
Delay Aware, Reconfigurable Security for Embedded
Systems

Tammara Massey1, Philip Brisk2, Foad Dabiri1, Majid Sarrafzadeh1

1University of California, Los Angeles,
Computer Science Dept.,
 Los Angeles, CA 90095

{tmassey, dabiri, majid}@cs.ucla.edu

2Ecole Polytechnique Federale de Lausanne,
Processor Architecture Laboratory.,
 Lausanne, Switzerland, CH-1015

philip.brisk@epfl.ch

ABSTRACT
Wireless embedded systems, especially life-critical body-area
networks, need security in order to prevent unauthorized and
malicious users from injecting traffic and accessing confidential
data. Coupled with the security costs in system performance and
power consumption, embedded systems are also restricted by the
type of security that can fit in their limited memory. To address
these issues, we introduce a Dynamic Security System
(DYNASEC), a novel architecture that ensures message integrity
and confidentiality in wireless embedded systems. A delay-aware
heuristic attempts to maximize security levels of different nodes
throughout the system while ensuring that timing constraints are
met. This experimental analysis on a reconfigurable
electrocardiogram (ECG) application validates the efficacy of the
DYNASEC architecture in a body area network. Our experiments
demonstrate that DYNASEC enables lightweight medical
embedded systems to dynamically optimize security levels to
meet timing constraints in a body sensor network.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids

General Terms
Performance, Design, Experimentation, Security.

Keywords
Performance evaluation, security, embedded systems, body area
networks, medical applications, adaptable systems.

1. INTRODUCTION
Security is becoming increasingly important in wireless
embedded systems, especially when the data being transmitted is
life-critical and/or confidential via legal mandate. This is most
important in body-area networks where motes embedded on the
patient’s body may monitor a potentially fatal health condition.
Security is challenging, however, because embedded systems
typically have limited battery supplies and processing power
coupled with the fact that real-time applications have stringent
timing constraints that cannot be violated. Within the security
community, the trend has been toward stronger cryptographic
algorithms with increased processing requirements; meanwhile,
increased wireless communication rates have placed further strain
on battery lifetimes. The result is a security-processing gap, a
term which recognizes the collective disparity between security

requirements and the processing capabilities of embedded
processors [12]. Wireless communication in networked embedded
systems, furthermore, is limited by bandwidth and power. Such
systems must minimize the number of packets sent in order to
conserve precious power resources.
Wireless networks are more vulnerable to security attacks than
wired networks, because the malicious intruder simply needs to
activate an antenna to eavesdrop or inject data into a network
rather than physically compromising a wire. Consequently, data
integrity and confidentiality must be ensured while maintaining
network availability; however, approaches to security in
embedded systems must deviate from those employed for wireless
networks due to limited capabilities of the nodes in the network.
As an example, consider a wireless network in the healthcare
industry. The Health Insurance Portability and Accountability Act
(HIPAA) mandates that healthcare professionals “ensure the
integrity and confidentiality of the information” and “protect
against any reasonably anticipated threats or hazards to the
security or integrity of the information” [7]. If an abnormal
health-related activity is detected, then additional processing
power is required and extra packets must be transmitted to take
care of the situation within hard real-time constraints. The cost of
security under normal operating conditions may be too high to
allow the deadline to be met. To address this issue, we propose a
reconfigurable approach that lowers the strength of the security
while enabling the system to reach its deadline; however, the
security should be lowered no further than the absolute minimum
that allows the system to meet its deadline.
To meet these needs, we introduce the Dynamic Security System
(DYNASEC), a reconfigurable security architecture for the Sensor
Operating System (SOS). SOS provides code migration, a service
that enables one embedded system to download a program or
module to execute on another [5]. Unfortunately, this makes SOS
particularly vulnerable to attacks on authentication, whereby an
attacker injects a malicious program onto a node which will then
execute it. This type of attack can be countered by using
symmetric key cryptography that authenticates each message with
a MIC (Message Integrity Code), a secure checksum of the
message. Snooping is prevented by encrypting the messages with
either the Skipjack or RC5 ciphers. DYNASEC varies the strength
of the cryptographic algorithms used by SOS in order to ensure
that real-time constraints are met.
The primary contributions of this paper include:
(1) A lightweight delay-aware heuristic that selects the maximum

level of security while meeting timing constraints.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom useis granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.BODYNETS 2007, June 11-13, Florence, ItalyCopyright © 2007 ICST 978-963-06-2193-9DOI 10.4108/bodynets.2007.172

(2) An experimental analysis in a simulation that establishes
DYNASEC’s ability to maximize security while meeting
timing constraints.

The overall goal of DYNASEC is to dynamically maximize
security settings in order to meet timing constraints. This sets
DYNASEC apart from other established security protocols for
embedded networks that have not addressed timing constraints in-
depth [8][4][6]. DYNASEC’s reconfigurable security architecture
has two modes: (1) integrity and (2) integrity+encryption.
Integrity verifies that messages were not modified in transit;
encryption ensures that only authorized nodes can read the
information, which is broadcast across an otherwise insecure
wireless channel. DYNASEC also implements two lightweight
cryptographic protocols: Skipjack and RC5.

2. RELATED WORK
DYNASEC meets the security and power utilization needs of the
next generation of networked embedded systems. One of the most
important design challenges for such systems is flexibility [12].
DYNASEC allows an embedded system sufficient flexibility to
adapt to changing system requirements and to reprogram the
embedded device via wireless code migration. Prior research has
focused on implementing optimal security protocols on embedded
systems or analyzing power consumption on embedded systems
[3][16][8][4][6][11]. Some papers have also mentioned flexibility,
reconfigurability, and adaptive execution of security protocols as
future work [14][11] but have not tackled the problem directly.
TinyPK [16] is a security scheme that provides authentication and
key exchange using RSA encryption for embedded systems.
Malan et al. [8] describe the first known implementation of
elliptic curve cryptography (ECC) for embedded systems on the
mica2 mote and Gura et al. [4] describe an implementation of
RSA and ECC on mica2 motes using optimized assembly code.
TinySec [6] is a link layer security scheme for wireless sensor
networks using authentication and Skipjack and RC5 encryption.
DYNASEC provides similar functionality as TinySec in that it
encrypts data bit by bit as it is transported over the radio. In
contrast to all the above security systems, DYNASEC changes the
cryptographic algorithms depending on timing constraints. In
DYNASEC, if timing constraints do not permit the encryption to
be used, it can be swapped in favor of a lighter-weight protocol.

3. DYNASEC SYSTEM DESIGN
DYNASEC offers link-by-link integrity and encryption that has
been implemented in a SOS [5]. SOS uses a message passing
system to sever ties between the core OS and individual
applications (modules). SOS can load or remove modules at
runtime without interrupting the core OS, and the modules
support autonomous message handling. To ensure integrity,
DYNASEC computes a Message Integrity Code (MIC) over the
header and payload of the packet. The payload can also be
encrypted after the MIC has been computed.
DYNASEC was implemented in the SOS kernel. Kernel space
was chosen instead of user space because it is more secure against
malicious code. Unfortunately, this increased the size of the
kernel, from 17% of internal memory originally to 39%. The
reason for the increased kernel size in DYNASEC is the tables
(e.g. s-boxes) required for each cryptographic algorithm; the code
size is not particularly large. This highlights the need for new

cryptographic algorithms for memory-constrained devices that
specifically attempt to minimize the size of the data segment; this
issue, however, is beyond the scope of DYNASEC.
DYNASEC uses cipher block chaining (CBC-MIC), for
computing and verifying MICs. CBC-MIC is efficient and fast,
relies on a block cipher, and minimizes the number of
cryptographic primitives implemented in memory. CBC-MIC is
provably secure, but the messages must be a standard size.
DYANSEC currently supports the Skipjack [1] and RC5 [13]
ciphers; the implements are based on those described by Karloff
et al. [6]. RC5 is a stronger cryptographic algorithm than
Skipjack, and it also runs faster. However, RC5 requires that a
pre-computed key schedule to be stored in memory taking up 104
bytes for each key, 2.6% of the total RAM in a Mica2 mote. RC5
is patented, however, making it less appealing for open-source
and academic projects.
An important design decision was to keep the original message
structure allowing for backwards compatibility with pre-existing
SOS applications. As a message passing system, SOS uses the
same message structure for all kinds of communication: (1)
between different nodes using the network and (2) between
different modules within the same node. The new DYNASEC
fields were incorporated in the original SOS message format;
however, additional changes were required to the radio driver,
since the new fields transmitted over the radio are dependent on
the security mode used by the application.
Data is encrypted as it was sent over the radio bit by bit. The
advantage of encrypting the data over the radio is to avoid saving
two large data structures for the encrypted and decrypted data in
memory. This imposes the constraint that the data cannot spend
more time being encrypted/decrypted than it takes to send a byte.
If only authentication is set, then the IV is not transmitted; the
MIC is computed over the packet, headers and payload. If
encryption is set, then the IV and the MIC are transmitted, and
only the payload is encrypted. When receiving a packet, the code
waits for the reception of the flag byte. When this byte is
received, the appropriate bits are checked and, depending on the
security modes used to send the packet, the MIC/de-encryption
routines may be called.
The Mica2 radio driver was modified for to accommodate the
different security modes. The Mica2 radio driver in SOS is a state
machine, with different submachines for transmission and
reception. New states were added to each submachine to handle
authentication and encryption in the radio.

4. MEDICAL APPLICATION
DYNASEC is designed for resource-constrained devices. Body
Area Networks (BANs) are typically comprised of lightweight
medical systems with embedded sensors to monitor physiological
activities of the body or to probe the outside environment.
Ubiquitous BANs may contain non-invasive and in-vivo sensors.
We focus specifically on the electrocardiogram (ECG) sensor.

4.1 Heart Detection Algorithm
A distinctive characteristic of the ECG signal is that transmitting
the waveform of the ECG takes up a lot of bandwidth. When
several ECG waveforms are transmitted over the network, the
heavy network load of the waveforms reduces throughput in the
network. Additionally, high noise interference from movement of

the patient results in an undecipherable waveform created while
signal processing on the sensor. Therefore, a lightweight ECG
heartbeat extraction algorithm was developed to extract the
heartbeat of the patient from the ECG waveform and to be
resilient to noise. The ECG extraction algorithm is based on the
SQRS algorithm [10], which can be found on MIT’s physionet
website [9].
The algorithm has been tailored for ECG waveforms with
simulated noise superimposed on the underlying signals. The
thresholding method was made more robust to noise experienced
on the ECG leads. The SQRS algorithm extracts features using
the derivation of the waveform to classify them. We have
observed that SQRS occasionally misclassifies features due to
noise. To address this issue, our implementation employs a
moving threshold with lower and upper values that were
independent of one another. This makes our algorithm more
robust to the specific types of noise experienced on embedded
ECG devices. Due to memory constraints, additional noise
classification was removed from the algorithm to reduce its size.

4.2 Granularity of ECG waveform
Increasing the frequency of the ECG waveform captures more
data and reveals a more precise waveform; however, if several
ECG devices are in the vicinity, a lower frequency could improve
the overall network capacity due to congestion; in an application
such as triage, this is a valid assumption If an electronic triage
system was remotely monitoring the vital signs of many patients,
many ECG motes would be in close vicinity to one another.

5. EXPERIMENTATION
We used simulation to analyze the power utilization and
processing delay of DYNASEC running on a Mica2 mote. We
analyzed how the different levels of security and various packet
sizes affect delay and power. The code was run using Avrora [15],
which finds a good medium between cycle-accurate simulation
and lower-granularity functional simulation. Avrora recognizes
that many embedded systems go to sleep on a regular basis and
triggers simulation only when an event is at the head of the queue.
Avrora is cycle-accurate and models all low-level events.

DYNASEC has four levels of security: L0: plaintext; L1: MIC
authentication; L2: Skipjack encryption with a 64 bit key; and L3:
RC5 encryption with a 64 bit key. Each level of security has a
processing delay due to encryption and decryption that increases
with the security level. DYNASEC changes the amount of
information that is transmitted and the type of encryption used in
order to meet timing constraints in a network. DYNASEC
transmits data in three sizes: 1 byte for heart rate, 50 bytes for low
ECG waveform sample frequency, and 100 bytes for high ECG
waveform sample frequency.

5.1 Processing Delay Measurements
The processing delays of the four security levels were measured
at different granularities (100 bytes, 50 bytes, and 1 byte) for
normalized time periods. Fig. 1 shows that modifying the packet
size has a large effect on the delay. Switching from the heart rate
extraction algorithm to a waveform reduces the number of packets
that can be transmitted by approximately 75 fold. When the
network cannot support all the data, DYNASEC selects a lower
security level. In the case when one node has a large amount of

high priority data, DYNASEC can redistribute the security such
that all nodes meet their deadlines. By optimizing security,
DYNASEC allows a healthcare provider to extract enough
information to effectively monitor patients and still comply by
HIPAA guidelines. Maximal security at all times would be ideal,
but is unfortunately unrealistic for the current generation of
wireless embedded devices employed in BANs.

Processing Delay of DYNASEC Security Levels
with Different Packet Sizes for the ECG

Application

0

5000

10000

15000

Zero One Two Three
Security Level

Pr
oc

es
si

ng
 D

el
ay

(c
yc

le
s) 1

50
100

Figure 1: Processing Delay of DYNASEC Security Levels with

Different Packet Sizes for the ECG application

5.2 Dynamic Security Allocation
Dynamic security allocation is modeled as a budgeting problem
on a directed acyclic graph (DAG) representing communication
links in a network. It is assumed that data is collected at sensors
and routed through acyclic paths toward a centralized collection
of nodes for further processing.
Let V = {v1, …, vN} be the nodes in the network. Communication
links in the network are organized as a DAG G(V, E), where V is
the set of nodes and E is a set of edges. An edge (vj, vk)∈E
indicates the existence of a communication link from vj to vk. The
delay of e, denoted D(vj, vk) is the time required to transmit a
packet across the link from vj to vk.
Each security algorithm si has an associated delay di, the time
required to encrypt the data. qi is the probability that si will be
broken by an adversary at a single node and pi = 1 – qi is the
probability that si will not broken. We assume that there are M
different security algorithms. In the case of this paper, M = 4.
Let cji = 1 if node vj selects security algorithm si and 0 otherwise.
A legal solution to the problem defined above assigns exactly one
security algorithm to each node in the network.

Definition 1: The security of a system, S, is defined to be the
aggregate probability that there are no security failures for node i
to j for security level k:

∏∑∑
= = =

=
N

k

M

i
ijkij

M

j
pcS

1 1 1

 (1)

Definition 2: A valid path P is a sequence of nodes P = <v1, …,
vK> such that there is a link from vi to vj, 1 < i, j < K and where
the beginning node is the designated source and the ending node

is the designated destination. The delay of P, denoted D(P), is
computed as follows, and includes the delay of the security
algorithm, which is performed at vi. Each edge from i to j has a
link quality l. This link quality l represents the number of packets
that can make it to j without retransmissions in a time period on
path k. The delay is represented by the delay of the link quality
times the processing delay of the security algorithm.

∑∑
= =

=
M

i
kijkijk

M

j
dcfPD

1 1
)(k∀ (2)

In a DAG, a source is a node with no predecessors and a sink is a
node with no successors. The longest possible line of
communication in a DAG is from a source to a sink. Let P* be the
set of all paths originating on sources and terminating on sinks.
Lastly, T is defined to be a global timing constraint, which must
be met in order for the embedded system to transmit the necessary
packets in order to respond to an anomaly.
The problem statement and formulation are as follows:

Problem Statement: Given a network modeled as a DAG
G(V,E), assign security algorithm si to each node such that the
overall security of the system is maximized while meeting the
global timing constraint.

Problem Formulation:

 Maximize: S (3)

 Subject to the Following Constraints:

 ∑
=

=
M

i
jic

1

1 j∀ }1,0{∈jic (4)

 *PP∈∀ () TPD ≤ (5)

0),(1 ≥+jj vvD (6)

jiji lf ≤ (7)

∑ ∑=
i k

jkij ff (8)

Constraint (4) ensures that exactly one security algorithm is
assigned to each node. Constraint (5) ensures that each source-to-
sink path in the DAG satisfies the timing constraint. Since every
possible communication-path is a sub-path of some source-to-sink
path, constraint (5) satisfies every possible communication path in
the DAG. Constraint (6) guarantees that the delay is a positive
value. Constraint 7 guarantees that the flow fji is less than or
equal to the link capacity lji. Constraint 8 guarantees that the
flows going into node j is equal to the flow exiting node j.

5.2.1 Local Decisions to Improve Propagation Delay
Currently, a central node has additional processing power and
serves as a sink. The sink uses linear programming to solve the
constraints using Cplex, an optimization software package. The
solver will ensure that constraint (4) is satisfied and objective (3)
is maximal.
However, since our system is delay sensitive, the propagation
time from the central node to the nodes is undesirable. Therefore,

the algorithm is not run again unless there is at least a 15%
change in link quality. If there is more than a 15% change in link
quality, the node temporary makes a decision for the best path
until the new solution from the central node is propagated to all
the nodes in the network. When a node makes a local decision, it
uses the link quality as a metric for choosing the next hop and
modifies the security level according to this metric to meet timing
constraint (4). In this algorithm, each node dynamically lowers
its security level if it cannot achieve a desired level of throughput,
and dynamically raises its security level if its current throughput
level is significantly higher than the minimal threshold. Upon
receiving the solution from the central node, the local node
conforms to the optimal solution. Notice that this temporary
solution may result in bandwidth being wasted in the overall
network. Even though, modifying the packet size dynamically is
essential for a functional system, it is not an optimal solution
because in an optimal solution the data should be transmitted at
the desired packet size from the source. Therefore, the network
will temporarily be in a state of non-optimality until the optimal
solution is routed to all nodes.

5.2.2 Experimentations
A central node calculates the optimal security level that each node
connecting node should use. To analyze this delay, a simple
network configuration was analyzed in Cplex using the
formulation given above. Constraint 3 was converted to a
summation for an integer linear program using the following
derivation.

Maximize ∏∑
= ∀

−=
N

k e
ijijk

ih

qcS
1

)1(

Maximize ∏∑∏∑
= ∀= ∀

−=
N

k e
ijijk

N

k e
ijk

ijij

qccS
11

logloglog

Maximize ∑
∀

−=
ije

ijij qcES ||

E is the summation of all edges. From the derivation above, one
can see that maximizing S is equivalent to minimizing the second
term, the summation of the cikjqij.
Three types of types of links were assigned in the network: a well
connected link, a lossy link, and a very lossy link. A well
connected link was calculated as a link where approximately 80%
of the packets made it to the desired node without
retransmissions. A lossy link had approximately 50% of its
packets successfully delivered to the receiving node. A very
lossy link was calculated as a link where an average of 20% of the
packets was received at the end node. All link quality were
generated using triangular distribution peaking at 0.80, 0.50, or
0.20. Well connected links were links whose difference in node
value was between 0 to 30% of the total nodes in the network.
Lossy links were links whose node value difference ranged
between 31% and 60% of the total nodes in the network and very
lossy links were links whose difference in node value were
greater than 61%.
The solution given by the solver was a continuous solution. The
continuous solution was mapped to the discrete values for the

delays of the security levels. Mapping continuous values to
discrete values is common practice in linear programming and has
been done in similar research [2]. The mapping of the continuous
delays to the discrete delays for the security levels were
reasonable for the network constructed. The algorithm ran very
quickly in Cplex averaging 0.00 seconds for a small number of
nodes. This preliminary experimentation verifies that feasibility
of the algorithm for a small number of nodes (less than ten nodes)
with one source and one destination node. This small number of
nodes is reasonable for a small body area network, but future
work includes verifying that this algorithm is scalable. The
algorithm should work with multiple sources and destinations and
also have a reasonable computational delay in Cplex with a larger
set of nodes.

6. CONCLUSIONS
In conclusion, an authentication and encryption scheme with four
levels of security was created in DYNASEC. The application
layer had two distinct security modes: (1) authentication and (2)
authentication and encryption. A reconfigurable security system
was presented that switched between different security levels and
packet sizes depending on timing constraints. DYNASEC’s
architecture gives the embedded system the flexibility to adapt to
the dynamic environment where it is deployed. Our
reconfigurable application uses the heart rate detection algorithm
to modify its packet size in response to network and system
conditions. DYNASEC takes advantage of SOS’s unique
architecture and use the SPI interrupt handler to send only the
necessary headers over the network. Other operating systems for
embedded systems, such as TinyOS, cannot dynamically change
the header length without manually reprogramming the embedded
system. DYNASEC’s adaptability gives systems a reasonable
amount of security while meeting timing constraints.
Future work will also augment my current analysis with
experimentation in a testbed. In particular, we will compare
measurements done in the simulation with testbed measurements.
we will also measure the delay incurred between the time that the
node makes a local decision and receives the global decision from
the central node. In addition, a distributed solution for dynamic
security allocation on lightweight embedded systems will be
investigated and the delay and efficiency of a global and
distributed solution will be compared.

7. REFERENCES
[1] Brickell, E., Denning, D., Kent, S., Mahler, D. and Tuchman,

W., SKIPJACK Review, Interim Report, July 1993.
[2] Dabiri, F, Jafari, R., Nahapatian, A., Sarrafzadeh, M. “A

Unified Optimal Voltage Selection Methodology for Low-
Power Systems.” In Proceedings of 8th International
Conference in Quality Electronic Design (ISQED 2007). San
Jose, CA. 2007.

[3] Ganesan, P., Venugopalan, R., Peddabachagari, P., Dean, A.,
Mueller, F., and Sichitiu, M. Analyzing and Modeling
Encryption Overhead for Sensor Network Nodes. In
Proceedings of Wireless Sensor Networks and Applications
(WSNA 2004), San Diego, CA, 2003.

[4] Gura, N., Patel, A., Wander, A., Eberle, H., and Shantz, S.
Comparing Elliptic Curve Cryptography and RSA on 8-bit

CPUs. In Proceedings of Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2004), Cambridge,
MA, 2004.

[5] Han, C., Rengaswamy, R., Shea, R., Kohler, E., and
Srivastava, M. SOS: A Dynamic Operating System for
Sensor Networks. In Proceedings of the Third International
Conference on Mobile Systems, Applications, And Services
(Mobisys 2005), Seattle, WA, 2005.

[6] Karlof, C., Sastry, N., and Wagner, D. TinySec: A Link
Layer Security Architecture for Wireless Sensor Networks.
In the Proceedings of the Second ACM Conference on
Embedded Networked Sensor Systems (SenSys 2004),
Baltimore, MD, 2004.

[7] Gainer, R., Van Eckhardt, M., Willliams, R., Marks, R.
“Wireless Security Standards - No Rest for the Weary.”
BNA’s Electronic Commerce and Law Report. Vol 8, No.
20, pp. 485-514. May 2003.

[8] Malan, D.J., Welsh, M., and Smith, M.D. A Public-Key
Infrastructure for Key Distribution in TinyOS Based on
Elliptic Curve Cryptography. First IEEE International
Conference on Sensor and Ad Hoc Communications and
Networks, Santa Clara, California, 2004.

[9] MIT-BIH Arrhythmia Database Directory. Harvard-MIT
Division of Health Sciences and Technology, Biomedical
Engineering Center. 1997.

[10] Pino, E., Ohno-Machado, L., Wiechmann, E., and Curtis, D.
Real-Time ECG Algorithms for Ambulatory Patient
Monitoring. Proceedings of AMIA 2005 Annual Symposium,
Washington, D. C., USA, 2005.

[11] Potlapally, N. Ravi, S., Raghunathan, A., Jha, N. Analyzing
the Energy Consumption of Security Protocols. In the
Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED 2003), Seoul Korea, 2003.

[12] Ravi, S., Raghunathan, A., Kocher, P., and Hattangady, S.
Security in Embedded Systems: Design Challenges. ACM
Transactions on Embedded Computing Systems, Vol 3, No 3,
2004. Pages 461-491.

[13] Rivest, R. The RC5 Encryption Algorithm. In the
Proceedings of the 1994 Leuven Workshop on Fast Software
Encryption (Springer 1995), pages 86-96.

[14] Schaumont, P., Verbauwhede, I., Sarrafzadeh, M., and
Keutzer, K. A Quick Safari Through the Reconfiguration
Jungle. In Proceedings of Design Automation Conference
(DAC 2001), Las Vegas, CA. 2001.

[15] Titzer, B., Lee D., and Palsberg, J. Avrora: Scalable Sensor
Network Simulation with Precise Timing. In Proceedings of
International Symposium on Information Processing in
Sensor Networks (IPSN), Los Angeles, California, 2005.

[16] Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., and
Kruus, P. TinyPK : Securing Sensor Networks with Public
Key Technology, In Proceedings of the 2nd ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN 2004),
Washington, D.C., 2004.

