
EAI Endorsed Transactions 
on Context-Aware Systems and Applications

A Framework for Developing Context-aware Systems
Vangalur Alagar1,∗,Mubarak Mohammad1, Kaiyu Wan2, Sofian Alsalman Hnaide1

1Concordia University, Montreal, Canada
2Xi’an Jiaotong Liverpool University, China

Abstract

Context-aware computing refers to a general class of mobile real-time reactive systems that continuously sense their
physical environment, and adapt their behavior accordingly. Context-awareness is an essential inherent property of
ubiquitous computing or pervasive computing systems. Such systems are much richer and more complex than many
software systems. The richness mainly comes from context-awareness, the heterogeneity of mobile devices and their
service types, while complexity arises in the multitude of adaptations enforced by system policies. In order to provide
the true intended effect on the application of services without compromising on the richness, the complexity must be
tamed. Towards this goal, this paper proposes a component-based architecture for a Context-aware Framework in which
context, awareness capabilities, reactions, and adaptations are formally dealt with. Two formal languages are designed
to express context situations and express workflow policies, which respectively lead to a context reasoner and to enforce
adaptations. With these formalisms and a component design that can be formalized, this work fulfills a formal approach to
construct context-aware applications. Two case studies are explained, of which one is a proof-of-concept case study from
service-oriented domain. It is fully implemented to illustrate the expressiveness of the framework design and robustness
of its implementation.

Keywords: Context-awareness, Context Reasoning, Adaptation, Framework,Component-based Architecture

1. Introduction

Computers are increasingly used in a variety of applications
that have impact in everyday life of humans, either with or
without their explicit knowledge or willing participation. In
this computing model, users interact either independently or
collectively, and either intentionally or unintentionally, with
many different devices to bring about changes or provide
services to subjects in the environment reachable by the
devices. Both objects and subjects are subject to mobility
and sometimes invisibility in this model. Most importantly,
interactions need not be initiated by subjects, instead devices
go after the subjects to trigger reactions and adaptations.
Systems built on such computing models have come to be
known as ‘context-aware’. This term was first coined in
1994 by Schilit and Theimer [1] to describe the ‘ability of
a user’s applications to discover and react to changes in the
environment they are situated in’.

Context-aware systems are rich, notoriously heterogeneous
and complex. Consequently, in order to be efficient they
require suitable architectural models and computing envi-
ronments. Richness arises from context-awareness property.
Heterogeneity results from the variety of sensory devices
used to perceive the environment of concern, diversity of
context information, and the multiplicity of actuators used to

∗Corresponding author. Email: alagar@cse.concordia.ca

adapt to environmental situations. One aspect of complex-
ity is a consequence of richness. Context construction and
interpretation of interactions within contexts are to be done
dynamically as well. Another aspect of complexity is due
to heterogeneity. The diversity of relations and connections
between devices may result in concurrency. The dynam-
icity of the environment where contextual changes might
demand the addition of some new devices and discarding
some old ones will require architectural adaptation. Finally,
policies that enforce adaptation have to be uncovered from
the application domain properties and institutional laws, and
their application should result in correct functioning of the
actuators. Towards taming the complexity and retaining the
richness in context-aware computing models, we propose a
component-based architecture for a context-aware framework
in which context, awareness capabilities, reactions, interac-
tions, and adaptations are formally dealt with. The framework
is sufficiently general to meet the development requirements
of applications from different domains, such as health care,
transportation, defense, and social networks.

1.1. Motivation of the Current Work
During the last ten years, research in the development of
context-aware applications has progressed immensely. In
order that the prime focus of our current work is well
understood, we need to place our work in the right category
of context-awareness literature. So, below we categorize

1 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Received on  03 February 2013, accepted on 03 April 2014, published on 05 September 2014

Copyright © 2014 Vangalur Alagar  et al., licensed to ICST. This is an open access article distributed under the terms of the  
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution 
and reproduction in any medium so long as the original work is properly cited. 

doi: 10.4108/casa.1.1.e2

Research Article  

mailto:<alagar@cse.concordia.ca>


the work done under the broad term “context-awareness”.
In Section 6 we give a detailed comparison of our work
with related relevant work and bring out the merits of the
framework introduced in this paper.

• Mobile Applications: Context-awareness is an essen-
tial requirement for mobile applications. Several
researchers have offered different kinds of solutions
for adapting mobile systems for specific applications.
These include Biegel et al. [2], Korpiaa et al. [3],
Kramer et al. [4] et al., Lovett et al. [5], and van Setten
et al. [6]. We emphasize that they are application-
specific approaches.

• Pervasive Computing: Pervasive computing and
ubiquitous applications need to be aware of their
environment in order to adapt to changing contexts and
provide correct services. Programming environments
and context-aware pervasive and ubiquitous computing
applications are discussed in [12], [13], [14], [15], and
[16].

• Middleware: A middleware introduces a layer of
abstraction, separating the application (business) layer
from lower-level system layer. As such a middleware
is not an application development environment. Some
of the middlewares proposed for mobile applications
are [17], [18], [19], [20] and , [21]. Their application
domains and service types are different. A middleware
to support context-aware service-oriented systems is
discussed in [22].

• Architecture and Framework: Framework is a generic
infrastructure which simplifies the development of
context-aware application. Architecture refers to the
design blocks that constructs the infrastructure. A pro-
gramming framework for service-oriented architecture
is discussed in [23]. A conceptual framework for rapid
prototyping of context-aware applications is given in
[24]. Examples of application domain-specific archi-
tectures are [25] and [26]. The two survey papers
[27], and [28] discuss middleware, architectures, and
frameworks. In the former, architecture principles for
context-aware systems, middleware and framework are
suggested. In the later the comparison of architectures
is based on certain criteria related to pervasive comput-
ing.

• General: A multitude of papers have introduced
context-dependence and context-awareness in many

disciplines, such as AI [29], [30] [31], service
management in transportation domain [32], [33], web
design [34], and agricultural farming [35].

1.2. A Rationale for Our Development
Approach
Ten years ago, it was hard to capture the full import of context
in context-aware models due to technology constraints.
However, the rapid increase in computer power, which is
realized in ubiquitous spectrum of high-connectivity, hand-
held and light-weight devices, has allowed computers to
have a greater awareness to user’s context. Therefore, current
context-aware applications are expected to interact with
different types of sensors in real time, analyze and validate
the sensor information, associate it with implicitly perceived
user contexts, and reason about situations and policies for a
seamless adaptation of it in providing services in different
contexts. So, we made the decision to introduce sensor types,
which allows introducing many sensors of each type in the
system. Since sensors gather heterogeneous information we
decided to provide translators which will transform sensor
information into a uniform structure. These are explained in
Section 3.1.

Contexts that are relevant to an application must be
determined by domain experts, independent of how they will
be perceived and represented. Proper semantic information
from the application domain must be used in defining relevant
contexts. Because contexts exist on their own, both in design
and implementation they are to be treated as first class
citizens. This decision requires to model contexts as data
types, with representational and operational abstractions.
These are formally discussed in Section 2. This formalism
supports the context mechanism architectural element in
Section 3.

In context-aware system development we need a technique
to explicitly define user intentions and a mechanism to
infer them based on context information. We formalize
user intentions as situations, expressed as a well-formed

2 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

The above categorization is by no means exhaustive. It is
given to help us understand where the current work is placed,
so that comparison done in Section 6 can be restricted to
the literature in this category. Our work described in this
paper falls in the category Architectures and Framework.
The major difference between our work and those referenced
above is that we have developed a new framework based
on rigorous software engineering principles supported by
both theory and a practical robust implementation. Based
on the experimental studies reported in Section 5, we claim
that our framework is generic and robust enough to support
the development of context-aware applications from many
different application domains. Based upon the details given in
Section 3 we also claim that (1) a projection of our framework
architecture provides a middleware for any application and (2)
any application-specific middleware can be developed in our
framework.

• Secure-Critical Systems: Adding context-awareness
to safety and secure-critical systems make them
more adaptive. Context-awareness is central to access
controls for crisis management [7], authentication [8],
and health care delivery [9], [10]. For Cyber-physical
system context-aware security solutions have been
proposed by Wan et al. [11].

Vangalur Alagar  et al.



expression in a context-free language and provide a method
to verify it in any given context. This approach, as opposed
to a Logic program approach [36], has the primary advantage
for macro creation and its plug-in at execution tome. Because
context-awareness is a dynamic feature we must rely on
methods that are formal for design and efficient during
execution. The situation expression language and evaluation,
discussed in Section 2, is motivated by this need.

Adapting to dynamically changing context is as challeng-
ing as perceiving context. Adaptation requires accurately
mapping predefined actions to specific context situations.
Predefined actions are usually implemented using actuators.
Actuators represent the parts of a computing system which
perform actions at the last stage. Actuators can be human
beings, or software-based components, such as database
transactions, or hardware devices, such as door controllers.
Actuators are heterogeneous and only at execution time their
availability may be known. When the resources are limited,
an actuator availability may not be known until run-time. So,
we have introduced actuator types and a mechanism to map a
reaction to an actuator of a specific type at run time. Context-
aware applications also require a standard mechanism to
interact with actuators. Adaptation mechanism is an element
of the architecture discussed in Section 3.

In between perceiving context and adapting to it there
is a whole process that should be governed with business
rules and quality of service policies that are imposed
by the application domains. As examples, in defense
applications policies governing security and safety must
be fulfilled without fail, and in health-care applications
policies governing privacy, safety, and service availability
are to be enforced. We insist that no two policies contradict
in a given context, although non-determinism is allowed.
This is an important requirement for building safety-critical
applications, such as health care, defense, and emergency
rescue. In a non-deterministic choice any one of several
related policies may be chosen in a context. However, in
case of contradictory policies it is impossible to resolve
a contradiction by automatic analysis during a service
execution. In case contradiction of policies is detected
in a context at run time, we will require a supervisory
component to intervene and set a policy to resolve the
contradiction. Context-aware applications need an extendable
mechanism to define and enforce institutional policies that
govern application’s behavior to ensure trustworthiness. The
representation of policies and the interaction with context
information and other application resources are interesting
and challenging issues. Policies can be represented in a
Logic program style [36], [11]. However, for the sake of
efficiency we code a policy in a high-level language, called
Workflow language. The primary advantages are that policy
representation in the language is formal, the semantics of the
language structures evaluate every well-formed expression
without fail, and the evaluation process is efficient. We
discuss a context-free language for expressing policies and

discuss their evaluations in Section 2. Adaptation mechanism
of the architecture is built on this formalism.

Section 5 discusses the full implementation. To sum up,
our framework is bundled up with methods for solving the
following issues:

1. Management of sensors to acquire context knowledge
from user’s environment, and representation and
management of context information.

2. Definition of semantic information and rules to infer
situations based on context information.

3. Definition of adaptations to contextual situations, and
management of policies to regulate adaptations.

4. Management of actuators to perform adaptations in
user’s environment.

1.3. Contribution

The following is a list of major contributions of our work.

• Formal representation of context situation and a context
reasoner that is able to parse and evaluate context
situation expressions against context information, as
discussed in Section 2.

• Formal definition of adaptations and policies, and
extendable Adaptation Workflow Language, imple-
mentation of workflow executor engine to parse and
execute workflow definitions and enforce defined poli-
cies, as discussed in Section 2.

• A component-based architecture for Context-aware
Framework, as discussed in Section 3.

• A generic mechanism for the system to interact
with both Sensors and Actuators, and a platform-
independent implementation of the framework running
on different platforms (Phone, Desktop, Web), as
discussed in Section 5.

• Two case studies discussed in Section 4, of which one
combines context-awareness with mobile devices in
optimal service provisioning.

An extensive discussion on related work is given in Section 6.
It is clear from this discussion that although some of these
aspects have been addressed by researchers and software
industry during the last two decades, there does not seem
to exist a single rigorous approach to context-aware system
development in which all the above aspects have been fully
addressed. This is the rationale for the current work. The
framework helps software developers in any application
domain to empower existing and new applications with
context-awareness and adaptation management capabilities.

3 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



Gathering
Facts

(Sensing)

Building 
Information
(Context)

Analyzing 
to build 

knowledge
(Situations)

Applying 
rules and 
policies

(Adaptations)

Acting
(Reactivity)

Figure 1. Context-aware systems’ execution model

2. Facts, Contexts, Situations, Policies,
and Adaptations

Figure 1 depicts our view of the execution model of
context-aware systems. It comprises the following sequential
operations: 1) Sensing: gather data, facts, from a plurality
of sensory devices deployed in an environment, 2) Building
Information: extract and combine relevant data to construct
current contexts. The construction is based on predefined
context definitions, 3) Building Knowledge/Awareness:
analyze the resulted contexts to construct current situations.
The construction is based on predefined situation definitions.
4) Adapting: deduce valid adaptations based on current
situations. And finally 5) reacting: act upon the awareness
by executing actions according to adaptation specifications.
During system execution, information is transformed from
one form to another. In order to implement context-
aware systems, there is a need to provide a formal model
that describes the syntax and semantics of each form of
information which is used at each execution stage. This
includes context, situation awareness, and adaptation. This
section provides a formal model for context, situation, and
adaptation. In this section, we will use the formal definition
of context as described by [37]. Then, we will introduce novel
formal definitions for situation and adaptation.

2.1. Context

According to the Oxford English Dictionary, context denotes
“the circumstances that form the setting for an event”. A
circumstance is a condition involving, in general, different
types of entities. As an example, the setting for a “seminar
event” is a condition involving entities speaker, topic, time,
location. When each entity is assigned a value from the
domain associated with that entity, and if the condition is met
then the seminar is to be held. A condition involving n entities
needs a n-tuple of values for a total evaluation. In general,
many different n-tuples may satisfy a condition with n
entities. So, we can regard the collection of n-tuples satisfying

the condition as a n-ary relation. This is the rationale used
by Wan [37] for formally defining context as a relation.
We call the entities as dimensions and associate with each
dimension a type. For example, the type of values assigned
to speaker is NAME, whose elements are of type string.
Therefore, context is a typed relation. This formal notation
closely follows the principles behind the original work of
McCarthy [38] and the several formal notations compared by
Akman [39]. Other definitions which have been proposed by
Dey [24], Winograd [40], Wrona [41], and Bettini et al [42]
can be used by a developed in our framework. The translators
that we have provided will transform such constructs to the
formal notation that we use. The significance of our notation
becomes clear when we discuss situations in Section 2.2.

It is necessary to fix the set of dimensions and the domain
of values for each dimension before constructing contexts.
The following syntax definition of context was introduced
by [37]. Let DIM = {D1, D2, . . . , Dn} denote a finite set
of dimensions, and Xi be the type associated with Di ∈
DIM. The concrete syntax for context is [Di1 : xi1 , . . . , Din :
xin ], where {Di1 , . . . , Din } ⊂ DIM, and xik ∈ Xik . Not all
dimensions in DIM need to occur in a context, however
every dimension used in constructing the context should be
a member of DIM.

An important issue is the choice of dimensions. From the
perspective of a design and its implementation of a specific
application, the set of dimensions that are relevant for the
application are to be determined by domain experts. The set
of dimensions and the domain of values for each dimension
determine context types and hence they should also be fixed
before constructing contexts. The dimensions that are most
common in ubiquitous computing are (1) WHO (to perceive
service requests), (2) WHAT (to denote the type of service),
(3) HOW (the service needs to be provided), (4) WHERE
(to provide the service), (5) WHEN (to provide the service),
and (6) WHY (purpose of request). For each dimension,
the domain of values are suggested in a natural manner.
For instance, for the dimension WHY we can associate
the domain of values {clinical, textresearch} for providing
hospital services. The dimensions, as suggested above, are
neither selective nor exhaustive. The system designer should
feel free to choose as many dimension names as are necessary.

The dimensions in a context need not be different,
according to this formalism. If the dimensions in a context
are all different then it is called simple context. A context
that is not simple is equivalent to a set of simple contexts. As
an example, a simple context of type SeminarContext is c =
[SP EAKER : Milner, TOP IC : Bigraphs, LOCAT ION :
EV 3.222, T IME : (20/March/1991)]. If in room
EV 3.222, video conferencing facility is available and
the seminar can be viewed and heard in rooms EV 2.111
and EV 1.222, then the context c′ = [SP EAKER :
Milner, TOP IC : Bigraphs, LOCAT ION : EV 3.222,
LOCAT ION : EV 1.222, LOCAT ION : EV :
2.111, T IME : (20/March/1991)] is a non-simple context
of type SeminarContext and is equivalent to the set

4 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



32

80%

No Response

Temperature 
(T)

Humidity
(H)

Air Conditioner
(AC)

HOT 

T> 27 AND H > 75

ACdown
Response == No Response

Heat Emergency
HOT AND AC is down

Situation 

Situation Definition

Dimension

Tag

Figure 2. Context Situation

{[SP EAKER : Milner, TOP IC :
Bigraphs, LOCAT ION : EV 3.222, T IME :
(20/March/1991)], [SP EAKER : Milner, TOP IC :
Bigraphs, LOCAT ION : EV 1.222, T IME :
(20/March/1991)], [SP EAKER :
Milner, TOP IC : Bigraphs, LOCAT ION :
EV 2.111, T IME(20/March/1991)]} of simple contexts.

2.2. Situation

A situation expresses the knowledge perceived by an
information system according to a specific context. It defines
specific semantics to a context constructed by the system. For
example, a user context that contains the GPS coordinates
of the user location alone may not provide knowledge that
is useful. However, providing some meaning to this context
information, say by identifying that the user is at home or
at work, will probably be more significant for a meaningful
decision making. In this case, the situation the user is at
home occurs if the current GPS coordinates match the GPS
coordinates of user’s home.

Formally, we define a situation as an expression that
includes a predicate defined over the values of available
contexts and situations. This paper introduces a context-free
language for defining situation expressions. The language
includes extension points which are user-defined functions,
higher order predicates. We call this language CSEL, context
situation expression language. The formal syntax of the
grammar is given in the Appendix. The valid strings in
the language are situations. The language supports logical,
arithmetic, and comparison operators.

The situation expression language provides extension
points, user defined functions, to bring user supplied logic to
the reasoning operation. Functions should have one or more
parameters which are either dimension values (tags) or user
supplied values. Syntactically, a function should start with a $
sign. System developers should provide the implementation
of the functions in Dynamic Link Libraries (DLL) that
should be deployed in a special directory. The system
is able to allocate their implementations at the run time,

without recompilation. An example of user defined function
is EvenNumber = {($EvenNumber[Dimension Name])}

Figure 2 shows three simple contexts, each having one
tag-value, and three simple situations. The situation Hot is
realized if the following two logical conditions are true: 1) in
the Temperature context the tag value is greater than 27, and
2) in the Humidity context the tag value is greater than 75.
Thus, the Hot situation depends on the T emperature and
Humidity contexts. Thus, it is defined using the expression
{(T > 27) AND (H > 75)}. Informally, it is easy to
check that in the context [T : 32, H : 80], the union of
the two atomic contexts shown in Figure 2, the expression
(T > 27) AND (H > 75) is true, and hence the situation
Hot is realized. Moreover, a heat emergency situation is a
conjunction of ACdown and Hot situations. This means that
Heat Emergency is a compound situation which can not
happen unless it is both hot and AC is down. In general,
we define situations as either atomic or compound. The
following examples show situation expressions using our
CSEL language:

• Simple Situation: HotWeather = {(Temperature >
30)}, where T emperature is a context tag.

• Situation Token: GoOut = {NOT StayHome},
where StayHome is a situation expression.

• Compound Situation: NiceWeather = {Warm
AND Sunny}; {NiceWeather IMP LIES GoOut},
where Warm, and Sunny are situation expressions.

• Literal Situation: {(Role == ‘Admin′)}, where Role is
a context tag and ′Admin′ is a tag-value.

2.3. Policies

Context-aware systems operate directly in its surrounding
environment. Adaptations may affect directly users and their
environment. Therefore, it is important to ensure the safety
and security of adaptations. In order to ensure predictability
and trustworthiness of system adaptations, there is a need to
define policies. Policies are business and quality assurance
rules that restrict and control the behavior of a system. In our
proposed architecture, we distinguish two types of policies:

• Data policies: They are rules that constrain data
values in contexts. For example, a reading of a
temperature sensor may have a data policy stating that
the temperature should be between −40 and 50 degrees
because this is the sensor output range. This means that
any other value is an error value and will not cause an
adaptation. It is crucial to detect errors at an early stage
so the system can ignore bad data instead of carrying
unnecessary operations. Another example is context’s
time-span validity. Context information can be valid
only for a specific time-span. As an example, the GPS
coordinates in a navigation system may be valid only
for a few seconds. Some other context information,

5 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



such as the date context information in any application,
may be valid for 24 hours. More complex policies may
exist in applications.

• Execution policies: They are related to adaptations.
These policies control the behavior of the system
when it responds to a change in the context of an
application. These policies contribute to selecting the
proper reactions that should take place, change the
sequence of actions, and enable or disable reactions.
For example, an application could check user role to
implement different adaptations based on different user
authorizations. Another example is when adaptations
depend on resources, such as Internet connection which
is not always available. Execution policies could be
used to check if resources, required for a certain
adaptation, are available before execution.

2.4. Adaptation
Context-aware systems are adaptive systems. They sense their
surrounding context and adapt to contextual changes. An
adaptation is a set of reactions that have two properties: 1)
they take place in response to a change in situation, and
2) they may affect the surrounding environment. A reaction
represents an atomic action, which could not be split any
further. A reaction is defined to perform an action through
an actuator deployed in the surrounding environment.
The actuator may have a specific system configuration.
Therefore a context-aware system should define adaptations
and associate reactions to each adaptation.

Context situations are diverse. Consequently, adaptations
could be simple or complex. A simple adaptation consists
of one reaction. A complex adaptation may require a set
of actions either in specific sequence or in parallel. For
example, an application could respond to a security threat
situation with the following set of actions: (1) setting the fire
alarm, (2) closing the exits for critical areas and (3) calling
the emergency. Also, complex adaptations may require
repeating reactions or controlling them using conditions.
Thus, complex adaptations require a workflow expression
language. Workflow expressions should support sequencing,
repetition, and conditioning on sets of reactions.

We have designed a context-free language, called
Adaptation Workflow and Policy Expression Language
(AWPEL) to express adaptations and domain policies. The
language is extensible. It allows system developers to import
external functions that execute adaptations that are specific
to a domain’s security and safety. The grammar of the
language is shown in the Appendix. The language supports
the following operations.

• Triggering reactions,

• Checking policies,

• Performing policy compositions using logical opera-
tions (AND, OR, NOT), and

Sensor Mechanism

Context Mechanism

Adaptation Mechanism

Reactivity Mechanism

Data
Store

1

4

3

2

Figure 3. Architecture of Context-Aware Systems

• Constructing rich workflow expressions using the
constructs (WHILE, IF ELSE, and FOR,EXECUTE).

The two special statements in the language are: policy check
and execute. The former checks execution policies in the
chosen adaptation workflow expression. Each policy check
statement is a call to a user defined function that accepts
zero or more parameters. This function returns a Boolean
value to indicate whether the policy has evaluated to true or
false. An example of policy check statement is $IsAuthorized[
UserID ]. The Execute Statement is used for triggering
reactions. Reactions are user defined functions, and they
are identified by their names. Each reaction may have zero
or more parameters that are either user supplied value or
dimension context information. Reaction name is a terminal
rule that matches a string Identifier.

3. Architecture

This section presents the architecture of our context-aware
framework. First, we introduce a high level, component
view, of our architecture. Then, details about all components
and their interactions will be discussed. The architecture
proposed by us not only emphasizes both formalism and
components, but lifts the architecture to new heights, in which
heterogeneity, distributed and mobile nature of environment,
and dynamic application of adaptation policies are seamlessly
integrated.

Figure 3 shows the main components of our architecture
for context-aware framework. Each component models and
implements a mechanism as briefly described bellow:

• Sensor mechanism component is responsible for
monitoring the environmental entities and sensing
any changes to their parameters, dimensions that
are of interest to the system. The parameters are
scalar or structured data values such as temperature,
geographical position, and identity of a person.

• Context mechanism component is responsible for
context construction, context modification, and context
reasoning. It relates the data received from the sensor

6 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



mechanism to events of significance to build awareness.
This in turn will assist the system to perform the
appropriate adaptation.

• Adaptation mechanism component is responsible
for analyzing the collected knowledge about the
environment and triggering the appropriate reactions.
In the proposed architecture, the analysis is based on
predefined rules and policies, which are stored in a
shared database. The resulting reactions are regulated
by policies.

• Reactivity mechanism component is responsible for
performing adaptations in the environment by control-
ling physical devices, actuators, or displaying results on
hardware interfaces.

• Data Store component is responsible for hosting
and managing all collected data, context, situations,
adaptations, policies, reactivities along with all system
configurations.

Figure 4 shows the details of our proposed architecture. A
detailed discussion of the architectural elements is provided
in the following sections.

3.1. Sensor Mechanism (SM)
The sensor mechanism, illustrated in Figure 4, comprises
sensor, connector, listener, translator, verifier, and data
synchronizer elements. The main advantage of our proposed
architecture is the abstraction and loose coupling between
the different elements of the sensor mechanism. This gives
flexibility in design and implementation, and increases the
maintainability and scalability of the system.

An entity in an environment can behave as an event source.
A stimulus is an instantaneous event, fired by an entity, that
triggers the system processing. There are two ways to create
a stimulus: the occurrence of an external event and a change
to a parameter in the environment. For example, the identity
of the person is a data parameter associated with the event of
entering the room. A parameter is modeled as a dimension,
associated with a type. A stimulus may be associated with
one or more dimensions. Also, the dimension can be carried
by one or more stimuli. For every stimulus there is a sensor
that detects the occurrence of the event and collects its
dimensions. The sensor mechanism contains both hardware
and software components. In this approach, we consider
a sensor as a black-box architectural unit, such as image
recognition unit or a smart card reading device. A sensor can
be associated with an environmental dimension to detect any
change to its value. For example, a measuring unit can be
used to detect the current quality of air in a room. When the
value changes, the sensor triggers a stimulus and associates
the value as a data parameter to it. Therefore, sensors are
data providers. There are many different types of sensors such
as physical, chemical, mechanical, biological, or software-
based sensors. Sensors share common characteristics such

as input range, output range, and accuracy. A sensor type is
characterized by a set of attributes and a measurement reading
data type that represents the language spoken by sensors of
a certain type. A connector transmits data between a sensor
and a listener. Connectors may use different communication
methods and protocols to transmit data such as serial ports,
TCP/IP and network protocols, Bluetooth, wireless, etc. A
translator is responsible for translating data from one data
type to another understood by the system. A verifier is
responsible for verifying the correctness of the collected data
according to predefined data policies. A data policy is a
logical expression that is used to examine the correctness
of the data value received from a sensor. A listener is
responsible for managing one sensor’s communications. It
uses a connector and a translator to communicate with its
corresponding sensor.

While the components of the sensor mechanism are shown
as being part of the same module, it is to be understood
that one or more of these components may be located at
different places especially when the connector includes a
wireless connection such as Wi-Fi, Bluetooth, or the like. For
example, the sensor may be provided at the door while the
sensor listener and the remaining components are in the server
room.

The data collected by the different sensors is received
at a data aggregating module called data synchronizer. The
data synchronizer is used to update the fact information with
the latest sensor readings obtained from sensors. The data
synchronizer may also have access to a set of rules and
definitions stored in the data store to apply these rules and
definitions to the data received from the different sensors
prior to outputting this data to the following components
of the context mechanism. In a non-limiting example of
implementation, the data synchronizer may apply a set of
rules that enable it to choose the highest possible fact
information when it receives contradicting fact information
from different sensor modules. For example, the data
synchronizer may give higher priority/value to certain sensor
types over others. For example, consider a scenario where
different sensors are implemented in a building to identify the
location of each individual within the building. Assuming that
the different sensor types include biometric sensors which
identify a person based on the voice, fingerprint, retina etc.
and electronic detectors which detect the identity of the
person based on an access code, card reader or the like. If the
biometric sensors indicates that a certain person is in room A
because his voice has been or is being detected in that room,
and the electronic detectors indicate that the same person is
in room B because his access code or magnetic card has been
used in that room, then priority is given to the biometric data
because it is possible to use someone else’s card or access
code but it is not possible to use their voice or fingerprint.
In this case, the data synchronizer may output the location as
being in room A. It is to be noted that the set of rules may be
set, adjusted, and changed by the user as the needs dictate. For
example, the same scenario may lead to different results if the

7 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

Sensor 1

Connector nConnector 2

Sensor Listner nSensor Listner 2

Sensor Verifier nSensor Verifier 2

Data Translator nData Translator 2

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

Connector 1

Sensor Listner 1

Sensor Verifier 1

Data Translator 1

Data Synchronizer

Data Store Sensor
Mechanism

Context
Definitions

Situation
Definitions

Adaptation
Definitions

Policy
Definitions

ReasonerContext
Builder

Context
Translator

Current Situations

Current AdaptationsAdaptation
Resolver

Workflow
EnginePolicy 

Checker

Current Reactions

Sensor 2 Sensor n

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

Configuration 1

Actuator Controller 1

Data Translator 1

Actuator 1

Reaction 1

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

Configuration n

Actuator Controller n

Data Translator n

Actuator n

Reaction n

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

Configuration 2

Actuator Controller 2

Data Translator 2

Actuator 2

Reaction 2Reaction
Definitions

Actuator
Configuration

Context
Mechanism

Adaptation
Mechanism

Reactivity
Mechanism

Sensor
Definitions

1

2

3

4

Data and 
Selection
Policies

Figure 4. Detailed View of The Architecture

set of rules accounts for the recency of the information. For
example, if the data output by the biometric sensors indicates
that the person is in room A and the time stamp of that data
is 12.54 PM, while the data output by the electronic sensors
indicate that the same person is in room B and the data has
a time stamp of 1.05PM then, even if the biometric sensors
have the higher priority over electronic sensors, the recency

of the information from the electronic sensors may provide
for more accurate results because it would have been possible
for the person to have left room A and entered room B.

In summary, the main features of our sensor mechanism
architecture are:

• Communicating with sensors using different connec-
tion and communication methods.

8

EAI Endorsed Transactions 
on Context-Aware Systems and Applications

01-08 2014 | Volume 1 | Issue 1 | e2

EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Data Synchronizer

Reasoner
(Rule-based)

Context Translator
1

Context
Builder

Context Translator
3

Context Translator
2

Reasoner
(Inference-
Based)

Reasoner
(Ontology)

Current Situations Current Situations Current Situations

Context Mechanism

Context
Definitions

Situation
Definitions

Figure 5. Detailed View of The Context Mechanism

• Managing the translation of sensor outputs using
independent architectural elements that could be
physically and logically independent from sensors.
This relieves the system implementation from knowing
details of sensors. Also, it allows the system to connect
to simple hardware sensors that produce row data
without having to manage its translation.

• Requesting data on demand from sensors and
informing any interested entity when new readings
are submitted by a sensor. Therefore, the relationship
between sensors mechanism and context mechanism is
bidirectional.

• Verifying and managing sensor data based on data
policies. This enables the system to ignore false alarms,
avoid reactions to invalid stimuli, and react only to
desired requests. Hence, it ensures the resources of the
system are utilized only when required.

• Aggregating sensor data from different sources using
predefined rules. This enables choosing different values
collected by different sensors at different scenarios, as
illustrated in the example above. The selected data are
cached and used upon request.

3.2. Context Mechanism
The context mechanism, illustrated in Figure 5, consists
of the following architectural elements: context definitions,
context builder, one or more context translators, one or
more reasoners, and situation definitions. In Section 2.1
we provided a formal definition of context. It comprises

dimensions and tag values. Since the environment constantly
changes, the context builder constructs contexts every time
when there is a change to any of the dimensions’ tag
values. Information about new changes comes from the
sensor mechanism through the data synchronizer. Therefore,
continuously, the sensor mechanism triggers the context
builder to construct contexts. A reasoner is used to identify
the situations that are applicable to the currently constructed
contexts. A reasoner uses situation expressions, as defined
in Section 2.2, that are stored in the data store. A reasoner
evaluates each expression based on the current context.
Consequently, the reasoner generates a set of situations that
hold in a current context.

There are several context definitions and theories provided
in the literature, other than the one we provided in Section 2.1.
One example is the use of ontology, utilizing description
logic language, for defining context. Other examples of other
context definitions and theories will be provided in the related
work, Section 6. Therefore, it is important that a context-
aware system architecture can work with different formal
context definitions. In this case, different types of reasoners
might be more suitable based on the type of context definition.
For example, in case an ontology-based formalism is used to
define context, an ontology-based reasoner should be used to
infer situations for a given context. For the context definition
that we provided in Section 2.1, a rule-based reasoner is
more suitable. Thus, it is possible using our architecture to
use a plurality of reasoner engines of different (or similar)
types. Figure 5 illustrates an example of a context mechanism
including three different types of reasoners: rule-based,
ontology, and inference-based. A context translator is used
for each context theory to translate contexts from its native
formats to a format that can be understood by a corresponding
reasoner. Therefore, the operations of the context builder are
independent from the way context is specified or processed.
Also, reasoners may work independently, separately (in a
separation of concern manner) and simultaneously using at
least a portion of the context generated by the context builder.
This is a novel, and exclusive feature of our architecture that
no other context-aware system in the literature supports which
provides significant improvement over previously known
architectures.

It is worth noting that the set of rules and definitions of
contexts and situations may be set, changed, and adjusted
by system administrators, whereby, sensors, reasoners, and
actuators may be added and removed in a plug and play
manner. Therefore, the context-aware system build using
our architecture may be used in a variety of different and
unrelated domains.

In our implementation, a situation expression is internally
represented as an Abstract Syntax Tree, and evaluated in the
usual operator precedence semantics. In order to check if a
specific situation is realized or not, the reasoning mechanism
takes contexts and their dependent situations as input and
gives as output the situations that are realized. Internally,

9 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



3.3. Adaptation Mechanism
The adaptation mechanism, illustrated in Figure 4, includes:
an adaptation resolver, a workflow engine, policy definitions,
a policy checker, and adaptation definitions elements. This
unit is responsible for determining suitable reactions for
context situations. The chosen reactions are sent to the
reaction mechanism.

The current situations are sent to the adaptation mechanism
for generating reactions for the situations identified by the
context mechanism. Associations between situations and
adaptations are defined and managed in the data store using
adaptation definitions. A situation can be associated with
one or more possible adaptations. The current situations are
received at the adaptation resolver. The adaptation resolver
includes a reasoning engine capable of producing adaptations.
It takes as input adaptation definitions and current situations.
An adaptation definition is specified as a workflow expression
of actions and policies that depend on a set of situations. It is
defined using WPEL, as discussed in Section 2.4. A WPEL
expression defines a set of reactions to be produced and the
order in which the reactions should be executed. Also, an
adaptation expression defines execution policies to control
reactions. The selected adaptations are sent to a workflow
engine. The workflow engine is used to parse and execute
workflow expressions. It contains implementations for every
construct in the workflow expression language (WPEL). It
takes as input: 1) situations, 2) adaptation definitions, and
3) execution policies. It uses the policy checker to evaluate
policies and control execution of reactions. The policy
checker takes as input a situation and a policy condition.
It evaluates the condition using the context information
available in the situation definition. The result controls
whether or not an action should be triggered.

3.4. Reactivity Mechanism
The workflow engine manages and orchestrates the resulting
reactions that should take place in the environment. Reactions
have the following properties:

• Independence: A reaction should be executed with no
dependency on any other reaction.

• Atomicity: A reaction is atomic, and should perform
one and only one functionality.

• Communication: A reaction communicates with the
outside world actors, namely the actuators.

• Context dependence: A reaction may have execution
parameters which depend on context information.
These parameters are passed to actuators. For example,
if an action aims to display a message on a screen then
the message should be passed from the reaction to the
screen actuator.

The reactivity mechanism, illustrated in Figure 4, consists
of actuator controller, actuator configuration, translator,
connector, and actuator. Once reactions are decided,
their corresponding actuators are determined. Associations
between reactions and actuators are defined and managed
in the data store. It is possible, using a configuration file,
to associate multiple actuators with each reaction. For each
actuator, an actuator controller is defined. It provides a level
of abstraction between the system and actuators. An actuator
controller and its corresponding actuator do not have to be
in the same physical component or location. It is possible to
have an actuator controller in one room and its corresponding
actuator at a different or perhaps very far location. Each
controller is implemented for a specific actuator. A controller
has sufficient knowledge to communicate to its corresponding
actuator. The actuator configuration is used to specify and
manage any necessary configuration for an actuator. Hence,
Configurations are abstracted from controllers. This allows
using the same actuator to implement different workflow
actions based on different configurations. For example, the
door actuator can perform open, close, lock and unlock
actions through different configurations. A connector is used
to transmit an adaptation reaction and its relevant context
information to actuators. It implements a connection method
and a communication protocol. A translator is used to
translate the command and its information into a format
suitable for actuators. A translator is implemented for each
type of actuators. Actuators perform the actions to affect the
environment. There are many different types of actuators.
An actuator type is characterized by a set of attributes and
data parameters that represent the required input information
necessary for performing actions.

4. Case Studies

In this section we discuss two case studies. The first
case study is to explain the steps involved in using the
framework to develop a context-aware application. A more
complex example discussed in the second case study is on a
distributed mobile application for improving the productivity
of a traveling salesperson. We have implemented both
examples. In order to develop any application using the
framework, the main entities that represents the application
environment and their intentions at the outset. So the
client application would have to define sensor listeners,
sensor translators (if applicable), sensor verifiers, actuator
controllers, context information, situations and extenders (if
applicable), adaptation, reactions, and policies (if applicable).

4.1. Case Study I: Temperature Control
System

The system functionality is to increase or decrease or
maintain the temperature by sensing the environment
parameters. The system architecture, illustrated in Figure
6, contains a thermometer sensor which provides the

10 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

the reasoning engine extracts relevant context tag values and
checks situation conditions against context tag values.

Vangalur Alagar  et al.



temperature, a heater actuator and a cooler actuator. The
framework elements for this applications are defined below.

Figure 6. Temperature Control System

Sensors Listener We defined a thermometer listener that
is responsible to connect to a thermometer that provides
temperature measured in Fahrenheit. For the purpose of
testing, we set the connector to a console connector so users
can supply random values.

Sensor Translator Since the sensor is providing the
temperature measurement in Fahrenheit, we provided a
translator that translates the temperature from Fahrenheit to
Celsius.

Sensor Verifier The sensor verifier applies the data
policies. In this case the verifier will validate the sensor
reading. As an example, any sensor reading less than -70C
or more than 70C will be filtered out by the verifier.

Actuator Controllers We have two actuators in this case,
a heater actuator and a cooler actuator. However, for testing
purpose we can also include a console actuator to allow
printing.

Context information The only context information we are
expecting is temperature. So, we introduce Temp as dimension
which can also be used as a variable in defining situations.

Situation and Extenders Situations of interest for the
client are stated. As an example, “temperature less than 10C
and more than 30C” may be the two situations of interest for
the application. Thus, we defined the following two situations
in CSEL:

1. Cold : { (T emp ≤ 10 ) }: This situation refers to the
event of observing the temperature transiting below
10C.

2. Warm : { (T emp ≥ 30 ) }: This situation refers to the
event of observing the temperature transiting above
30C. It is also possible to introduce the Extender
Warm : { ($IsHot [T emp]) }, in which the parameter
T emp may be substituted at run time.

Since constructs in CSEL may not be sufficient to express
complex situations, Extender mechanism is provided to help
the application developer to introduce precoded complex
situations.

Adaptations and Polices Corresponding to the defined
situations, we define the following two adaptation policies:

1. Adapt to Cold Weather: In response to the Cold
situation, this adaptation policy enforces “temperature
increase”. The policy is executed by the reaction
“increase temperature”. The adaptation policy, coded
in AWPEL, is

if ($IsHeatingSystemWorking[])

Exec (IncreaseT empAction[]) ;

2. Adapt to Warm Weather In response to the Warm
situation, this adaptation policy enforces “decrease
temperature”. The policy is enforced by the reaction
“decrease temperature”. The adaptation policy, coded
in AWPEL, is

Exec (DecreaseT empAction[]) ;

The guard IsHeatingSystemWorking is itself a policy to check
if the heating system is working before sending an order. In
real life situations many other precautions may have to be
taken. These can be expressed by using conditional and other
branching constructs in AWPEL.

Reactions The two reactions are “increase temperature”
and “decrease temperature”, which respectively encapsulate
the interaction with the heater and cooler actuators.

Context 

 Situations 
 Definition

Situations
In

Context
Reasoner

Figure 7. Reasoning Context Information

11 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



Figure 8. Aggregating Sensor Reading

System process Model

The sequence of steps in the system process model is
explained below.

• Activation: The system can be activated in two
scenarios: (1) the client asks explicitly to check the
context and react upon it or (2) new context data is
constructed. The second scenario is a subset of the first
scenario, so we describe here only the first scenario.

• Requesting information: The user request causes the
following chain effect: (1) the Adaptation Resolver
asks the Context Manager for the updated situations
that exists in the context, (2) the Context Manager
asks the Data Synchronizer for the aggregated context
information, (3) the Data Synchronizer asks all Sensor
Verifiers for their verified reading readings and (4)
Sensor Verifiers asks Sensor Listeners for their latest
reading.

• Aggregating sensor information: Once the Sensor
Listeners receive the readings, the verifiers verify the
data and then notify the Data Synchronizer which waits
until all sensors respond and then notifies the Context
Manager. The process is illustrated in Figure 8.

• Reasoning over Context Information: When all
the sensor readings are ready and synchronized,
the Context Manager is informed by the Data
Synchronizer. Then the Context Manager activates the
Reasoner to discover situations in the current context.
The process is illustrated in Figure 7.

• Resolving Adaptations: When the Context Manager
receives the “Situations in Context” from the reasoner,
the Context Manager informs the Adaptation Resolver
with the discovered situation. The Adaptation Resolver
resolves the appropriate adaptations for the discovered
context and executes each adaptation. The process is
illustrated Figure 9.

• Reacting: The Adaptation Resolver determines
appropriate adaptations and calls the Workflow
Executor to execute each adaptation. The Workflow
Executor allocates reactions to Actuators and activates
them based on the execution path. That is, reactions are
channeled to actuators through actuator controllers and
implemented.

• For-ever loop: This process cycles forever.

Situations
in Context

Adaptations
Definition

Required
Adaptations

Resolver

Figure 9. The Adaptation Resolver

4.2. Case Study II: Salesperson Case Study
This case study illustrates the use of the framework for
developing context-aware applications which involve mobile
devices. The goal of the implemented system is to assist a
salesperson improve the productivity in the daily schedule,
assuming that it involves traveling in a distributed network of
roads, collecting and delivering goods in a manner that earns
the trust of the customers and adds economic value to the
organization. So, the main functionalities of the implemented
application are

• Calculate the best tour route a salesperson needs
to take every day, based on the set of customers
to be visited, and the network of roads to travel.
The status of customers, and environmental conditions
(whether, road conditions) are continuously monitored
and updated by mobile devices. The tours vary from
day to day and are largely driven by contexts observed,
situations desired, and knowledge on customer history
extracted from a distributed database.

• Suggest items to promote based on customer context
and sales history.

• Identify new potential customers in the neighborhood
of the tour.

• Facilitate loading items from inventory warehouse,
by identifying a salesperson profile and determining
quantities based on sales history.

The process model for every context-aware application
development is identical to the one given in the previous

12 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



section, differing only in details. So, we skip those lengthy
details, and describe 1) the sensor types and the contexts
constructed, 2) a selection of significant context situations,
3) some sample adaptation policies, and 4) some sample
reactions. A complete description of the case study and its
full implementation are given in [43].

Sensor Mechanism: Table 1 shows the sensors and the
corresponding context tag values that each sensor collects.
After validation, the sensor information is used to construct
contexts.

Situations: Table 2 presents some situation expressions
specified using our CSEL 2.2. These situations are of interest
in this application. More situations may be added by the
application developer, after ensuring that contexts that can
validate them are constructed in the previous step.

Adaptation Mechanism: Adaptations are expressed in
AWPEL. In order to express the adaptations, we need to
define reactions, policies, and adaptation expressions. Below
we describe each of them.

1. Reaction: We implemented four basic reactions. These are:
Notify, Check in, Check out and Recalculate list:

• Notify: This is a general purpose reaction that
is used across many adaptations. The reaction is
responsible for sending a specific message to a
specific destination. This reaction accepts two input
parameters: 1) Destination, representing the recipient
of the message, and 2) Message, representing the actual
message. The Notify reaction can be implemented using
SMS Text messages, emails, or method invocations
depending on the underlying actuator. The chosen
messaging infrastructure is based on the client
application. The precondition for this reaction has a
valid connection with the destination, which is related
to the underlaying actuator. Suppose we are using an
email client actuator, the precondition is checked to see
if there is a valid Internet connection. The postcondition
is either to confirm a successful delivery of the message
or to notify the sender of the failure of sending the
message.

• Check in: This reaction is responsible for triggering
a database transaction that checks in items in a
specific account. This reaction accepts the two input
parameters, Account Name, representing the account
into which the items are checked in, and Items, the
set of items to be checked into this account. The
precondition is that there exists a valid connection with
the database. The postcondition is either to confirm that
the operation was successfully completed or to notify
the system of the failure of conducting this operation.

• Check out: This reaction is responsible for triggering
a database transaction that checks out items from a
specific account. This reaction accepts the two input
parameters, Account Name, representing the account
from which the items are checked out, and Items, the
set of items to be checked out from this account. The
precondition is that a valid connection exists with the
database. The postcondition is either to confirm that the
operation was successfully completed or to notify the
system of the failure of conducting this operation.

• Recalculate list: This reaction is responsible for recal-
culating a tour plan and the customers list for a
salesperson based on specific traffic and weather
contexts. The reaction accepts the three parame-
ters, salesperson ID, the identity of the salesper-
son, Weather, the weather condition, and Traffic, the
traffic condition. A precondition for your recalcula-
tion might involve weather/road conditions, such as
{Weather == FREEZING RAIN )
∧ (T raf f ic == CONGEST ED}, or status change
of customers in a certain neighborhood. The postcondi-
tion is either to confirm the successful completion of
this process or to notify the system of the failure to
complete this operation.

2. Policies: A full list of policies for this application is given
in [43]. A selected subset from this set of large number of
policies is given below. We remark that some policies can be
reused with some variation in developing other applications.

• Salesperson Status Policy (SSP): Reactions occur only
for active salespersons for a specific duration.

A policy of this type is implemented through a policy
checker that defines Is Active method. The method
accepts SalespersonID as an input parameter and
returns the specific duration for the reaction to be in
force if the salesperson is currently active, otherwise
returns 0.

• Customer Financial Standing Policy (CFP): Forbid
visits and sales for customers with bad credit.

A policy of this type is implemented through a policy
checker that defines Is in Dept method which accepts
CustomerID and returns whether the customer is in
good standing or not.

• Customer List Recalculation Policy (CRP): Recalculate
a tour for emergency situations.

This policy makes sure that all conditions are met
before executing an event. The policy is implemented
through a policy checker that defines Is Necessary
method that accepts SalespersonID, WeatherCondition
and TrafficCondition as input parameters and deter-
mines whether a recalculation should be executed or
not.

13 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



Table 1. Sensor Mechanism

Sensor Context Tag value
System Clock Date and time
Salesman GPS Coordinates
Salesman RFID-Reader ShipmentLoaded, ShipmentUnloaded
Warehouses RFID-Reader SalespersonID, Goods
Warehouse Loading Manager ShipmentIsReady
Traffic RoadCondition
Weather WeatherCondition
Salesman SalespersonID, CallingSick, OnVacation or CarIsBroken
Business Locator NewCustomerInRange, NewCustomerAddress
System Database ItemsOnSale, AverageSalespersonSales
Data Warehouse SuggestedSale, SuggestedCut

Table 2. Context Mechanism

Situation Expression
Salesperson in Warehouse { ($IsSalesperson[SalespersonID] OR $IsWarehouse[Coordinates])}
Shipment Ready { Salesperson in Warehouse AND (ShipmentIsReady) }
Salesperson on Road {(NOT $IsWarehouse[Coordinates] AND NOT $IsCustomer[Coordinates])}
Potential Customer { (NewCustomerInRang AND $IsNewCustomer[NewCustomerAddress]) }
Salesperson at Customer {($IsCustomer[Coordinates])}
Customer on Debt { Salesperson on Customer AND ($IsOnDebt[Coordinates])}
Bad Customer on Debt {NOT Good Customer in debt}
Outstanding Salesperson {($SalespersonSales[salespersonID] > 2 * AverageSalesersonSales) }

• Salesperson Authorization Policy: Sales managers at
the regional and provincial levels or those who have
served for more than 5 years may offer special
promotional sales to good standing customers.

This policy type is applicable to certain class of
salespersons and customers with good payment history.
This policy is implemented through a policy checker
that defines Is Authorized method which accepts
a SalespersonID as input and returns whether the
salesperson is authorized or not.

3. Adaptation An adaptation is associated with a situation.
Many adaptation policies are implemented using WPEL. The
implemented adaptations are (1) Prepare Shipment, (2) Notify
salesperson, (3) Transfer from Warehouse, (4) Transfer from
salesperson, (5) Recalculate Customers List, (6) Suggest Visit,
(7) Suggest Customer Order, (8) offer a discount, (9) Offer
a waver, (10) Pass, (11) Notify Nearby salesperson and
(12) Notify Manager. Below we give the definitions of four
adaptations.

• 3.1 Transfer from Warehouse: The adaptation
workflow shown in Table 3 is triggered once the loading
is completed in the warehouse. The quantities of loaded
items should be removed from the warehouse account
and added to the salesperson account.

• 3.2 Recalculate Tour: The adaptation workflow shown
in Table 4 is triggered to recalculate the tour map, based
on road conditions and/or business to be conducted.

• 3.3 Suggest New Visit: The adaptation workflow shown
in Table 5 is triggered when new customer is discovered
on a nearby location.

• 3.4 Offer discount: The adaptation workflow shown
in Table 6 is triggered whenever a discount could
be offered by a salesperson to customers with good
standing.

Reactivity Mechanism: The actuators needed for this case
study are Account Actuator, System Functions Actuator and
Messaging Actuator. The Account Actuator is responsible
for managing account transactions for customers, salesmen
and warehouses accounts. This actuator uses a database
connector. The System Functions Actuator is responsible
for invoking predefined system functions. They can be
implemented as database stored procedures, web services or
as code libraries. Consequently, different connectors can be
used to communicate with the actuators such as Database
Connector, Remote Procedure Call (RPC) Connector, Web
Service (WS) Connector, or Remote Method Invocation
(RMI) Connector. The Messaging Actuator is used by the
notify reactions defined previously. The connector used for

14 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



Table 3. Transfer from warehouse

Adaptation Name Transfer from warehouse
Situations Shipment Loaded
Adaptation Workflow If ( $IsActive[SalespersonID] )

{
Exec( CheckIn [SalespersonID, Goods] );
Exec( CheckOut [WarehouseID, Goods] );
}
else
{
Exec( Notify[SalespersonID, “Your account is
not active”]);
}

Adaptation Policies Is Active
Adaptation Reactions Check in, Check out, Notify

Table 4. Recalculate Customer List

Table 5. Suggest Visit

Adaptation Name Recalculate Customer List
Situations Salesperson Plan Affected
Adaptation
Workflow

If ($IsActive[SalespersonID] )
{
If($IsNecessary[SalespersonID,
WeatherCond, RoadCond] )
{
Exec(Recalc[SalespersonID,
WeatherCond, RoadCond]);
Exec(Notify[SalespersonID,
“Your plan is changed”]);
}
}

Adaptation
Policies

Is Active
Is Necessary

Adaptation
Reactions

Re calculate list
Notify

Table 6. Offer discount

Adaptation Name Offer discount
Situations Good Customer
Adaptation Workflow If ( $IsActive[SalespersonID] AND

$IsAuthorized[SalespersonID] )
{
Exec( Notify[SalespersonID, “Offer a
discount”]);
}

Adaptation Policies Is Active, Is Authorized
Adaptation Reactions Notify

15
EAI Endorsed Transactions 

on Context-Aware Systems and Applications 
01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



this actuator depends on the type of messages, such as email
or text message.

5. Implementation
All the functionalities of the framework components
described in Section 3 are fully realized in the full
implementation [43]. In this section we present a few
challenges that we faced in the implementation and explain
how we resolved them.

5.1. Platform

We implemented the system using Microsoft.Net platform
and Silverlight1 technology. Technically, it supports multiple
platforms by running inside a web browser plug-in. Also, the
same .NET code could be reused to write applications for
desktop computers and mobile applications that can run on
Windows phone.

Smart phones are good platforms to target in this domain.
Because a smart phone is portable, it provides a variety
of context information and offers Internet connectivity ‘on
the go’. An important challenge for us was to run the
framework on a limited resource environment. We compiled
the framework on Windows Phone platform which runs on
the .Net Compact Framework, a subset of .Net Framework
designed to run on mobile phones and embedded devices.
The framework performance was good compared with other
time consuming tasks held by the application such as Internet
connection and GPS initialization.

Both Silverlight and mobile phone implementations have
the same set of capabilities, however there are some
differences. An example is connecting with a different GPS
sensor, which in Silverlight is a pluggable USB or a Bluetooth
based GPS sensor, whereas it was a phone-embedded GPS
sensor in Windows Phone. One major difference between
the two applications is Internet connectivity, which may not
always be available. Unlike the phone application where a 3G
connection is available most of the time, in the Silverlight
application we had to assume the realistic situation that
there is no Internet connection some times. Therefore, we
used execution policies from our model to check Internet
connectivity before executing actions that need connection.

5.2. Component Interactions

We used the observer design pattern [44] to design
and implement the interactions between components. The
observer design pattern was chosen because (1) we need
support for both events and asynchronous calls, and (2) some
operations could be either time consuming, such as reasoning,
or could include interaction with the outside world, such as
reading sensors data. The Observer design pattern allows
us to prevent blocking operations and provides a standard

1http://www.silverlight.net

mechanism to deal with communication exception handling.
Figure 10 and Figure 11 show the communication pattern
for the adaptation resolver and reactivity modules. These
figures, following the UML sequence diagram syntax, show
the interfaces of the component and the temporal order of
messages communicated.

The combined behavior of the Resolving and Reactivity
module is a composition of the behaviors of the Resolving
component and the Reactivity component. Once the Context
Manager notifies the Adaptation Resolver with the situations
in context, the Adaptation Resolver loads adaptation
definitions from the data source through a Data Provider
(situation may also be cached), and then resolves the
appropriate adaptations by matching adaptation definition
with the situations in context. The result is a set of
adaptations. Each adaptation has a workflow and a set of
policies, the adaptation resolver uses the policy checker to
enforce the policies, and if all policy’s constrains are met,
the adaptation resolver activates the workflow executor to
trigger the reaction defined in the proper sequence. Once a
Reaction is instantiated, the Reaction activates the Actuator
Controller passing the appropriate configuration arguments.
The Actuator Controller then translates the input data from
the framework data type to the actuator data type through a
Translator. Then, the Actuator Controller uses a Connector
to connect to the actuator.

5.3. Challenges
The major implementation challenges are handling the
complexity of design and communications, supporting the
dynamic nature of context-aware systems, and providing
portable solutions to multiple platforms. Our implementation
offers effective solutions for these challenges.

1. By using software components as units of implemen-
tation and deployment we contain the complexity of
context-aware systems design.

2. By using central bootstrapping technique to handle the
initialization of the system we provide flexibility in
adding and modifying system components at run-time.

3. By using software coding best practices such as using
interfaces, inheritance, high cohesion, and low coupling
we provide extensibility.

4. By supporting asynchronous method calls for interac-
tions with sensors, actuators and reasoners we effec-
tively prevented deadlocks and interface blocking and
allowed proper exception handling.

5. By using reflection mechanisms and dynamic code
invocation we allow privileged developers to inject or
modify components at the run time without the need to
recompile the whole application. For example, in case
the developer wants to change the Context Reasoner
then that should be done easily in a Configuration file
without the need to change the code or recompile it.

16 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



Execute Required Adaptations

Notify

IAdaptationResolverIDataProviderIWorkflowExecuterIPolicyCheckerIReaction IContextManager

Resolve
Adaptations

Load Adaptations

Verify Policies

Execute

Figure 10. Sequence Diagram for the Resolving Component

IConnector ITranslator IActuatorController IReaction

Connect

Translate

Activate(IActuatorConfigArgs)

Figure 11. Sequence Diagram for the Reactivity

6. By supporting cross platform environment we allow
the deployment of CAF on different platforms such
as mobile phones, desktop and laptop computers, and
web-based portable devices.

These features affected the choice of the implementation
platform and the development environment.

5.4. Case study Implementation
The salesperson case study has been implemented on two
different platforms: Windows phone and Silverlight.

The application connects to the embedded GPS device
inside the phone and then connects through the Internet
to the distributed system server, where it retrieves a list
of the customers that should be visited. Using Microsoft
Bing Services2, the framework reacts by requesting the
optimal route taking into consideration time, weather and
traffic context information. Figures 12 and 13 show the
mobile and silverlight applications. Once the salesperson is
within a configurable distance from a customer, 100 meters
for example, the framework notifies the salesperson that a
customer has been located. It shows detail information about
the customer. Also, it shows suggested items to sell and
promotions based on analysis of previous orders and payment
history. This scenario is illustrated in Figure 12.

When testing this application on road, we faced two
important challenges. First, GPS information might not
be accurate sometimes. This could result from weather
conditions, use of assisted GPS while being far from
telecoms towers, and interference. We dealt with this issue by
configuring a Sensor Verifier for the GPS sensor in our system

2 http : //www.bing.com

using a constraint stating that “in one second a salesperson
can not move more than 100 meters” . Second, improving
the usability of the mobile application. We dealt with this
issue by utilizing best practices of mobile interface layouts
to show navigation tips, screen power saver, and improving
touch experience.

5.5. Test Results
We implemented a tool for testing and bench marking
the context-aware framework performance under different
architectural configurations. The following shows the results
of running the temperature case study using different number
of sensors and actuators. The configurations are (10, 100, 500,
1000, 2000, 5000, 10000, 200000) sensors. Table 7 shows
the test results when running the case study on an average
machine that has Pentium Dual-Core CPU T4300 2.10GHz,
4GB RAM, and Windows 7 x64 operating system. Figure 14
depicts the performance test results.

Here are our findings:

• Increasing the number of sensors increases the
execution time. This is by design as the data
synchronizer is awaiting all sensors to provide an up-
to-date readings.

• It’s a good sign to see the framework providing a fast
execution time (under 2 sec for 2,000 sensors, and
under 20sec for 20,000 sensors).

• Increasing the number of sensors does not increase
the CPU time as the asynchronous (event subscriber)
pattern used across the framework is not coupling
the processing time with the number of sensors and
actuators.

17 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



Figure 12. Phone Application-1
Red flag shows next customer, green flag shows potential customers and black flag shows current location

Figure 13. Silverlight Application

18
EAI Endorsed Transactions 

on Context-Aware Systems and Applications 
01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



Table 7. Test Results

Sensors Execution Time (seconds) CPU (%) Memory (MB)
10 0.04 50 37.24

100 0.04 43 37.52
500 0.12 44 37.79
1000 0.25 91 38.07
2000 0.48 92 38.39
5000 1.89 52 38.59

10000 5.5 55 38.63
20000 17.55 55 39.11

Figure 14. Performance Test

• The memory usage is slightly increasing as we increase
the number of sensors, the slop of the increase is
related to the case study and how much the sensors are
consuming memory. In our case study, the sensors are
not doing a memory bound operation and that explains
the flat increase.

• There is a slight tipping of CPU usage when using 1000
to 2000 sensors. We tested this scenario several time
and found that this tipping is related to some internal
operating system operations that are not related to our
framework execution.

6. Related Work
In this section we present an extended survey of existing
approaches to design context-aware frameworks and context-
aware middleware and compare them to our approach.

The framework that we have presented in this paper
is supported by formalism at context construction stage,
situation validation stage, policy specification stage, and
at adaptation stages. In [16] a graphical language is
used to model context. Such a graphical representation
can be transformed to a relation. In our work we have
relational semantics for context representation. Situations
are represented as logical expressions in [16] and in some
of our previous works [45] [11]. In the current work we
decided to specify situations and adaptation-based workflow

in two context-free languages. The rationale is such languages
are formal, allow extenders, and well-formed expressions
can be efficiently evaluated both statically and dynamically.
Since the languages admit both standard and abstract types,
expressions are well-typed. Any application developer will be
quite familiar with these programming constructs. Whereas
in [16] no specific architecture or design methodology
is explained, we employ the component-based software
engineering approach to the design and implementation of
the framework. In Section 3 we have explained in detail
the different architectural elements and the interfaces to
components. Our approach is founded on the trustworthy
component design developed by Mohammad and Alagar [46].
So, our framework is fully supported by formal approaches in
all stages of its development.

Several researchers are investigating context-aware middle-
ware as a solution to meet some of the challenges, such as
heterogeneity of devices and concurrency control, that arise in
developing context-aware applications. Whereas in traditional
distributed systems the goal of middleware is to hide hetero-
geneity and distribution, in context-aware pervasive comput-
ing applications the middleware gets to see its environment
in order to provide context management and adaptation to
resources in the environment. The traditional middleware
is more generic in the sense that it can serve many appli-
cations. A context-aware middleware is often specialized.
Examples of such middleware include some developed under
Gaia [21] and [47] platforms, CORTEX [48]which is specific
to pervasive and ad-hoc environments, and CARISMA [17]
targeted for mobile applications development. Middleware,
whether intended for traditional applications or context-aware
applications, can be viewed as a component or set of com-
ponents that provide important services to a running system.
A Framework, on the other hand, is a set of components
and tools that facilitate developing systems. It is easy to
understand from our framework description in Section 3 that
a context-aware middleware can be viewed as a projection
of our framework. If necessary such a projected component
can be incrementally extended any special needs that are not
addressed in our framework. In [18] the two key features
Context Management Services and Awareness and Notifica-
tion Service are put together to realize the service-oriented

19 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A F

rame

work for Developing Context-aware Systems



middleware for context aware applications. We emphasize
that these two components are part of our framework.

Our framework, being generic, also differs from many
specialized middleware architectures. Just to cite one
instance, the management of rules and protocols for
adaptation in the context-aware middleware CARISMA [17]
differ from our framework.

• Service vs Action: Our framework enables execution
of context-aware actions, where an action might use
services. Services in our framework are selected, based
on user preferences. In middlewares, the focus is on
providing services, where a service itself may denote a
family of related services that are not necessarily user-
centric.

• Mutual Exclusion vs Incomplete and Unordered
Collection of Rules: Our framework deals with a
collection of mutually exclusive rules that are used with
situations. The reasoner in our system infers situations
by using flow of rules instead of a flat list. We have
extenders in order to embed any logic or function in
the execution flow. In middleware an attempt to check
a flat list of rules or an unordered combinations of rules
might produce conflicts, unless rules are associated
with context conditions.

• Protocol: When a complete list of rule combinations
can not be provided, conflict in rules arise. A greedy
protocol used in CARISMA [17] is suitable for dealing
with conflicting rules in several applications, such as
the traveling salesperson case study that we discussed
in Section 4. However, the auction protocol proposed
in CARISMA [17] might lead to the violation of
safety conditions of safety-critical applications, such
as Health Care and Emergency Service. In contrast,
the rules that we enforce in our framework are created
from user preferences, business and organizational
policies, and include trustworthiness criteria defined as
a compound property of safety, security, reliability, and
availability. As such adaptations corresponding to rule
applications can be trusted.

As mentioned in the introductory section, we restrict
literature survey and comparison to the category Framework
and Architecture. Many frameworks for developing context-
aware systems have been presented in the literature such
as the context toolkit [24], SOCAM [22], CoBrA [15],
CORTEX [48], Gaia [21, 47], CASS [20], and [3]. A
detailed analysis of these frameworks appears in [27]. Recent
frameworks include [14] and [12]. Separation of concerns
between context sensing mechanism and uses of contexts
is one of the suggested design principles of Dey [24].
This principle has been implemented successfully by all
the frameworks mentioned above. These frameworks have
separate mechanisms for context acquisition using sensors,
aggregation and preprocessing of the acquired information
either to transform it to a new format or to select from

it the required portion, build and store a knowledge base
that contains a history of context information, infer high-
level contexts by searching the knowledge base, and provide
context information to applications. Some frameworks, [8]
and [15], provide security and privacy mechanisms to ensure
that context information are provided to users who are
authorized to view or use it. However, none of the approaches
mentioned above have a formal context representation and
context conditions for enforcing security and safety rules. For
example context modeling in [24] and [20] uses attribute-
value model, [48] uses event filters, and [22], [15], [14], [12],
and [3] use ontology descriptions based on RDF or OWL.
Consequently, adaptation logic could not consider context
modifications. The applications contain the logic of reacting
to the environment and adapting to the changes of context.
However, logic of adaptation is not modeled as part of the
framework but rather implemented by the client applications
or included in the context management module. For example,
in [20] and [48] the context reasoning engine is used to infer
a goal or an action. In [22] one method invocation is defined
for each context rule. In [14], adaptations are defined using
a rule-based language as policies. However, adaptations are
implemented by either directly altering context information or
by utilizing user defined services (such as imageăcompression
services). The ability to change context information directly
inside policies confuses context perception with adaptation
reactions. Also, it causes conflicts when concurrent processes
try to access context information since context information
are shared resources. Context-aware adaptation in [4] uses
a function that is very specific to a tour guide hand held
device. The Markov model of adaptation in [49] is specific to
enable agents estimate coalition sizes and decide whether or
not to join a coalition. In [7] the authors discuss adaptation
of role-based access control policies to manage and service
crisis situations. The adaptation strategy considers two kinds
of constrains, normal, and crisis, and the grant policies are
adapted to these two constraints. Their adaptation mechanism
can be extended to accommodate many constraints, yet
not general enough to suit any context-aware application.
Therefore, our analyses of these approaches reveal a tight
coupling between the context mechanism and the required
application-specific adaptations. This limits the adaptation
component’s ability. Given that adaptation is the most
significant feature of context-aware systems it is necessary to
design this component in a robust manner. In our framework,
the low coupling between the context mechanism, situation
reasoning, and adaptation mechanisms enables us to have a
rich workflow definition language that can be dynamically
modified (and extended) to reflect the dynamic nature of
context-aware systems. Consequently, we are able to define
separate abstractions for adaptations, reactions, and actuation.
This has enabled us to (1) define many reactions for each
adaptation, (2) control each reaction using policies, (3) and
assign reactions to many actuators.

Few frameworks define abstractions for sensors and
actuators and allow dynamic plugging of them into the

20 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



framework. In [24] a discoverer component is used to
keep a registry of available sensors. However, actuators
are called using services that are defined inside context
wedges. Similarly, in [48] sensors are tightly coupled with
the context software abstraction and actuators are defined at
design time. In [15] sensors should know about the broker.
In [20], sensor listeners are defined to decouple the system
from the sensing mechanism. In [3] and [14] sensors are
predefined at the design time. Only [20], [12] and [48]
provide a mechanism to decouple the sensing mechanism
from the communication method used to deliver the sensed
context. Some approaches provide a limited validation to
the sensed information. For example, [22] and [15] use
ontology reasoning to find any conflicts or inconsistencies,
and [48] uses a probabilistic scheme to model the uncertainty
of sensed data. The heterogeneous nature of devices used
in ubiquitous computing imposes the need to use generic
data transformers in order to interact with different kinds
of sensors and actuators. None of the mentioned approaches
provide a dedicated abstraction to perform data translation
from native formats to application understandable format.

In addition to the general purpose frameworks discussed
before, there exists many domain specific frameworks.
Typical domains include Transportation [19], [6], [33], [32],
Health care[9], [10], [13], Search engines [26], [31], Social
Networks [5], Agriculture [35], Military [30], Security [8],
and Mobile phones [50]. Table 8, Table 9, and Table
10 provide a summary of the features included in these
frameworks.

Compared to all these works, the framework proposed in
this article has many merits, as enumerated below.

1. Novelty: The novel features of our framework
include (1) the full modeling of both awareness
and adaptation, (2) a formal treatment of situation
reasoning and adaptation, (3) controlling the adaptation
mechanism using business and nonfunctional policies,
(4) supporting validation and constraints on context
data, and (5) supporting multiple context theories
and reasoners. These features enable reasoning about
the whole behavior of context-aware systems at
architectural level which has been proven to be
an effective method to achieve dependability. The
modular design of our framework, abstracting context
definitions from context processing, and abstracting
context reasoning from context aggregation and
processing are novel.

2. Separation of Concerns: The specification in our
framework starts from sensing contexts and extends up
to performing the proper adaptation in the environment.
Consequently, a developer can exploit this feature
to develop a context-aware application with formal
basis, without necessarily being an expert in formal
methods. The adaptation mechanism specifies the
adaptation rules necessary to infer the required changes
in the environment and the adaptation workflow, which

defines the actions involved in the adaptation. The
explicit specification of rules and the separation of
the rules from the reactivity mechanism allows us to
change the adaptation rules without recompiling the
application. It also allows changing the implementation
without affecting the rules. Moreover, it allows having
different implementations for different environments
using a unified adaptation mechanism.

3. Policy Driven Adaptation: Adaptation rules are
regulated, controlled, and restricted by security,
business, and safety policies. Time constraint policies
can be defined to regulate self-adaptations and service
adaptations. Safety policies can be defined to decide
whether or not adaptations should take place and to
select one adaptation from many possible ones. Safety
policies ensure that the reactions to context changes
do not introduce hazards in the environment. Security
policies can be defined to ensure that only authorized
users will get context information and cause reactions
in the environment.

4. Formal Analysis: Context, awareness (based on
situation evaluation), and adaptation are the basis
of context-aware systems. They are defined as first
class architectural elements in our framework and
are embedded in the framework components. We
can utilize the formal component-based development
approach presented in [46] to implement a system
developed under our framework. The significance
of this approach is that behavior protocols of the
design components are automatically generated by
the methods described in [46]. The behavior model
of a component is an automaton, extended with
context, awareness (based on situation evaluation),
and adaptation rules. The compositions of all these
automata can be subject to model-checking, as
explained in [46], to verify safety and security
properties of the implemented context-aware system.
We are not aware of any other context-aware
framework that allows formal verification.

7. Conclusion

The essence of this work is in defining a formal CAF and a
component based methodology for constructing it. The CAF
implementation is robust enough to allow the development of
any context-aware application. The methodology introduces a
formal process to perceive context and consequently adapt to
it. The process consists of (1) identifying Sensors, (2) defining
Context, (3) defining Context Situations, (4) identifying
Actuators, (5) defining Reactions, (6) defining Policies, and
(7) defining Adaptations. A summary of our contribution in
meeting this process requirements is given below.

• A Situation Expression Language is developed to
introduce situation expressions in the system. Based

21 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



Table 8. Comparison Between Context-Aware Approaches Part-1

Study [45] [26] [25] [5]
Context Formalism Y X X X
Context Abstraction Y X Y X
Sensors Abstraction X Y Y X
Actuators Abstraction X X X X
Communications Y X X Y
Data Transformers X X X X
Approach Type G DS DS DS
Policies X X X X
Adaptation Formalism Y X Y X

X represents that the study did not address the issue, Y represents that it did. DS: represents Domain-specific, G: represents
Generic approaches.

Table 9. Comparison Between Context-Aware Approaches Part-2

Study [50] [23] [34] [51]
Context Formalism Y Y Y X
Context Abstraction X X Y Y
Sensors Abstraction Y Y X Y
Actuators Abstraction X Y X Y
Communications Y X X X
Data Transformers X X X X
Approach Type DS G G G
Policies X X X X
Adaptation Formalism Y X Y X

X represents that the study did not address the issue, Y represents that it did. DS: represents Domain-specific, G: represents
Generic approaches.

Table 10. Comparison Between Context-Aware Approaches Part-3

Study [9] [8]
Context Formalism X X
Context Abstraction X X
Sensors Abstraction Y Y
Actuators Abstraction Y X
Communications Y X
Data Transformers X X
Approach Type DS DS
Policies X Y
Adaptation Formalism X X

X represents that the study did not address the issue, Y represents that it did. DS: represents Domain-specific, G: represents
Generic approaches.

on the formal syntax valid strings in the language are
accepted as situations. Thus, the semantics behind the
aggregation of context information is captured.

• A Situation Reasoner is implemented for inferring
situations that exist in a context.

• The Sensor Listener, Actuator Controller, and Trans-
lator defined in component design give the ability to
deal with different types of sensors and actuators, and
translate data between different formats.

• The Sensor Verifier in component design provides the
CAF the ability to formally verify sensor readings.

• The communication between all CAF components is
asynchronous and all based on the Observer Design
Pattern. The communication with the sensors and the
actuators are done thorough a Connector, defined in
Section 3, to support different methods and protocols
of communications.

22 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



• A formal definition of the Workflow Expression
Language has been provided. The language supports
the introduction of execution policies as workflow
constraints. The triggering of reactions are always
verified with respect to execution policies.

The introduction of Situation Expression Language to
express sophisticated context situations, and the introduction
of Workflow Expression Language to formally define the
execution flow of adaptations and the domain constraints
defined as policies are novel, new and quite powerful to
deal with dynamic contextual changes. Such programming
language descriptions are both formal and allow efficient run
time execution.

An analysis presented in Section 6 has revealed many
inadequacies in the existing approaches for constructing
context-aware applications. Given the current status and
the trend in pervasive and mobile computing applications,
our generic framework architecture with its default features
can satisfy most of the needs of software developers. Our
approach also empowers software developers to introduce
special awareness and adaptation capabilities as plug-ins, on
top of existing features.

We observe that the design and implementation of our
framework have three important quality aspects.

• Reusability: The component-based architecture for
the framework allows us to define each component
separately as an autonomous unit of deployment. That
gives us the ability to reuse framework components
in other systems to perform similar tasks. A prime
example is the Workflow language which can be reused
or adapted for several applications, whether or not they
are context-dependent.

• Testability: The components in our framework have
well defined interfaces, which allows us define
independent unit tests for each component with stubs
or proxies. Integration testing of the framework
will require both incremental testing and formal
verification.

• Scalability: Our design is scalable in different aspects:
The design is interface-driven, which separates the
architecture from the implementation and allows
developers to introduce an enhanced implementation
of specific components without affecting the overall
process. The Situation Expression Language provides
Reasoner Extender as extension points to the language
capabilities.

• Performance: A context-aware application, when
deployed in a distributed network might face with
resource limitations, say battery power or limited
computing power of hand-held devices. In our
implementation dedicated servers provide the data and
computing power, say for replanning the route for a

salesperson. The hand-held devices communicate with
servers.

For mobile applications as well as for traditional service-
oriented applications that allow multiple sensors and mobile
devices an important issue of concern is power conservation.
This issue needs to be addressed separately. Power-
conserving protocols and data sharing strategies between
mobile platforms and servers must be developed. These can
be plugged in to our framework through different connectors
without much effort.

Acknowledgement
This research is partly supported by a grant awarded to
Vangalur Alagar from Natural Sciences and Engineering
Research Council (NSERC), Canada, under its Discovery
Grant Program. Also this research is supported by three
research grants awarded to Kaiyu Wan. These grants are
awarded by National Natural Science Foundation of China
(NSF China Project Number 61103029), Natural Science
Foundation of Jiangsu Province (NSFJ), China, and XiŠan
Jiaotong-Liverpool University, Suzhou, China (Research
Development Funding Project Number 2010/13). We thank
the reviewers for their valuable comments.

Appendix
The grammar for CSEL is shown in Appendix A, Figure 11.
The root of the grammar is “Situation”, which can be either a
Compound Situation expressed as a situation expression (rule)
over dimensions and other situations, or a Literal Situation
which is expressed as a situation expression over dimensions
only. SituationToken is an identifier representing a single
situation name. Literal Situation is used to define a dimension
expression inside a situation expression. The purpose of
Dimension rule is to make sure that each dimension
expression starts with circle braces () which eliminates any
ambiguity when parsing these roles. The dimension rules
allow logical operators, comparison operators, and arithmetic
operators. In addition, user defined functions are allowed. The
grammar for AWPEL is shown in Appendix B, Figure 12. The
root rule for the language is the Workflow rule. The workflow
is simply a statement collection, defined as a recursive rule
over the statement rule. This means that each adaptation
can contain one statement or more. The Statement rule is
the main bulk of the workflow language. The Workflow
Expression Language supports IF ELSE Statement, While
Statement, For Statement, Execute Statement and Brace
Statement, a statement enclosed in braces. Except for Execute
statement the rest of the statements have semantics as in
a programming language. The condition in IF and While
Statements may either enforce a policy check or require that
a logical expression defined over other conditions remains
true. Policy name is an identifier that starts with a $ sign.
If a policy name is part of a statement then the execution
policy referred by it is selected in the workflow. Each policy

23 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



Table 11. Context Free Grammar for Situations in CSEL

〈Situation〉 ::= 〈SituationRule〉 | 〈LiteralExpression〉
〈SituationRule〉 ::= 〈ANDSituationRule〉 | 〈ORSituationRule〉

| 〈NOTSituationRule〉 | 〈LiteralExpression〉 | SITUATIONTO-
KEN

〈ANDSituationRule〉 ::= 〈SituationRule〉 ‘AND’ 〈SituationRule〉
〈ORSituationRule〉 ::= 〈Situation〉 ‘OR’ 〈SituationRule 〉
〈NOTSituationRule〉 ::= ‘NOT’ 〈SituationRule〉
〈LiteralExpression〉 ::= 〈Dimension〉
〈Dimension〉 ::= 〈DimensionRule〉
〈DimensionRule〉 ::= 〈BraceDimension〉 | 〈ANDDimensionRule〉

| 〈ORDimensionRule〉
| 〈FUNCDimensionRule〉 | 〈NOTDimensionRule〉
| 〈ADDDimensionRule〉
| 〈DIVDimensionRule〉 | 〈SUBDimensionRule〉
| 〈MULDimensionRule〉
| 〈EqualDimensionRule〉 | 〈NotEqualDimensionRule〉
| 〈BiggerDimensionRule〉
| 〈BiggerOrEqualDimensionRule〉 | 〈SmallerDimensionRule〉
| 〈SmallerOrEqualDimensionRule〉
| 〈DimensionToken〉 | 〈DimensionValue〉

〈ParamList〉 ::= ‘,′ 〈Param〉 | 〈Param〉
〈Param〉 ::= DIMENSIONTOKEN | DIMENSIONVALUE
〈ANDDimensionRule〉 ::= 〈DimensionRule〉 ’AND’ 〈DimensionRule〉
〈FUNCDimensionRule〉 ::= FUNCTIONNAME ′[′ 〈ParamList〉 ′]′
〈ORDimensionRule〉 ::= 〈DimensionRule〉 ′OR′ 〈DimensionRule〉
〈IMPLIESDimensionRule〉 ::= 〈DimensionRule〉 ′IMP LIES ′ 〈DimensionRule〉
〈NOTDimensionRule〉 ::= ’NOT’ 〈DimensionRule〉
〈ADDDimensionRule〉 ::= 〈DimensionRule〉 ‘+′ 〈DimensionRule〉
〈DIVDimensionRule〉 ::= 〈DimensionRule〉 ‘/ ′ 〈DimensionRule〉
〈MULDimensionRule〉 ::= 〈DimensionRule〉 ‘∗′ 〈DimensionRule〉
〈SUBDimensionRule〉 ::= 〈DimensionRule〉 ‘−′ 〈DimensionRule〉
〈BiggerDimensionRule〉 ::= 〈DimensionRule〉 ‘ >′ 〈DimensionRule〉
〈BiggerOrEqualDimensionRule〉 ::= 〈DimensionRule〉 ‘ >=′ 〈DimensionRule〉
〈SmallerDimensionRule〉 ::= 〈DimensionRule〉 ′ <′ 〈DimensionRule〉
〈SmallerOrEqualDimensionRule〉 ::= 〈DimensionRule〉 ‘ <=′ 〈DimensionRule〉
〈EqualDimensionRule〉 ::= 〈DimensionRule〉 ‘ ==′ 〈DimensionRule〉
〈NotEqualDimensionRule〉 ::= 〈DimensionRule〉 ‘! =′ 〈DimensionRule〉

check statement is a call to a user defined function that returns
true if the policy is valid, returns false otherwise. The Execute
Statement is used for triggering reactions. Reactions are user
defined functions, and are identified with their names. Each
reaction may have zero or more parameters that are either user
supplied value or dimension context information.

References

[1] SCHILIT, B., ADAMS, N. and WANT, R. (1994) Context-
aware computing applications. In Proceedings of the 1st
Workshop on Mobile Computing Systems and Applications
(IEEE Computer Society): 85–90.

[2] BIEGEL, G. and CAHILL, V. (2004) A framework for
developing mobile, context-aware applications. In Proceedings

of the Second IEEE Annual Conference on Pervasive
Computing and Communications: 361–365.

[3] KORPIPÄÄ, P., MANTYJARVI, J., KELA, J., KERANEN, H.
and MALM, E.J. (2003) Managing context information in
mobile devices. IEEE Pervasive Computing 2(3): 42–51.

[4] KRAMER, R., MODSCHING, M., SCHULZE, J. and TEN

HAGEN, K. (2005) Context-aware adaptation in a mobile tour
guide. In CONTEXT 2005 (Paris, France: Springer), LNAI
3554: 210–224.

[5] LOVETT, T., OÂĂŹNEILL, E., POLLINGTON, D. and IRWIN,
J. (2009) Event-based mobile social network services. In
Proceedings of the 11th International Conference on Human-
Computer Interaction with Mobile Devices and Services
(Mobile HCI) (Bonn, Germany).

[6] VAN SETTEN, M., POKRAEV, S. and KOOLWAAIJ, J.
(2004) Context-aware recommendations in the mobile tourist

24 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.



Table 12. Appendix B: Context Free Grammar for Adaptations in AWPEL

〈Workflow〉 ::= 〈StatementCollection〉
〈StatementCollection〉 ::= 〈StatementCollection〉 〈Statement〉

| 〈Statement〉
〈Statement〉 ::= 〈BraceDimension〉 | 〈ANDDimensionRule〉

| 〈WhileStatement〉
| 〈ForStatement〉
| 〈IfStatement〉
| 〈IfElseStatement〉
| 〈BraceStatement〉

〈ParamList〉 ::= ′ , ′ 〈Param〉 | 〈Param〉
〈Param〉 ::= DIMENSIONTOKEN | DIMENSIONVALUE
〈BraceStatement〉 ::= ′(′ 〈Statement〉 ′)′
〈WhileStatement〉 ::= while 〈Condition〉 〈Statement〉
〈ForStatement〉 ::= f or ′(′ 〈NUMBER〉 ′)′ 〈Statement〉
〈IfStatement〉 ::= if 〈Condition〉 〈Statement〉
〈IfElseStatement〉 ::= 〈IfStatement〉

| 〈IfStatement〉 else 〈Statement〉 *preferred
〈PolicyCheck〉 ::= POLICYNAME ′[′ 〈ParamList〉 ′]′

POLICYNAME ′[′ ′]′

〈Condition〉 ::= ′(′ 〈Condition〉 ′)′
| 〈ANDCondition〉
| 〈ORCondition〉
| 〈NOTCondition〉
| 〈PolicyCheck〉

〈ANDCondition〉 ::= 〈Condition〉 AND 〈Condition〉
〈ORCondition〉 ::= 〈Condition〉 OR 〈Condition〉
〈NOTCondition〉 ::= NOT 〈Condition〉
〈Reaction〉 ::= REACTIONNAME ′[′ 〈ParamList〉 ′]′

| REACTIONNAME ′[′ ′]′

〈ExecuteStatement〉 ::= EXEC ′(′ 〈REACTIONNAME〉 ′)′ ′ ;′

application COMPASS. In Adaptive Hypermedia and Adaptive
Web-Based Systems (Springer Berlin / Heidelberg), LNCS
3137, 515–548.

[7] SAMUEL, A., GHAFOOR, A. and BERTINO, E. (2007)
Context-Aware Adaptation of Access Control Policies for
Crisis Management. Technical report, Purdue University.

[8] GOEL, D., KHER, E., JOAG, S., MUJUMDAR, V., GRISS,
M. and DEY, A.K. (2010) Context-aware authentication
framework. In Mobile Computing, Applications, and Services
(Springer Berlin Heidelberg), LNICST 35, 26–41.

[9] BRICON-SOUF, N. and NEWMAN, C.R. (2007) Context
awareness in health care: A review. International Journal of
Medical Informatics 76(1): 2 – 12.

[10] VAJIRKAR, P., SINGH, S. and LEE, Y. (2003) Context-aware
data mining framework for wireless medical application. In
Database and Expert Systems Applications (Springer Berlin /
Heidelberg), LNCS 2736, 381–391.

[11] WAN, K. and ALAGAR, V. (2014) Context-aware security
solutions for cyber physical systems. Mobile Networks and
Application : 1–18.

[12] GUO, B., ZHANG, D. and IMAI, M. (2011) Toward
a cooperative programming framework for context-aware
applications. Personal and Ubiquitous Computing 15: 221–
233.

[13] KJELDSKOV, J. and SKOV, M.B. (2007) Exploring context-
awareness for ubiquitous computing in the healthcare domain.
Personal Ubiquitous Computing 11: 549–562.

[14] MALANDRINO, D., MAZZONI, F., RIBONI, D., BETTINI,
C., COLAJANNI, M. and SCARANO, V. (2010) MIMOSA:
context-aware adaptation for ubiquitous web access. Personal
and Ubiquitous Computing 14: 301–320.

[15] CHEN, H., FININ, T. and JOSHI, A. (2003) An ontology for
context-aware pervasive computing environments. Knowledge
Engineering Review 18(3): 197–207.

[16] HENDRIKSEN, K. and INDULSKA, J. (2006) Developing
context-aware pervasive computing applications: Models and
approach. Pervasive and Mobile Computing 2(1): 37–64.

[17] CAPRA, L., EMMERICH, W. and MASCOLO, C. (2003)
Carisma: Context-aware reflective middleware system for
mobile applications. IEEE Transactions on Software Engineer-
ing 29(10): 929–944.

[18] DE SILVA SANTOS ANDREMCO POORTINGA-VAN WIJNEN,
L.O. and VINK, P. (2007) A service-oriented middleware
for context-aware applications. In Proceedings of MPAC 2007
(Newport Beach, USA).

[19] RAPHIPHAN, P., ZASLAVSKY, A., PRATHOMBUTR, P.
and MEESAD, P. (2009) Context aware traffic congestion
estimation to compensate intermittently available mobile

25 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

A Framework for Developing Context-aware Systems



sensors. In Proceedings of the 10th International Conference
on Mobile Data Management: Systems, Services and
Middleware (MDM ’09) (Taipei, Taiwan): 405–410.

[20] FAHY, P. and CLARKE, S. (2004) Cass - a middleware for
mobile context-aware applications. In Proceedings of MobiSys
Workshop on Context Awareness (Boston, USA).

[21] GAIA (2005). Http://gaia.cs.uiuc.edu/.
[22] GU, T., PUNG, H.K. and ZHANG, D.Q. (2005) A service-

oriented middleware for building context-aware services.
Journal of Network and Computer Applications 28(1): 1–18.

[23] BARDRAM, J. (2005) The java context awareness framework
(JCAF) - a service infrastructure and programming framework
for context-aware applications. In Pervasive Computing
(Springer Berlin / Heidelberg), LNCS 3468, 98–115.

[24] DEY, A., ABOWD, G. and SALBER, D. (2001) A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications. Human-Computer Interaction
16(2-4): 97–166.

[25] GOH, E., CHIENG, D., MUSTAPHA, A.K., NGEOW, Y.C.
and LOW, H.K. (2007) A context-aware architecture for smart
space environment. In Proceedings of the 2007 International
Conference on Multimedia and Ubiquitous Engineering (IEEE
Computer Society): 908–913.

[26] GUI, F., GUILLEN, M., RISHE, N., BARRETO, A., ANDRIAN,
J. and ADJOUADI, M. (2009) A client-server architecture
for context-aware search application. In Proceedings of
the International Conference on Network-Based Information
Systems (NBIS ’09): 539–546.

[27] BALDAUF, M., DUSTDAR, S. and ROSENBERG, F. (2007) A
survey on context-aware systems. International Journal of Ad
Hoc and Upiquitous Computing 2(4): 263–277.

[28] MIRAOUI, M., TADJ, C. and BEN AMAR, C. (2008) Archi-
tectural survey of context-aware systems in pervasive comput-
ing environment. Ubiquitous Computing and Communication
Journal 3(3): 68–76.

[29] GUHA, R. (1995) Context: A Formalization and Some
Applications. Ph.d thesis, Stanford University, USA.

[30] GRINDLE, C., LEWIS, M., GLINTON, R., GIAMPAPA, J.,
OWENS, S. and SYCARA, K. (2004) Automating terrain
analysis: Algorithms for intelligence preparation of the
battlefield. In Proceedings of the Human Factors and
Ergonomics Society 48th Annual Meeting: 533–537.

[31] CAO, H., JIANG, D., PEI, J., HE, Q., LIAO, Z., CHEN,
E. and LI, H. (2008) Context-aware query suggestion by
mining click-through and session data. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’08) (Las Vegas, USA:
ACM): 875–883.

[32] DESERTOT, M., LECOMTE, S., POPOVICI, D., THILLIEZ,
M. and DELOT, T. (2010) A context aware framework
for services management in the transportation domain. In
Proceedings of the 10th Annual International Conference on
New Technologies of Distributed Systems (NOTERE): 157–
164.

[33] ZHENG, Y., LIU, L., WANG, L. and XIE, X. (2008)
Learning transportation mode from raw GPS data for
geographic applications on the web. In Proceeding of the
17th international conference on World Wide Web (WWW ’08)
(Beijing, China: ACM): 247–256.

[34] BEACH, A., GARTRELL, M., HAN, R. and MISHRA, S.
(2010) CAwbWeb: Towards a Standardized Programming

Framework to Enable a Context-Aware Web. Technical report,
Department of Computer Science, University of Colorado at
Boulder.

[35] SHAIKH, Z.A. (2008) Towards design of context-aware sensor
grid framework for agriculture. Engineering and Technology
28(April): 244–247.

[36] LOKE, S.W. (2004) Representing and reasoning with
situations for context-aware pervasive computing. Knowledge
Engineering Review 19(3): 213–234.

[37] WAN, K. (2006) Lucx: Lucid Enriched with Context.
Ph.D. thesis, Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada.

[38] MCCARTHY, J. (1984) Some expert systems need common
sense. In Proceedings of a symposium on Computer culture:
the scientific, intellectual, and social impact of the computer
(New York, USA: New York Academy of Sciences): 129–137.

[39] AKMAN, V. and SURAV, M. (1996) Steps towards formalizing
context. AI Magazine 17(3): 55–72.

[40] WINOGRAD, T. (2001) Architectures for context. Human-
Computer Interaction 16(2-4): 401–419.

[41] WRONA, K. and GOMEZ, L. (2005) Context-aware security
and secure context-awareness in ubiquitous computing
environments. In XXX Autumn Meeting of Polish Information
Processing Society Conference Proceedings: 255–265.

[42] BETTINI, C., BRDICZKA, O., HENRICKSEN, K. and ET AL.
(2010) A survey of context modelling and reasoning
techniques. Pervasive and Mobile Computing 6(2): 161–180.

[43] HNAIDE, S.A. (2011) A Framework for Developing Context-
Aware Systems. Master thesis, Department of Computer
Science and Software Engineering, Concordia University,
Montreal, Canada.

[44] GAMMA, E., HELM, R., JOHNSON, R. and VLISSIDES,
J. (1995) Design Patterns : Elements of Reusable Object
Oriented Software (Addison-Wesley).

[45] WAN, K., ALAGAR, V. and PAQUET, J. (2006) An architecture
for developing context-aware systems. In Modeling and
Retrieval of Context (Springer Berlin / Heidelberg), LNCS
3946, 48–61.

[46] MOHAMMAD, M. and ALAGAR, V. (2011) A formal approach
for the specification and verification of trustworthy component-
based systems. Journal of Systems and Software 84(1): 77–104.

[47] ROMÁN, M., HESS, C., CERQUEIRA, R., RANGANATHAN,
A., CAMPBELL, R.H. and NAHRSTEDT, K. (2002) A
middleware infrastructure for active spaces. IEEE Pervasive
Computing 1(4): 74–83.

[48] BIEGEL, G. and CAHILL, V. (2004) A framework for
developing mobile, context-aware applications. In Proceedings
of the 2nd IEEE International Conference on Pervasive
Computing and Communications (PerCom’04): 361–365.

[49] LERMAN, K. and GALSTYAN, A. (2003) Agent memory
and adaptation in multi-agent systems. In Proceedings of
AAMAS’03: 14–18.

[50] MCCOLGAN, B., MARTIN-COCHER, G. and SHENFIELD, M.
(2010), Method and system for a context aware mechanism
in an integrated or distributed configuration, Patent, Canadian
Intellectual Property Office. Research In Motion Limited.

[51] GUI, N., FLORIO, V.D., SUN, H. and BLONDIA, C.
(2011) Toward architecture-based context-aware deployment
and adaptation. Journal of Systems and Software 84(2): 185
– 197.

26 EAI Endorsed Transactions 
on Context-Aware Systems and Applications 

01-09 2014 | Volume 1 | Issue 1 | e2

Vangalur Alagar  et al.


	1 Introduction
	1.1 Motivation of the Current Work
	1.2 A Rationale for Our Development Approach
	1.3 Contribution

	2 Facts, Contexts, Situations, Policies, and Adaptations
	2.1 Context
	2.2 Situation
	2.3 Policies
	2.4 Adaptation

	3 Architecture
	3.1 Sensor Mechanism (SM)
	3.2 Context Mechanism
	3.3 Adaptation Mechanism
	3.4 Reactivity Mechanism

	4 Case Studies
	4.1 Case Study I: Temperature Control System
	4.2 Case Study II: Salesperson Case Study

	5 Implementation
	5.1 Platform
	5.2 Component Interactions
	5.3 Challenges
	5.4 Case study Implementation
	5.5 Test Results

	6 Related Work
	7 Conclusion



