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ABSTRACT 
Wireless embedded systems, especially life-critical body-area 
networks, need security in order to prevent unauthorized and 
malicious users from injecting traffic and accessing confidential 
data. Coupled with the security costs in system performance and 
power consumption, embedded systems are also restricted by the 
type of security that can fit in their limited memory.  To address 
these issues, we introduce a Dynamic Security System 
(DYNASEC), a novel architecture that ensures message integrity 
and confidentiality in wireless embedded systems. A delay-aware 
heuristic attempts to maximize security levels of different nodes 
throughout the system while ensuring that timing constraints are 
met. This experimental analysis on a reconfigurable 
electrocardiogram (ECG) application validates the efficacy of the 
DYNASEC architecture in a body area network. Our experiments 
demonstrate that DYNASEC enables lightweight medical 
embedded systems to dynamically optimize security levels to 
meet timing constraints in a body sensor network. 
 
Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aids 

General Terms 
Performance, Design, Experimentation, Security. 

Keywords 
Performance evaluation, security, embedded systems, body area 
networks, medical applications, adaptable systems. 

1. INTRODUCTION 
Security is becoming increasingly important in wireless 
embedded systems, especially when the data being transmitted is 
life-critical and/or confidential via legal mandate. This is most 
important in body-area networks where motes embedded on the 
patient’s body may monitor a potentially fatal health condition. 
Security is challenging, however, because embedded systems 
typically have limited battery supplies and processing power 
coupled with the fact that real-time applications have stringent 
timing constraints that cannot be violated. Within the security 
community, the trend has been toward stronger cryptographic 
algorithms with increased processing requirements; meanwhile, 
increased wireless communication rates have placed further strain 
on battery lifetimes. The result is a security-processing gap, a 
term which recognizes the collective disparity between security 

requirements and the processing capabilities of embedded 
processors [12]. Wireless communication in networked embedded 
systems, furthermore, is limited by bandwidth and power. Such 
systems must minimize the number of packets sent in order to 
conserve precious power resources.  
Wireless networks are more vulnerable to security attacks than 
wired networks, because the malicious intruder simply needs to 
activate an antenna to eavesdrop or inject data into a network 
rather than physically compromising a wire. Consequently, data 
integrity and confidentiality must be ensured while maintaining 
network availability; however, approaches to security in 
embedded systems must deviate from those employed for wireless 
networks due to limited capabilities of the nodes in the network. 
As an example, consider a wireless network in the healthcare 
industry. The Health Insurance Portability and Accountability Act 
(HIPAA) mandates that healthcare professionals “ensure the 
integrity and confidentiality of the information” and “protect 
against any reasonably anticipated threats or hazards to the 
security or integrity of the information” [7].  If an abnormal 
health-related activity is detected, then additional processing 
power is required and extra packets must be transmitted to take 
care of the situation within hard real-time constraints. The cost of 
security under normal operating conditions may be too high to 
allow the deadline to be met. To address this issue, we propose a 
reconfigurable approach that lowers the strength of the security 
while enabling the system to reach its deadline; however, the 
security should be lowered no further than the absolute minimum 
that allows the system to meet its deadline.   
To meet these needs, we introduce the Dynamic Security System 
(DYNASEC), a reconfigurable security architecture for the Sensor 
Operating System (SOS). SOS provides code migration, a service 
that enables one embedded system to download a program or 
module to execute on another [5]. Unfortunately, this makes SOS 
particularly vulnerable to attacks on authentication, whereby an 
attacker injects a malicious program onto a node which will then 
execute it. This type of attack can be countered by using 
symmetric key cryptography that authenticates each message with 
a MIC (Message Integrity Code), a secure checksum of the 
message. Snooping is prevented by encrypting the messages with 
either the Skipjack or RC5 ciphers. DYNASEC varies the strength 
of the cryptographic algorithms used by SOS in order to ensure 
that real-time constraints are met.  
The primary contributions of this paper include: 
(1) A lightweight delay-aware heuristic that selects the maximum 

level of security while meeting timing constraints.  
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(2) An experimental analysis in a simulation that establishes 
DYNASEC’s ability to maximize security while meeting 
timing constraints.  

The overall goal of DYNASEC is to dynamically maximize 
security settings in order to meet timing constraints. This sets 
DYNASEC apart from other established security protocols for 
embedded networks that have not addressed timing constraints in-
depth [8][4][6]. DYNASEC’s reconfigurable security architecture 
has two modes: (1) integrity and (2) integrity+encryption. 
Integrity verifies that messages were not modified in transit; 
encryption ensures that only authorized nodes can read the 
information, which is broadcast across an otherwise insecure 
wireless channel. DYNASEC also implements two lightweight 
cryptographic protocols: Skipjack and RC5. 

2. RELATED WORK 
DYNASEC meets the security and power utilization needs of the 
next generation of networked embedded systems. One of the most 
important design challenges for such systems is flexibility [12]. 
DYNASEC allows an embedded system sufficient flexibility to 
adapt to changing system requirements and to reprogram the 
embedded device via wireless code migration. Prior research has 
focused on implementing optimal security protocols on embedded 
systems or analyzing power consumption on embedded systems 
[3][16][8][4][6][11]. Some papers have also mentioned flexibility, 
reconfigurability, and adaptive execution of security protocols as 
future work [14][11] but have not tackled the problem directly.  
TinyPK [16] is a security scheme that provides authentication and 
key exchange using RSA encryption for embedded systems.  
Malan et al. [8] describe the first known implementation of 
elliptic curve cryptography (ECC) for embedded systems on the 
mica2 mote and Gura et al. [4] describe an implementation of 
RSA and ECC on mica2 motes using optimized assembly code.  
TinySec [6] is a link layer security scheme for wireless sensor 
networks using authentication and Skipjack and RC5 encryption. 
DYNASEC provides similar functionality as TinySec in that it 
encrypts data bit by bit as it is transported over the radio. In 
contrast to all the above security systems, DYNASEC changes the 
cryptographic algorithms depending on timing constraints. In 
DYNASEC, if timing constraints do not permit the encryption to 
be used, it can be swapped in favor of a lighter-weight protocol. 

3. DYNASEC SYSTEM DESIGN 
DYNASEC offers link-by-link integrity and encryption that has 
been implemented in a SOS [5].  SOS uses a message passing 
system to sever ties between the core OS and individual 
applications (modules). SOS can load or remove modules at 
runtime without interrupting the core OS, and the modules 
support autonomous message handling. To ensure integrity, 
DYNASEC computes a Message Integrity Code (MIC) over the 
header and payload of the packet. The payload can also be 
encrypted after the MIC has been computed.  
DYNASEC was implemented in the SOS kernel. Kernel space 
was chosen instead of user space because it is more secure against 
malicious code. Unfortunately, this increased the size of the 
kernel, from 17% of internal memory originally to 39%. The 
reason for the increased kernel size in DYNASEC is the tables 
(e.g. s-boxes) required for each cryptographic algorithm; the code 
size is not particularly large. This highlights the need for new 

cryptographic algorithms for memory-constrained devices that 
specifically attempt to minimize the size of the data segment; this 
issue, however, is beyond the scope of DYNASEC. 
DYNASEC uses cipher block chaining (CBC-MIC), for 
computing and verifying MICs. CBC-MIC is efficient and fast, 
relies on a block cipher, and minimizes the number of 
cryptographic primitives implemented in memory. CBC-MIC is 
provably secure, but the messages must be a standard size.  
DYANSEC currently supports the Skipjack [1] and RC5 [13] 
ciphers; the implements are based on those described by Karloff 
et al. [6]. RC5 is a stronger cryptographic algorithm than 
Skipjack, and it also runs faster.  However, RC5 requires that a 
pre-computed key schedule to be stored in memory taking up 104 
bytes for each key, 2.6% of the total RAM in a Mica2 mote.  RC5 
is patented, however, making it less appealing for open-source 
and academic projects. 
An important design decision was to keep the original message 
structure allowing for backwards compatibility with pre-existing 
SOS applications.  As a message passing system, SOS uses the 
same message structure for all kinds of communication: (1) 
between different nodes using the network and (2) between 
different modules within the same node. The new DYNASEC 
fields were incorporated in the original SOS message format; 
however, additional changes were required to the radio driver, 
since the new fields transmitted over the radio are dependent on 
the security mode used by the application.  
Data is encrypted as it was sent over the radio bit by bit. The 
advantage of encrypting the data over the radio is to avoid saving 
two large data structures for the encrypted and decrypted data in 
memory. This imposes the constraint that the data cannot spend 
more time being encrypted/decrypted than it takes to send a byte.  
If only authentication is set, then the IV is not transmitted; the 
MIC is computed over the packet, headers and payload. If 
encryption is set, then the IV and the MIC are transmitted, and 
only the payload is encrypted.  When receiving a packet, the code 
waits for the reception of the flag byte. When this byte is 
received, the appropriate bits are checked and, depending on the 
security modes used to send the packet, the MIC/de-encryption 
routines may be called. 
The Mica2 radio driver was modified for to accommodate the 
different security modes. The Mica2 radio driver in SOS is a state 
machine, with different submachines for transmission and 
reception. New states were added to each submachine to handle 
authentication and encryption in the radio.  

4. MEDICAL APPLICATION 
DYNASEC is designed for resource-constrained devices. Body 
Area Networks (BANs) are typically comprised of lightweight 
medical systems with embedded sensors to monitor physiological 
activities of the body or to probe the outside environment. 
Ubiquitous BANs may contain non-invasive and in-vivo sensors. 
We focus specifically on the electrocardiogram (ECG) sensor.  

4.1 Heart Detection Algorithm 
A distinctive characteristic of the ECG signal is that transmitting 
the waveform of the ECG takes up a lot of bandwidth.  When 
several ECG waveforms are transmitted over the network, the 
heavy network load of the waveforms reduces throughput in the 
network. Additionally, high noise interference from movement of 



the patient results in an undecipherable waveform created while 
signal processing on the sensor. Therefore, a lightweight ECG 
heartbeat extraction algorithm was developed to extract the 
heartbeat of the patient from the ECG waveform and to be 
resilient to noise. The ECG extraction algorithm is based on the 
SQRS algorithm [10], which can be found on MIT’s physionet 
website [9].  
The algorithm has been tailored for ECG waveforms with 
simulated noise superimposed on the underlying signals. The 
thresholding method was made more robust to noise experienced 
on the ECG leads. The SQRS algorithm extracts features using 
the derivation of the waveform to classify them. We have 
observed that SQRS occasionally misclassifies features due to 
noise.  To address this issue, our implementation employs a 
moving threshold with lower and upper values that were 
independent of one another. This makes our algorithm more 
robust to the specific types of noise experienced on embedded 
ECG devices. Due to memory constraints, additional noise 
classification was removed from the algorithm to reduce its size. 

4.2 Granularity of ECG waveform 
Increasing the frequency of the ECG waveform captures more 
data and reveals a more precise waveform; however, if several 
ECG devices are in the vicinity, a lower frequency could improve 
the overall network capacity due to congestion; in an application 
such as triage, this is a valid assumption If an electronic triage 
system was remotely monitoring the vital signs of many patients, 
many ECG motes would be in close vicinity to one another. 

5. EXPERIMENTATION 
We used simulation to analyze the power utilization and 
processing delay of DYNASEC running on a Mica2 mote. We 
analyzed how the different levels of security and various packet 
sizes affect delay and power. The code was run using Avrora [15], 
which finds a good medium between cycle-accurate simulation 
and lower-granularity functional simulation. Avrora recognizes 
that many embedded systems go to sleep on a regular basis and 
triggers simulation only when an event is at the head of the queue. 
Avrora is cycle-accurate and models all low-level events.  

DYNASEC has four levels of security: L0: plaintext; L1: MIC 
authentication; L2: Skipjack encryption with a 64 bit key; and L3: 
RC5 encryption with a 64 bit key. Each level of security has a 
processing delay due to encryption and decryption that increases 
with the security level. DYNASEC changes the amount of 
information that is transmitted and the type of encryption used in 
order to meet timing constraints in a network. DYNASEC 
transmits data in three sizes: 1 byte for heart rate, 50 bytes for low 
ECG waveform sample frequency, and 100 bytes for high ECG 
waveform sample frequency. 

5.1 Processing Delay Measurements 
The processing delays of the four security levels were measured 
at different granularities (100 bytes, 50 bytes, and 1 byte) for 
normalized time periods. Fig. 1 shows that modifying the packet 
size has a large effect on the delay. Switching from the heart rate 
extraction algorithm to a waveform reduces the number of packets 
that can be transmitted by approximately 75 fold. When the 
network cannot support all the data, DYNASEC selects a lower 
security level. In the case when one node has a large amount of 

high priority data, DYNASEC can redistribute the security such 
that all nodes meet their deadlines. By optimizing security, 
DYNASEC allows a healthcare provider to extract enough 
information to effectively monitor patients and still comply by 
HIPAA guidelines. Maximal security at all times would be ideal, 
but is unfortunately unrealistic for the current generation of 
wireless embedded devices employed in BANs. 

Processing Delay of DYNASEC Security Levels 
with Different Packet Sizes for the ECG 

Application
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Figure 1: Processing Delay of DYNASEC Security Levels with 

Different Packet Sizes for the ECG application 
 

5.2 Dynamic Security Allocation 
Dynamic security allocation is modeled as a budgeting problem 
on a directed acyclic graph (DAG) representing communication 
links in a network. It is assumed that data is collected at sensors 
and routed through acyclic paths toward a centralized collection 
of nodes for further processing.  
Let V = {v1, …, vN} be the nodes in the network. Communication 
links in the network are organized as a DAG G(V, E), where V is 
the set of nodes and E is a set of edges. An edge (vj, vk)∈E 
indicates the existence of a communication link from vj to vk. The 
delay of e, denoted D(vj, vk) is the time required to transmit a 
packet across the link from vj to vk.  
Each security algorithm si has an associated delay di, the time 
required to encrypt the data. qi is the probability that si will be 
broken by an adversary at a single node and pi = 1 – qi is the 
probability that si will not broken. We assume that there are M 
different security algorithms. In the case of this paper, M = 4.  
Let cji = 1 if node vj selects security algorithm si and 0 otherwise. 
A legal solution to the problem defined above assigns exactly one 
security algorithm to each node in the network.  

Definition 1: The security of a system, S, is defined to be the 
aggregate probability that there are no security failures for node i 
to j for security level k: 
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Definition 2: A valid path P is a sequence of nodes P = <v1, …, 
vK> such that there is a link from vi to vj, 1 < i, j < K  and where 
the beginning node is the designated source and the ending node 



is the designated destination. The delay of P, denoted D(P), is 
computed as follows, and includes the delay of the security 
algorithm, which is performed at vi.   Each edge from i to j has a 
link quality l.  This link quality l represents the number of packets 
that can make it to j without retransmissions in a time period on 
path k.  The delay is represented by the delay of the link quality 
times the processing delay of the security algorithm. 
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In a DAG, a source is a node with no predecessors and a sink is a 
node with no successors. The longest possible line of 
communication in a DAG is from a source to a sink. Let P* be the 
set of all paths originating on sources and terminating on sinks.  
Lastly, T is defined to be a global timing constraint, which must 
be met in order for the embedded system to transmit the necessary 
packets in order to respond to an anomaly.  
The problem statement and formulation are as follows: 

Problem Statement: Given a network modeled as a DAG 
G(V,E), assign security algorithm si to each node such that the 
overall security of the system is maximized while meeting the 
global timing constraint. 

Problem Formulation: 

 Maximize: S            (3) 

 Subject to the Following Constraints: 
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Constraint (4) ensures that exactly one security algorithm is 
assigned to each node. Constraint (5) ensures that each source-to-
sink path in the DAG satisfies the timing constraint. Since every 
possible communication-path is a sub-path of some source-to-sink 
path, constraint (5) satisfies every possible communication path in 
the DAG.  Constraint (6) guarantees that the delay is a positive 
value.  Constraint 7 guarantees that the flow fji is less than or 
equal to the link capacity lji.  Constraint 8 guarantees that the 
flows going into node j is equal to the flow exiting node j. 

5.2.1 Local Decisions to Improve Propagation Delay 
Currently, a central node has additional processing power and 
serves as a sink.  The sink uses linear programming to solve the 
constraints using Cplex, an optimization software package.  The 
solver will ensure that constraint (4) is satisfied and objective (3) 
is maximal.   
However, since our system is delay sensitive, the propagation 
time from the central node to the nodes is undesirable.  Therefore, 

the algorithm is not run again unless there is at least a 15% 
change in link quality.  If there is more than a 15% change in link 
quality, the node temporary makes a decision for the best path 
until the new solution from the central node is propagated to all 
the nodes in the network.  When a node makes a local decision, it 
uses the link quality as a metric for choosing the next hop and 
modifies the security level according to this metric to meet timing 
constraint (4).  In this algorithm, each node dynamically lowers 
its security level if it cannot achieve a desired level of throughput, 
and dynamically raises its security level if its current throughput 
level is significantly higher than the minimal threshold.  Upon 
receiving the solution from the central node, the local node 
conforms to the optimal solution.  Notice that this temporary 
solution may result in bandwidth being wasted in the overall 
network.  Even though, modifying the packet size dynamically is 
essential for a functional system, it is not an optimal solution 
because in an optimal solution the data should be transmitted at 
the desired packet size from the source.  Therefore, the network 
will temporarily be in a state of non-optimality until the optimal 
solution is routed to all nodes. 

5.2.2 Experimentations 
A central node calculates the optimal security level that each node 
connecting node should use.  To analyze this delay, a simple 
network configuration was analyzed in Cplex using the 
formulation given above.  Constraint 3 was converted to a 
summation for an integer linear program using the following 
derivation. 
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E is the summation of all edges.  From the derivation above, one 
can see that maximizing S is equivalent to minimizing the second 
term, the summation of the cikjqij.   
Three types of types of links were assigned in the network: a well 
connected link, a lossy link, and a very lossy link.  A well 
connected link was calculated as a link where approximately 80% 
of the packets made it to the desired node without 
retransmissions.  A lossy link had approximately 50% of its 
packets successfully delivered to the receiving node.  A very 
lossy link was calculated as a link where an average of 20% of the 
packets was received at the end node.  All link quality were 
generated using triangular distribution peaking at 0.80, 0.50, or 
0.20.  Well connected links were links whose difference in node 
value was between 0 to 30% of the total nodes in the network.  
Lossy links were links whose node value difference ranged 
between 31% and 60% of the total nodes in the network and very 
lossy links were links whose difference in node value were 
greater than 61%.   
The solution given by the solver was a continuous solution.  The 
continuous solution was mapped to the discrete values for the 



delays of the security levels. Mapping continuous values to 
discrete values is common practice in linear programming and has 
been done in similar research [2].  The mapping of the continuous 
delays to the discrete delays for the security levels were 
reasonable for the network constructed.  The algorithm ran very 
quickly in Cplex averaging 0.00 seconds for a small number of 
nodes. This preliminary experimentation verifies that feasibility 
of the algorithm for a small number of nodes (less than ten nodes) 
with one source and one destination node.  This small number of 
nodes is reasonable for a small body area network, but future 
work includes verifying that this algorithm is scalable.  The 
algorithm should work with multiple sources and destinations and 
also have a reasonable computational delay in Cplex with a larger 
set of nodes.   

6. CONCLUSIONS  
In conclusion, an authentication and encryption scheme with four 
levels of security was created in DYNASEC.  The application 
layer had two distinct security modes: (1) authentication and (2) 
authentication and encryption.  A reconfigurable security system 
was presented that switched between different security levels and 
packet sizes depending on timing constraints.  DYNASEC’s 
architecture gives the embedded system the flexibility to adapt to 
the dynamic environment where it is deployed.  Our 
reconfigurable application uses the heart rate detection algorithm 
to modify its packet size in response to network and system 
conditions.  DYNASEC takes advantage of SOS’s unique 
architecture and use the SPI interrupt handler to send only the 
necessary headers over the network.   Other operating systems for 
embedded systems, such as TinyOS, cannot dynamically change 
the header length without manually reprogramming the embedded 
system.  DYNASEC’s adaptability gives systems a reasonable 
amount of security while meeting timing constraints. 
Future work will also augment my current analysis with 
experimentation in a testbed.  In particular, we will compare 
measurements done in the simulation with testbed measurements.  
we will also measure the delay incurred between the time that the 
node makes a local decision and receives the global decision from 
the central node.  In addition, a distributed solution for dynamic 
security allocation on lightweight embedded systems will be 
investigated and the delay and efficiency of a global and 
distributed solution will be compared. 
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