listed under the clause enriched-

with into the respective parts of ω1.

Semantics of Enrichment: We use the formal notations
introduced in Section 3.2. Let ω = (σ, ρ), where σ = (f , α, κ)
and ρ = (τ, λ, γ) be the new ConfiguredService. It is created

11 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

ConfiguredService ω
includes ConfiguredService ω1
enriched-with {

Service

Data Attributes αn : . . .
Nonfumctional κn : . . .

Contract

Trustworthiness τn :
trSTn : . . .
trPTn : . . .

Legal Rules λn :
SSRn : . . .
SDRn : . . .
SERn : . . .

Context γn:
ContextRules βn :

SSRn : . . .
SDRn : . . .
SERn : . . .

ContextInfo δn : . . .
}

Figure 4. ConfiguredService Enrichment Syntax

by enriching ω1 = (σ1, ρ1), where σ1 = (f1, α1, κ1), ρ1 =
(τ1, λ1, γ1) with the information listed in Figure 4. The
enrichment semantics is f = f1, α = α1 ⊕ αn, κ = κ1 ⊕ κn,
τ = τ1 ⊞ τn, λ = λ1 ⊗ λn, δ = δ1 ⋒ δn, and β = β1 ⊗ βn
where the operators ⊕, ⊞, ⊗, and ⋒ have the following
semantics.

• Semantics of ⊕: We use the functions f irst, and
second defined for an ordered pair t, and functions dom
and ran defined for any set X of ordered pairs. For two
sets of ordered pairs X and Y

X ⊕ Y = {t | t ∈ X ∧ f irst(t) < dom(Y)}∪

{t′ | t′ ∈ Y ∧ f irst(t′) ∈ dom(X)}

• Semantics of ⊞:

τ1 ⊞ τn = (trST1 ⊕ trSTn , trST1 ⊕ trSTn)

• Semantics of ⊗: Let X, Y1 and Y2 be sets of rules,
where (1) the rules in each set are classified into
SSR, SDR, and SER rules, and each rule is formalized
as U :: H ⇐ B. Writing X = {SSR, SDR, SER}, Y1 =
{SSR1, SDR1, SER1}, and Y2 = {SSR2, SDR2, SER2},
the set X = Y1 ⊗ Y2 is calculated as

SSR = SSR1 † SSR2,

SDR = SDR1 † SDR2,

SER = SER1 † SER2,

where the semantics of S † T is explained below:

ConfiguredService NewCar − Rental
includes ConfiguredService ECar − Rental
enriched-with{

{copy the rest of MCar-Rental}
extended-by{

Contract:

Legal Rules:

SER: {Car Delivery: Free car
upgrade for AAA members}

}

}

Figure 5. ConfiguredService: Multiple Modification

1. Extract the context conditions from all rules in set
T :

T1 = {U | (U :: H ⇐ B) ∈ T }

2. Filter out from set S all rules that have their
context conditions in set T1.

S1 = {U :: H ⇐ B | ((U :: H ⇐ B) ∈ S)∧

(U ∈ T1)}

3. Replace the rules in the subset S1 of S with rules
in T .

R = (S \ S1) ∪ T

• Semantics of ⋒: We may regard δ1 and δn as sets
of ordered pairs. Each ordered pair is of the form
(dim, tagvalue), With this view the semantics is

X ⋒ Y =
⋃

ci∈C,cj∈Y

{(ci ⊕ cj)}

Table 3 shows a modification of the Car Rental Configured-

Service in its first column, and an enrichment of the Car

Rental ConfiguredService in its second column.
An enriched (extended) ConfiguredService may be included
in creating a new ConfiguredService by extension (enrich-
ment). In such cases, the semantics is applied in the order of
inclusion. Figure 5 shows an example for creatingNewCar −
Rental service by enriching ECar − Rental service which is
an extension of Car − Rental service.

4. Related Work and Comparison

Research in SOC has produced a large volume of work
ranging from pure business perspectives to pure software
engineering perspectives. In order to critically evaluate and
place our work in the context of the current state of the art
in SOC the four dimensions context, trustworthiness, service

modeling, and formalism are identified by us, because these
are the cornerstones of our current work in SPL. Within
this confine we have diligently chosen a significant subset of
published works for comparison with our work.

12 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

Naseem Ibrahim et al.

A Context-dependent Service Model

Table 3. A Modified and Extended ConfiguredService

Modified Car Rental Extended Car Rental
ConfiguredService MCar-Rental ConfiguredService ECar-Rental

includes ConfiguredService Car Rental includes ConfiguredService Car Rental
enriched-with { extended-by {

Contract: Service:

Legal Rules: Data Attributes:

SER: car return: Renter Name:
{(no fee when returned to the location Second Driver:
where rented), driver license:ALP109
(50$ additional fee if returned to age: 52
another location)}
SSR: collision and liability insurance: Contract:

fully covered } context γ
Trustworthiness: ContextRules β
trST : 9/10 SSR: {Consumer Related: age ≤ 65}

4.1. Context

Context information has been used by several researchers
[6, 14, 16] for service adaptation. In [41] execution context
is part of service planning. These works have brought in
context only for the purpose of service execution and not for
service modeling. They neither have a formal representation
of context, nor do they discuss service models. Below we give
a detailed comparison between our context formalism and the
use of contexts by others.

• In [41] the authors discuss a planning-based adaptation
middleware. They mention the need to adapt ubiquitous
systems under dynamically evolving run-time execu-
tion contexts. However we do not find context being
used anywhere in the planning stages.

• In [6], although context is claimed to be a first class
entity in the model, there is no explicit representation
for it in the model, and the scope of context is
limited to identifying logical and physical resources
available during service provision. It is unclear
how such context-dependent service provision can
be achieved without context representation. In their
example on video-streaming service they state that
the consumer side execution context includes memory,
screen resolution, and processing power. The paper
does not explain how these context requirements are
matched by service property.

• A context-aware composition method offered by COTS
(Commercial-Off-The-Shelf) is reported in [16]. In
particular they focus on composing context-aware
mobile and pervasive systems, where devices and
applications dynamically find and use components
from their environment. They have defined a context

profile, public and private context attributes, and
distinguish between static and dynamic attributes. This

context definition is the basis of their work for service
composition and protocol compatibility.

• A model-based development on context-aware web
applications is discussed in [14]. The authors have
defined context-awareness as the ability of the system
to use context either for delivering content or for
performing system adaptations or both. This paper
does not define context and service model. Instead,
the authors have used the term reactive, adaptive,
and context-sensitive to convey context-awareness
capability.

Analysis. None of the above works have defined context
formally. Moreover they have not considered service
models, with their focus being only on service provision
scenarios. In our work we have used the formal syntax and
semantics of context, introduced by Kaiyu Wan [42], in
the ConfiguredService model. Thus, context is a first class
entity, and a context may be used in many ConfiguredService

models. Being a distinguished member of the service model,
the context in the model can be manipulated independently
from the rest of the information in the service model. The
context profile used in [16] loosely resembles the context
representation that we use. However, there are two major
differences. These are (1) the context representation that we
use allow any number of distinct dimensions, and (2) the
tags (values) associated with each dimension has a type,
which may even be an abstract data type. Relational algebra
semantics is given to the contexts that we use. This has
allowed the introduction of context operators [42], thus
building a rich context algebra as the basis of a context toolkit
for plug-in to the development of context-aware applications.
To our knowledge, we have not seen any previous work in
which context is made a first class citizen of service model in
a formal manner.

13 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

4.2. Trustworthiness

In almost all existing work in SOC either trustworthiness is
not part of service model or is included with nonfunctional
attributes in the service model. In our research we distinguish
between nonfunctional attributes, which are related to service
function, and trustworthiness attributes, which is part of a
contract between the service provider and service requester.
For us, trustworthiness is a moral value concept that
should exist in the market place, because according to the
Economic Theories [21] trust adds economic value. So,
we built SPL on top of SCL, which is the platform for
verifiably formal construction of trustworthy systems [38].
Hence, trustworthiness properties included by SP in a
ConfiguredService model are verifiable using the SCL
implementation. That is, a SR can assess the trustworthiness
claims, either directly or through TA, before accepting a
service selection.

Analysis. We have utilized the advantages of layered
architecture to import trustworthy services into SPL from
SCL. We have not come across any previous work that
has either adapted a layered architecture or other means
to include trustworthiness features within a service model.
The significance of our work is that we allow users to
validate the trustworthiness claims before committing to buy
the service. Such a validation is context-dependent. Because
the ConfiguredService model includes the service provider
context and the constraints on service provision, a user by
knowing her context information can validate some aspects
of the service provision constraints, such as locality and
time, while browsing the published service. In [33] a formal
treatment of adapting Web services with regard to specific
security requirements is given. It requires further research to
see whether this approach might be generalized to include
other trustworthiness features, such as safety and reliability,
for Web services and then subsequently adapted for any
service model.

4.3. Service Model

The modeling approaches can be classified based either
on the language, or the architecture or a combination of
both. The two main languages that have been used for
modeling services are UML [15, 34], and WSDL with
the related Web description languages [24, 32, 40, 45].
Architecture based service modeling approach uses an
Architectural Definition Language (ADL) [17, 29] to describe
services. There are a few other methods [13, 20] which
combine language and some abstract architectural details for
describing service features. Figure 6 compares these service
models with ConfiguredService with respect to the seven
attributes functional, nonfunctional and trust, legal rules,
context, formalism, verification support, and tool support.

The UML-based language UML4SOA [44] supports a
model-driven development of SOA architecture. No precise
guidelines exist for creating such an architecture. This

approach relies mainly on the intuition of the developer, and
lacks formalism. The UML model is transformed into IOM
(Intermediate Orchestration Model), which is transformed
into PSM (Platform Specific Model). A limited repertoire of
nonfunctional properties and legal rules may be stated in the
model. Tool support is available for modeling and no tool
exists for analysis. The family of Web Services Description
Languages (WSDL) and OWL-S (including SWS) [30, 32,
45]) have been used to model services. Semantic embedding
of data is enabled by SWS, however these languages are
not formal. They do not provide any support for stating
legal rules, and offer no verification support. In OWL-S it is
possible to include some nonfunctional properties. The model
has no provision for including trustworthiness properties.

The three architectural description languages SOADL [17,
29], SRML [20], and SOFM [13] provide formal notations for
modeling services. The SODAL formalism uses Pi calculus,
and models a service as a process. Compositions of services
are done using synchronized message passing. In SRML a
service module is the basic unit of design. An activity module,
another process, is created to satisfy a specific requirement.
Internal policies can be defined in an activity module, and
they govern initialization and interaction constraints. External
policies express constraints on Service Level Agreements
(SLA). The Service-Oriented Feature Model (SOFM) [13]
captures the service features provided by an application in an
abstract form. A service feature represents the requirements
of an application as a collection of services. Service features
are classified into constraints and refinements. Constraints
are the set of static relationships between service features.
Constraints are further classified and specialized into three
types of relationships. These relationships form the basis for
select service features, and compositions.

In SRML, legal rules (policies) can be specified but
trustworthiness properties cannot be stated. Both SOADL
and SOFM provide support for specifying the nonfunctional
properties butprovide no support for including legal rules.

Analysis. Figure 6 shows the relative merits of these
approaches. While service functionality is part of every
model, nonfunctional and trustworthiness properties are not
supported by two of the models and the other four models
provide only partial support for including nonfunctional
and trustworthiness properties. We emphasize that those
models that provide such partial support do not make a
distinction between nonfunctional, legal, and trustworthiness
properties. Contextual information is not part of any
approach. Consequently, the relationship between contract
and context is totally ignored by all these approaches. A
couple of approaches, although have ignored the modeling
of nonfunctional and trustworthiness properties, have used
formal methods and conducted formal verification. This
means that the formal verification targets only the correctness
of service functionality. Except for UML and Web services
languages the other approaches provide only a minimum
amount of tool support for modeling services.

14 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

Naseem Ibrahim et al.

A Context-dependent Service Model

Functional Verification
 Support

Nonfunctional
 and Trust

Legal Rules Context Formal Tool
Support

UML-based

SRML

SOADL

SOFM

WSDL

OWL-S
WSMO

YES

YES

YES

YES

YES

YES

SOME

NO

SOME

NO

SOME

SOME

SOME

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

YES

YES

NO

NO NO

NO

NO

YES

YES

YES

YES

YES

YES

YES

SOME YES NOYES

Configured
Service

YES YES YES YES YES YES YES

Figure 6. Service Models Comparison

The ConfiguredService model has many merits compared
to these approaches. The integration of Service from
Contract, while maintaining a loose coupling, is novel. The
syntax to create new ConfiguredServices through extension
and modification of ConfiguredService is supported by a
rigorous semantics, which offers am easy to use method
for creating flexible contracts and services. We have given
a formal notation to describe ConfiguredServices. Based
on this formal notation we are able to provide a rigorous
semantics for composing ConfiguredServices. Other modes
of descriptions of ConfiguredServices are Table structure,
Architectural Description Language, and XML [26]. Thus,
our service model is rich, formal, flexible, and generic.
Because of the set theoretic semantic basis, we can view a
ConfiguredService as an abstract data type and import it to
any implementation platform.

5. Conclusion

The major contribution of this paper is the formal
ConfiguredService model. This contribution has remedied the
lack of support in existing models for a formal comprehensive
integration of nonfunctional, trustworthy, legal and contextual
information in a service contract. This is achieved in the
following manner.

• Providing support for trustworthiness information:

We introduced a formal service model that considers
service trust and provider trust. In service trust we
specified safety, security, availability and reliability. In
provider trust we specified peer recommendations and
recommendations from independent organizations.

• Binding context to the service contract: We defined
the service contract to include a formal specification of
the service provider context, and situations governing
service provision. The situations are context conditions
that constrain the service contract.

• Including legal rules in service definition: We included
the specification of the legal rules governing business
model of the service provider within the contract
definition.

We have given syntax and semantics for creating flexible
ConfiguredServices. These short hand notations are useful
during contract negotiations. The model-based formal
notation for ConfiguredService helps towards composition
formalization, as well as during later implementation
stages [26]. In addition to the Table structure, Ibrahim [26]
has provided two other representations. One is the
ConfiguredService Specification Language (CSL) for the
use of non-experts of service architecture. The other is
the ConfiguredService Description Language (CDL) that is
mainly intended to be used within the system for formal
analysis and communication between processes.

On top of this model we have completed the following
projects as part of the development of a framework for
creating trustworthy services.

• A formal composition theory for ConfiguredService

models and a formal proof of compliance that the con-
tract of a composite ConfiguredService is in satisfaction
with the contracts of the ConfiguredServices in the
composition.

• A comparison of three high-level database models
was done for implementing context and publication
of ConfiguredServices. Based on this study we chose
Hbase to implement context, context history and
Service Registry in which ém ConfiguredServices are
published. These results appear in [3, 4]. A user
interface for browsing and querying has also been
implemented.

• Detailed description of Service Registry, browsing,
selection, and ranking of query processing of Config-

uredServices based on different types of queries have

15 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

been studied. In [27] we have reported service dis-
covery for different query types and one ranking algo-
rithms. Subsequently Ammar Alsaig [5] has compared
a number of ranking algorithms that are possible candi-
dates for service ranking, and developed a new multi-
facetted algorithm which will rank services discovered
from the Service Registry to fulfill the preferences
specified by a user in the query.

We are currently developing tools to (1) project different
views of published and selected services, (2) create flexible
ConfiguredServices for negotiation, and (3) interactively
compose ConfiguredServices based on user preferences.

References

[1] ABRAMS, C. and SCHULTE, R.W. (2008) Service-Oriented

Architecture Overview and Guide to SOA Research. Technical
report, Gartner Research, Stamford, CT.

[2] AKMAN, V. and SURAV, M. (1996) Steps towards formalizing
context. AI Magazine 17(3): 55–72.

[3] ALSAIG, A. (2013) Context-Aware Service Registry: Modeling

And Implementation. Master thesis, Concordia University.
[4] ALSAIG, A., ALSAIG, A., MOHAMMAD, M. and ALAGAR,

V. (2013) Modeling and managing context and context history.
In Proceedings of the International Conference on Context-

aware Systems and Applications, Ho Chi Minh City, Vietnam.
[5] ALSAIG, A. (2013) A Semantic-based Ranking Algorithm for

Services in Service-oriented Systems. Master thesis, Concordia
University.

[6] AUTILI, M., CORTELLESSA, V., MARCO, A.D. and
INVERARDI, P. (2006) A conceptual model for adaptable
context-aware services. In International Workshop on Web

Services Modeling and Testing (WS-MaTe 2006).
[7] AVIZIENIS, A., LAPRIE, J.C. and RANDELL, B. (2001)

Fundamental Concepts of Dependability. Research report
n01145, laas-cnrs.

[8] AVIZIENIS, A., LAPRIE, J.C., RANDELL, B. and
LANDWEHR, C. (2004) Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing 1(1): 11–33.
[9] BEHRMANN, G., DAVID, A. and LARSEN, K.G. (2004) A

tutorial on UPPAAL. In Formal Methods for the Design of Real-

Time Systems: 4th International School on Formal Methods

for the Design of Computer, Communication, and Software

Systems, SFM-RT 2004 (Springer–Verlag), LNCS 3185: 200–
236.

[10] BETTINI, C., BRDICZKA, O., HENRICKSEN, K., INDULSKA,
J., NICKLAS, D., RANGANATHAN, A. and RIBONI, D. (2010)
A survey of context modelling and reasoning techniques.
Pervasive and Mobile Computing 6(2): 161–180.

[11] BILL SCHILIT, N.A. and WANT, R. (1994) Context-aware
computing applications. In Mobile Computing Systems and

Applications (WMCSA1994) (IEEE): 85–90.
[12] BROY, M. (2003) Modeling services and layered architectures.

In Formal Techniques for Networked and Distributed Systems,

H. König et al. eds. Lecture Notes in Computer Science, vol.

4767 (Springer-Verlag): 48–61.
[13] CAO, X.X., MIAO, H.K. and XU, Q.G. (2008) Modeling

and refining the service-oriented requirement. In TASE

’08: Proceedings of the 2008 2nd IFIP/IEEE International

Symposium on Theoretical Aspects of Software Engineering

(Washington, DC, USA: IEEE Computer Society): 159–165.
[14] CERI, S., DANIEL, F., MATERA, M. and FACCA, F.M. (2007)

Model-driven development of context-aware web applications.
ACM Transactions on Internet Technology 7(1).

[15] CONTACT), A.J.B.P. (2008) Service oriented architecture
modeling language (SOAML) - specification for the UML

profile and metamodel for services (UPMS), OMG Submission
document: ad/2008-11-01.

[16] CUBO, J., CANAL, C. and PIMENTEL, E. (2011) Context-
aware composition and adaptation based on model transforma-
tion. Journal of Universal Computer Science 17(5): 777–806.

[17] DAN, X., SHI, Y., TAO, Z., XIANG-YANG, J., ZAO-QING,
L. and JUN-FENG, Y. (2006) An approach for describing
soa. In International Conference on Wireless Communications,

Networking and Mobile Computing, WiCOM 2006: 1–4.
[18] DEY, A.K., ABOWD, G.D. and SALBER, D. (2001) A

conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-Computer

Interaction 16(2): 97–166.
[19] ERL, T. (2007) SOA Principles of Service Design (Upper

Saddle River, NJ, USA: Prentice Hall PTR).
[20] FIADEIRO, J.L., LOPES, A. and BOCCHI, L. (2006) A formal

approach to service component architecture. In BRAVETTI,
M., NÚÑEZ, M. and ZAVATTARO, G. [eds.] Web Services

and Formal Methods. LNCS, vol 4184 (Springer, Berlin
Heidelberg), 193–ï£¡213.

[21] FRITZ, M., HAUSEN, T., SCHEFER, G. and CANAVARI, M.
(2005) Trust and electronic commerce in the agrifood sector:
a trust model and experimental experience. In Proceedings

of the XIth International Congress of the EAAE (European

Association of Agricultural Economists): The Future of Rural

Europe in the Global Agri-Food System.
[22] GEORGAKOPOULOS, D. and PAPAZOGLOU, M.P. (2008)

Service-Oriented Computing (The MIT Press).
[23] HEFFNER, R. (2008) SOA adoption: Budgets donï£¡t matter

much. White paper, Forrester Research, Cambridge, MA.
[24] HERRMANN, M., ASLAM, M.A. and DALFERTH, O. (2007)

Applying semantics (wsdl, wsdl-s, owl) in service oriented
architectures (soa). In Proceedings of the 10th Intl. Protege

Conference (Budapest, Hungary).
[25] HERZBERG, D. and BROY, M. (2005) Modelling layered

distributed communications systems. Formal Aspects of

Computing 17(1): 1–18.
[26] IBRAHIM, N. (2012) Specification, Composition and Provision

of Trustworthy Context-dependent Services. Phd thesis,
Concordia University.

[27] IBRAHIM, N., MOHAMMAD, M. and ALAGAR, V. (2013)
Publishing and discovering context-dependent services.
Human Centric Computing and Information Systems 3: 1–22.

[28] JACKSON, D. (2009) A direct path to dependable software.
Communications of the ACM 52: 78–889.

[29] JIA, X., YING, S., ZHANG, T., CAO, H. and XIE, D. (2007)
A new architecture description language for service-oriented
architecture. In Sixth International Conference on Grid and

Cooperative Computing (GCC 2007): 96 –103.
[30] KASHYAP, V., BUSSLER, C. and MORAN, M. (2008) The

Semantic Web, Semantics for Data and Services on the Web

(Springer).
[31] M. BROY, I.H.K. and MEISINGER, M. (2007) A formal

model of services. ACM Transactions on Software Engineering

16 EAI Endorsed Transactions on
Context-Aware Systems and Applications

09-12 2014 | Volume 1 | Issue 2 | e3

Naseem Ibrahim et al.

A Context-dependent Service Model

Methodologies 16(1): 1–40.
[32] MARTIN, D., PAOLUCCI, M., MCILRAITH, S. and ET AL,

M. (2004) Bringing semantics to web services: The owl-s
approach. In First International Workshop on Semantic Web

Services and Web Process Composition (SWSWPC 2004) (San
Diego, California, USA).

[33] MARTIN, J. and PIMENTEL, E. (2011) Contracts for security
adaptation. The Journal of Logic and Algebraic Programming

80: 154–179.
[34] MAYER, P., SCHROEDER, A. and KOCH, N. (2008)

Mdd4soa: Model-driven service orchestration. In EDOC ’08:

Proceedings of the 2008 12th International IEEE Enter-

prise Distributed Object Computing Conference (Wash-
ington, DC, USA: IEEE Computer Society): 203–212.
doi:http://dx.doi.org/10.1109/EDOC.2008.55.

[35] MCCARTHY, J. and LIFSCHITZ, V. (1990) Formalizing

Commonsense: Papers by John McCarthy (Greenwood
Publishing Group Inc.).

[36] MOHAMMAD, M. and ALAGAR, V. (2011) A formal approach
for the specification and verification of trustworthy component-
based systems. Journal of Systems and Software 84: 77–104.

[37] MOHAMMAD, M. and ALAGAR, V. (2012) A component-
based development process for trustworthy systems. Journal

of Software: Evolution and Process 24: 815–835.
[38] MOHAMMAD, M.S. (2009) A Formal Component-based

Software Engineering Approach for Developing Trustworthy

Systems. Phd thesis, Concordia University, Montreal, Canada.
[39] PAPAZOGLOU, M.P. (2008) Web Services: Principles and

Technology (Prentice Hall), 1st ed.
[40] ROMAN, D., KELLER, U., LAUSEN, H., DE BRUIJN, J.,

LARA, R., STOLLBERG, M., POLLERES, A. et al. (2005) Web
service modeling ontology. Applied Ontology 1(1): 77–106.

[41] ROUVOY, R., ELIASSEN, F., FLOCH, J., HALLSTEINSEN,
S. and STAV, E. (2008) Composing components and services
using a planning-based adaptation middleware. In Proceedings

of the 7th international conference on Software composition,
SC’08 (Berlin, Heidelberg: Springer-Verlag): 52–67.

[42] WAN, K. (2006) Lucx: Lucid Enriched with Context. Phd
thesis, Concordia University, Montreal, Canada.

[43] WAN, K. (2009) A brief history of context. International

Journal of Computer Science 6(2): 33–42.
[44] WIRSING, M., BOCCHI, L., FIADEIRO, J.L., GILMORE, S.,

HOELZL, M., KOCH, N., MAYER, P. et al. (2008) Sensoria:
Engineering for Service-Oriented Overlay Computers. In
DI NITTO, E., SASSEN, A.M., TRAVERSO, P. and ZWEGERS,
A. [eds.] At Your Service: Service Engineering in the

Information Society Technologies Program (MIT Press).
[45] ZAREMBA, M., KERRIGAN, M., MOCAN, A. and MORAN,

M. (2006) Web services modeling ontology. In CARDOSO, J.
and SHETH, A.P. [eds.] Semantic Web Services, Processes and

Applications (Springer), 63–87.

17
EAI Endorsed Transactions on

Context-Aware Systems and Applications
09-12 2014 | Volume 1 | Issue 2 | e3

http://dx.doi.org/http://dx.doi.org/10.1109/EDOC.2008.55

	1 Introduction
	1.1 Setting for Our Work
	1.2 Contributions and Significance

	2 Basic Concepts of Contract
	2.1 Context
	Context Representation

	2.2 Trustworthiness

	3 ConfiguredService Description
	3.1 Structure of ConfiguredServices
	3.2 Formalism and Semantics of ConfiguredService
	Semantics of Service Part
	Semantics of Contract

	3.3 Car Rental Formalism
	3.4 Extension and Enrichment
	Extension
	Enrichment

	4 Related Work and Comparison
	4.1 Context
	Analysis

	4.2 Trustworthiness
	Analysis

	4.3 Service Model
	Analysis

	5 Conclusion

