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ABSTRACTSensor platforms designed with mobility in mind, suh asbody networks, have inherent salability problems arisingfrom the on�iting demand for high proessing apabilities(to ollet, ompress, and �lter data) and the need for low-power, resoure-onstrained hardware. This paper presentsa CPU design whih seeks to optimize proessing for a sen-sor network by improving performane in a power-e�ientand salable manner. We demonstrate the ruial designdeisions and trade-o�s required in developing suh a pro-essing platform and demonstrate that a minimalist designsaves power without adverse impat on performane. Inaddition, we address the problem of salability in a multi-threaded environment through the development of a novelsheduling algorithm implemented diretly in hardware.
Categories and Subject DescriptorsC.1.1 [Proessor Arhitetures℄: Single Data Stream Ar-hitetures�pipeline proessors, RISC arhitetures
General TermsMeasurement, Performane, Design, Experimentation, Lan-guages
KeywordsLow-power, Sensor networks, Miroproessors, Embeddedsystems, Threads, Shedulers
1. INTRODUCTIONIn reent years, advanes in wireless ommuniations havefostered the notion of many independent sensors distributedthroughout an environment or aross an objet, ontinu-ally sensing and reating to the urrent state. Beyond reli-able ommuniation, the senario of body sensor nets o�ersmany hallenges: powering the sensor nodes, proessing in-formation e�iently within the network, and bringing ostsdown. Sensing inside or around a human body, for example,

requires tiny nodes (aesthetis) onneted invisibly (so asnot to restrit motion) with low power draw (so we an usesmaller, lighter batteries that need hanging less frequentlyor some form of energy-savenging). In fat, power is oftenthe major barrier: it limits ommuniations range, operat-ing lifetime, and proessing apabilities.This paper presents a novel approah to enhaning the om-putational apabilities of sensor networks without the penaltyof high power onsumption. Currently, any high-performanebak-end proessing required in sensor networks is often of-�oaded to desktop or server lusters as disussed in [21℄.However, this senario su�ers from at least �ve drawbaks:1. Compute-intensive appliations annot run within thesensor network in order to improve the quality of thedata by adapting the sensor parameters in real-time.2. High-end omputing systems may be remote from thesensor network and the bandwidth required to trans-port data to and from the luster will be very large.3. A onnetion to a high-performane omputer lusterwould not always be available for ertain deploymentsof sensor networks.4. Server lusters are urrently not power-e�ient andthe lateny may be unpreditable.5. As sensor systems sale in size and omplexity the en-ergy e�ieny of a distributed omputation will be farfrom optimal if individual proessing elements are notpower-e�ient.Signi�ant advanes in body nets an be ahieved by pro-essing biomedial data loally within the body sensor net-work using proessing units designed with suh extremelypower-onstrained networks in mind. The proessor de-sribed herein, named SpotCore, is a small, fast, and open-soure CPU ore designed with emphasis on power e�ieny,�exibility and salability, whih it is hoped will stimulate re-searh into high-performane proessing within sensor net-works. It is designed in the Verilog hardware desriptionlanguage and is purely synthesisable.The rest of this paper is organised as follows. Setion 2summarises some important researh into the redution of
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power onsumption. Setion 3 overs the important arhi-tetural points whih direted the development of SpotCoreand explains the ruial ombination of features whih makeit unique among the plethora of RISC proessors available.Setion 4 examines the instrution set in detail. Some in-tegrated iruit synthesis and experimental results are pre-sented in Setion 5. Setion 6 is onerned with optimisingsheduling within a sensor-driven omputational platform,aiming to make this as lightweight as possible without sa-ri�ing robustness. We onlude in Setion 7.
2. RELATED WORKNazhandali [16℄ notes that designing energy-e�ient sensorproessors is a fairly reent undertaking and desribes howan ultra-low energy proessor may be designed by ombiningoptimisations at the miroarhitetural and instrution setlevels, with subthreshold voltage iruits [17℄. These iruitsoften involve signi�antly lower lok frequenies[22℄ and arethus suessful in reduing power for appliations that donot require a high throughput. However, this limitation istoo great in the general ase.Many sensor network platforms have used o�-the-shelf om-ponents whih were not primarily designed for the stritultra-low power environments they are then embedded within.Virantha et al. [6℄ present a novel arhiteture based onan asynhronous 16-bit RISC ore. By using asynhronousdesign tehniques this proessor, known as SNAP/LE, anredue its power onsumption beause not all parts of theiruit are atively hanging state, and there is no power-hungry lok-tree. To simplify veri�ation (often a problemin asynhronous iruits) they adopt a quasi delay-insensitivedesign approah. Their reported worst-ase energy on-sumption �gure is 300pJ/instrution and they note thatthis stands out favourably when ompared to approximately1500pJ/instrution for an o�-the-shelf Atmel miroontroller.The design priniples of SNAP/LE di�er from those of Spot-Core sine the latter retains a synhronous design method-ology (the most viable route for integrated iruit synthe-sis) and fousses instead on optimising the instrution setand proessor arhiteture. The researhers in [13℄ use alow-power ompilation methodology to save energy withina wireless sensor network by making optimisations at themiroproessor instrution exeution level.The SNAP/LE projet also shows how the exeution timeof a given task an be redued relative to an Atmel mi-roontroller running TinyOS on a Berkeley MICA mote,by using a sheduler implemented in hardware and tightly-oupled to the proessor. This tehnique yields signi�antpower improvements, and is adopted in SpotCore. How-ever, we present a more salable hardware-based shedulerwhih is apable of supporting not only event-driven exeu-tion but true multi-threading, and whih ahieves a betterdegree of fairness than the simple non-pre-emptive FIFO-based sheduler used in SNAP/LE. Mota et al. [15℄ alsotake a hardware-oriented approah and show that they animprove the information-proessing apability of sensor net-work nodes by re-implementing tasks as hardware modules.Warneke et al. [23℄ produed a design whih improves power-e�ieny by having separate hardware subsystems whihan be shutdown independently, elaborate lok-gating, and

guarded ALU inputs. However, the design uses no data-path pipelining in a bid to avoid the assoiated hardwareoverhead. This in turn limits the maximum lok frequeny.However, the designers note that the platform known as�Smart Dust� will be used in low data rate senarios wherehigh lok frequenies are not normally needed. At 500kHzand 1V, the design utilises 12pJ/instrution. With the pos-sibility of ollaborative proessing between sensor platformsand the high level of interest in in-network proessing, muhhigher levels of performane may be required and hardwarelimitations on the design speed are inadvisable. The instan-taneous power might be redued at lower frequenies (andvoltage) but the overall energy onsumption might be worseif the exeution time is not also redued through arefulinstrution set design.Ciaran et al. [14℄ present a survey of di�erent proessorarhitetures for wireless sensor networks and observe thaturrent miroproessors have limited apabilities for han-dling omplex data-proessing tasks. The Texas Instru-ments MSP430 [9℄ emerged as the best arhiteture in thesurvey, with the smallest power onsumption �gures om-pared to the Atmel ATMega128L and the Mirohip PIC18.The i-Bean [19℄ uses dual proessors loked at di�erentspeeds to improve power e�ieny. The reently announedImote2 [3℄ from Crossbow tehnology uses a high-performane,low-power 32-bit PXA271 XSale proessor and is apableof dynami voltage and frequeny saling from 13MHz to416MHz. The platform also inorporates a DSP oproes-sor to aelerate multimedia operations by extending theXSale instrution set. Preliminary data suggests that, withthe radio iruitry o�, the rest of the hip omprising theCPU and memory onsume about 2mW/MHz. It is an inter-esting fat that on this platform, whih is touted as the mostpower-e�ient sensor platform, the proessing elements on-sume as muh as 40% of the overall power onsumption whenthe radio iruitry is on; indiating that researh into morepower-e�ient ores is at least as important as researh intolow-power ommuniation interfaes in the quest to reduethe overall power onsumption of sensor platforms.
3. THE SPOTCORE ARCHITECTUREThe design of SpotCore is primarily motivated by the de-sire to integrate as muh essential funtionality as possibleinto a single ore whilst taking great are in the instru-tion set and proessor design to avoid the introdution ofredundant hardware. There are many optimisations whihan be applied to the basi RISC pipeline (see [7℄) but it isimportant to identify a set of reliable optimisations whihwould still yield a reasonable performane from a highlyminimalist design philosophy. While more pipeline stageswill enable the design to be loked at higher frequenies,by putting less work or logi in eah stage, this adds om-plexity, inreases hardware size and worsens the branh orexeption penalty. We observe that proessing in sensornetworks is of a highly onurrent nature as there might bemultiple data streams requiring analysis. We envisage thatas these networks sale, this parallelism is going to inreasedramatially. This leads to an inreased probability of manyontext-swithes so it is desirable to keep as little state inter-nal to the proessor as possible (but relevant to any giventhread). In addition, SpotCore is being designed for low-



Figure 1: The internal struture of SpotCorepower environments where extremely high lok frequeniesin the gigahertz range are not feasible due to the substan-tial inrease in power requirements. The ritial path lengthonstraint an be relaxed as a result. Deeply-pipelined pro-essors will typially need a great deal of logi to transferinformation ontained in instrutions still in the pipeline topreeding instrutions.Using an instrution width of just 16 bits instead of 32 bitsor higher reaps power savings by reduing the bandwidth re-quirement of instrution memory and may additionally leadto high ode density. The datapath of SpotCore (omprisingregisters, internal buses and funtional units) is 32 bits wide.The important parts of the internal struture and datapathare shown in Figure 1.The instrutions are split into di�erent lasses depending onwhether they are dyadi, monadi or require no operands.This enables us to attain a highly orthogonal instrutionset design whih makes maximum use of the available en-oding spae. This enoding sheme is illustrated in detaillater. Most of the data proessing instrutions (Add, Sub-trat, Multiply, AND et) on SpotCore are dyadi but dueto the restritions on instrution length only register on-tents may be used as operands. This is in ontrast to theplurality of addressing modes used on an ARM proessor[2℄ and it greatly simpli�es the addressing sheme leadingto more ompat deode logi. In addition, register lookupuses indies spei�ed in �xed parts of an instrution in orderto further simplify deode.

All SpotCore instrutions are onditional � the prediatedinstrution sheme has been found to be suessful in ARMproessors [2℄ and Intel's IA-64 arhiteture [11℄ by reduingthe number of branhes. However, in order to save enodingspae we mandate that a onditional instrution annot alsobe ��ag-modifying�. This means we an use just one �eld tospeify whether an instrution sets or lears the �ags or isitself onditional on some �ags set previously within the pro-essor. This �eld is restrited to 3 bits. The trade-o� arosefrom observing many instrution traes of ode ompiled foran ARM proessor and not �nding many instanes of ondi-tional instrutions whih modi�ed �ags. The ombination ofthis 3-bit �eld and a 4-bit primary opode �eld leaves only9 bits for enoding the registers being aessed. This inturn restrits the number of visible and diretly addressableregisters to eight.Another power-saving measure seeks to redue the numberof register ports � two read ports are adequate if we useonly simple dyadi instrutions. However, we eventually in-orporated three read ports and two write ports in order tobe able to support ertain very useful instrutions:STR r0,[r1℄,r2 => Store the value in r0 at the addresspointed to by the value in r1 and update the registerr1 with the sum of the values in r1 and r2.MLA r0,r1,r2 => Plae X + Y*Z in register r0, where X,Y,and Z are the values in r0,r1 and r2 respetively.LDR r0,[r2℄,r3 => Load r0 with the value at the addresspointed to by the value in r2 and update the registerr2 with the sum of the values in r2 and r3.SORT r0,r1 => Swaps data values so that the register withthe higher index ontains the higher value.These instrutions and a few others neessitate either threesimultaneous reads from or two simultaneous writes into theregister �le. However, the presene of two write ports reatesan opportunity to improve the exeute stage by arrangingthe logi so its more ritial pathways feed into a less heavily-loaded write port and thereby reating more balaned timingin that pipeline stage.SpotCore has a smaller register �le than most embeddedRISC proessors and no banked registers. In order to savetime on exeption-entry, register-�le staking is managed byhardware. Register 7 is the program ounter and the stakpointer is internal. SpotCore also maintains an internal linkregister whih is saved automatially when nested subrou-tines are deteted. This inreases the number of generalpurpose registers available and also saves time sine it anbe staked in parallel with branhing. A separate instru-tion is provided to reover the link register value if neessary.We are urrently researhing more ways of reduing the per-formane impat of this small register �le through advanedompilation tehniques. SpotCore simply operates in one oftwo modes � trusted or untrusted, and avoids any expensiveexeption-handling sheme.SpotCore has a branh penalty of 2 yles. Due to thefairly mild impat of branhing and exeptions on its short



pipeline, it was deided that the performane boost a�ordedby branh predition in this ase would not justify the extrahardware needed. However, in order to mitigate the im-pat of branhing in the ommon senario involving �xedbranhes at the end of iterative bloks of ode suh as inFOR loops, a LOOP instrution was added to the instru-tion set. The onept is similar to that used in the Intelx86 arhiteture [10℄ but our mehanism is di�erent and theourrene of nested loops is deteted and handled auto-matially by the SpotCore hardware. The purpose of thisinstrution is to ensure that the proess of heking for thelast iteration at the end of the loop body an happen whilethe loop body itself is being exeuted so the pipeline an be�lled with the orret set of instrutions and the e�et of thebranh is hidden. As a result, an expliit branh at the endof the loop, and the penalty assoiated with it, are avoided.To illustrate this point the following ARM ode sequene Aan be rewritten as ode sequene B on SpotCore.;Code sequene AMOV r0,#10 ;set up loop ounterlabel LDR r1,[r2℄,r3 ;loop starts here;rest of loop bodyLDR r4,[r5℄,r3SUBS r0,r0,#1BNE label;other instrutions;Code sequene BLOOP r1,r0MOV r0,#10 ;set up loop ounter;set up loop end addressMOV r1,#end_addressLDR r1,[r2℄,r3 ;loop starts here;rest of loop bodyend_address LDR r4,[r5℄,r3;other instrutionsNotie that the registers used to set up the loop in the LOOPinstrution an be re-used within the loop. In the ase of anested loop, the information held in the loop state mahinein the CPU is written out to memory automatially as thenew �loop state� is reated in the two instrutions followingthe a LOOP instrution. A speial internal register holdinga pointer to the base of the memory struture holding loopstate information at various levels must be set up duringinitialisation.
4. INSTRUCTION SET DESIGNThe SpotCore instrution set is largely in�uened by themany ommon RISC instrution sets. SpotCore attemptsto inlude many of the most ommon instrutions withoutviolating our size and power onstraints (Figure 2), whilealso inluding some speial instrutions for thread manage-ment. Many of our instrutions would typially be found indigital signal proessors.Apart from the simple register addressing mode shown in thetable, the 32-bit ARM has other addressing modes where theseond operand ould be an immediate value or even spei-�ed as the result of a shift operation. Sine we did not want

Figure 2: Comparison of SpotCore, ARM, TIMSP430, and MIPS32 instrution setsthe shifter to be in the ritial path and were limited inour available enoding spae, we reated separate instru-tions for getting immediate values into the proessor andfor shifting. Although this might represent a performaneproblem if these types of instrutions are used frequently,we an however assert that the ode size relative to a 32-bitinstrution set is una�eted as the two operations simplybeome two 16-bit instrutions.The MSP430 is a 16-bit RISC CPU whih lies at the heartof many sensor boards. It has 16 registers, 4 of whih aretreated speially � program ounter, status register andonstant generator whih is partiularly important beauseit provides six frequently used immediate values thereby re-duing ode size. However, unlike SpotCore and ARM notall MSP430 instrutions are onditional. Only a few MIPS32instrutions are prediated despite having a 32-bit instru-tion set.Following the implementation of an "ARM-like" instru-tion set, we were able to add some useful but unommonsingle-yle instrutions without any drasti e�et on oper-ational parameters. These extra instrutions are ABS (getabsolute value), SORT (arrange values in registers based ontheir numeri size), BITREV (bit-reversal useful in Fast-Fourier Transform algorithm), the LOOP instrution de-sribed previously, and some thread management instru-tions desribed later. We also added the faility to load arelatively large literal from the instrution stream as data.Our move instrution (MOV) has a speial bit whih if set



will treat the next instrution as data, and append the last5 bits of the move instrution to that. This means thatbesides the usual data memory aess instrutions we aneither load a 5-bit value in one instrution or a 21-bit valuein two instrutions. In ontrast, one annot load an arbi-trary 21-bit value within a single (32-bit) ARM instrutionbut have to enode the immediate operand as an 8-bit on-stant and a 4-bit (even-number) rotate whih is applied toit.The four main SpotCore instrution formats are shown inFigures 3, 4, 5 and 6, while Figures 7, 8, 9 and 10 show theexeptions to these standard formats. What we are tryingto portray in these �gures, is the fat that the width (num-ber of bits), meaning, and plaement of many setions ofthe instrution are kept as onsistent as possible betweeninstrutions in a bid to simplify the deoding logi. Simi-larly, by splitting the instrution set into di�erent lasses de-pending on their requirements, with regards to the numberof registers required for a partiular operation, we ahievea ompat layout whih favours an e�ient design. POPand PUSH instrutions read from and write to the stak re-spetively. The RETURN instrution is similar to the POPinstrution with the only di�erene being the fat that italso loads the PC with the preserved link register value. Inthese instrutions, the bit �eld [5:0℄ is used to enode the setof registers whih must be staked to allow �exibility, akinto the ARM stak-manipulation instrutions.
5. SYNTHESIS AND TEST CODE RESULTSSine the energy usage of sensor appliations is a produt ofpower and time, it is important to redue both the poweronsumption and the exeution time of a set of instrutions.We synthesised our Verilog design using Synopsys DesignCompiler with a UMC 130nm tehnology library. The worst-ase power estimate obtained was 0.03mW/MHz whih looksauspiious ompared to the TI MSP430 (0.4mW/MHz, CPUonly). Admittedly the TI MSP430 is a omplete System-On-Chip omprising memory and other peripherals (wath-dog,timer,UART et), but this power redution is very sig-ni�ant as it is more than an order of magnitude smallerthan the power onsumed by the TI CPU when it is op-erating alone with all the peripherals powered down. Wenote that the more lightweight embedded ARM proessors� ARM7TDMI and the ARM Cortex M3 have power �g-ures of 0.06mW/MHz and 0.09mW/MHz (130nm tehnol-ogy and speed-optimised) respetively [1℄. The Cortex-M3[20℄ implements a new 16-bit variant of the ARM instru-tion set known as Thumb-2 whih is apable of improvingode density while maintaining a high level of performane.Figure 11 shows the ode size and exeution times of di�er-ent proessors running the same digital �lter algorithm on4000 input samples. The performane advantage of Spot-Core in this IIR �lter experiment is largely due to its abilityto know preisely where branhes within loops our; andthis improvement is signi�ant for a large number of pro-grams as loops are very ommon programming onstruts.In addition, judging from Figure 2, about 70% of our in-strution set is ARM ompatible whih is signi�ant as thereexists a wealth of reliable benhmarks for that instrutionset. While many of our instrutions are also similar to thosein the TI MSP430 instrution set, we believe we gained ade�nite performane advantage beause our ore supports

[15:12℄ [11:9℄ [8:6℄ [5:3℄ [2:0℄opode1 Prediate rX rY rZFigure 3: Class 1 instrution[15:12℄ [11:9℄ [8:6℄ [5:3℄ [2:0℄opode1 Prediate opode2 rY rZFigure 4: Class 2 instrution[15:12℄ [11:9℄ [8:6℄ [5:3℄ [2:0℄opode1 Prediate opode2 opode3 rZFigure 5: Class 3 instrution[15:12℄ [11:9℄ [8:6℄ [5:3℄ [2:0℄opode1 Prediate opode2 opode3 opode4Figure 6: Class 4 instrution[15:12℄ [11:9℄ [8:6℄ [5℄ [4:0℄opode1 Prediate rX diretion shiftAmountFigure 7: Shift by Immediate[15:12℄ [11:9℄ [8℄ [7:0℄opode1 Prediate Link? <signed o�set>Figure 8: Branh instrution[15:12℄ [11:9℄ [8:6℄ [5:0℄opode1 Prediate opode2 r0�r5Figure 9: PUSH, POP, RETURN[15:12℄ [11:9℄ [8:6℄ [5℄ [4:0℄opode1 Prediate rX Next? ValueFigure 10: MOVE instrution



Exeution time (ms) Code size (bytes)SpotCore 20.2 50ARM7TDMI 23.5 92TI MSP430 38.5 95Figure 11: IIR Filter Code resultsdyadi instead of monadi data-proessing instrutions. Inaddition, the TI MSP430 does not support diret multipli-ation within the proessor datapath but relies instead on asystem peripheral whih limits performane beause a dataaess is required.
6. ROBUST ZERO-OVERHEAD SCHEDUL-

INGIn addition to building low-energy proessor ores, optimis-ing the manner in whih threads are loaded and removed,and the assoiated sheduling sheme, maximises proes-sor utilisation and improves power e�ieny. An e�etivethread management strategy should also sale with the num-ber of threads and proessing elements. Due to the smallphysial area of SpotCore it is envisaged that it will be usednot only in a multithreaded environment but alongside otherores in a multiproessor; and in this ase it is desirable tohave transparent thread migration between ores. The en-tral innovation in this setion is the development of a threadmanagement poliy whih runs diretly in hardware withoutrequiring any CPU time unlike onventional operating sys-tems. This hardware module whih we all TopDog sharesa onnetion with the proessor memory and interrupt in-terfaes, and an dispath threads to the proessor basedon its internal sheduling algorithm. This module elevatesthe level of performane possible as the proessor does nothave to keep swithing to some kind of supervisory mode inorder to hek the status of other threads. It also improvessalability in a system omprising multiple ores (Figure 12)by providing a ommon, fast arbitration mehanism. This isappliable in situations where a shared bus is feasible suhas symmetri multiproessors with up to about 16 ores.In summary, the TopDog arries out the following taskswhih are deemed to be ruial to e�ient operation whenmany threads are present:
• Fast and lean reation, reloading, and swithing ofthreads
• Implements a sheduling algorithm with fairness on-siderations from the ground up
• Synhronisation of threads
• Stores thread ontrol bloks (TCB) for di�erent threadsand an modify eah via simple instrutions issuedfrom the proessor
• Holds interrupt vetors and priorities, and uses a om-mon CPU aess mehanism for interrupts and otherthreadsRather than leaving the sheduling deisions entirely up tothe operating system, the programmer an speify ertain

Figure 12: Proessing Subsystem with TopDogShedulerparameters to the TopDog to enable it to ahieve the rightlevel of Quality-of-Servie (QoS). This development was in-spired by Nemesis [18℄ whih is an OS designed to provideappliations suh as multimedia appliations whih are verytime-sensitive with some form of QoS guarantees with re-spet to CPU and I/O resoures. The sheduling deisions inTopDog are based on the following three parameters whihahieve the appropriate balane between ease-of-use and ro-bustness � PRIORITY, ON_TIME, and OFF_TIME.

Figure 13: The TopDog sheduler state mahineThese parameters relate to the thread state diagram in Fig-ure 13 and their utility is explained as follows. At the mostelementary level, if threads are of the same priority, theygain aess to the proessor ore based on a First-Come-First-Served (FCFS or simply FIFO) sheme. There are 16priority levels and the TopDog will remove lower prioritythreads from the proessor so a higher priority one an run.Unfortunately, this might very easily lead to starvation ofsome threads if there are many high priority threads. As



a result we designed a system whih allows the program-mer to speify a maximum �ON_TIME� and a minimum�OFF_TIME� for eah thread. Together with the priorityvalue, they an be used to �ne-tune performane beausethe priority value ontrols how quikly the thread gets toexeute when it is in the READY state, the ON_TIMEontrols how long it is allowed to spend on a proessor, andthe OFF_TIME determines the delay between getting pre-empted at the end of its exeution time, and being able re-turning to the READY state again. The sheme has enough�exibility to support a very broad range of CPU aessshemes without resorting to a high-level thread library whihwill impat performane.While the hardware does not guarantee that thread starva-tion will be avoided, it does provide the sensor system pro-grammer with more sope for ontrolling thread shedulingthan is urrently available. The e�et of the ON_TIMEand OFF_TIME parameters is to ensure that the exeutionprobability of any thread does not have a strong dependeneon the number of threads of a higher or the same priority.One good poliy for fairness would be to ensure that lowpriority threads have more tON and less tOF F , while highpriority threads have less tON and more tOF F .We shall now ompare our sheduler with those ommonlyfound in resoure-onstrained environments. MiroC/OS-IIis a pre-emptive real-time kernel written in C, whih runson embedded proessors suh as the Motorola 68k, ARM7,and Altera Nios II. It supports dynami priorities but notwo tasks (threads) may have the same priority. The high-est priority thread always runs but may be superseded byan interrupt servie routine. Its main drawbak is that alow priority thread an wait for an arbitrarily long period oftime sine the highest priority thread must run to omple-tion or get bloked before it an run. It is believed that thisapproah does not sale well beause fairness is not integralto the operating system and it is harder to give the lower pri-ority thread any QoS as the exeution times of many higherpriority threads are indeterminate. The TopDog sheduleravoids this undesirable senario by providing the ability toontrol the dominane of higher priority threads in a diretway. The uC/OS-II kernel ode oupies about 2K bytesand an onsume about 5% of CPU time. It an support upto 255 tasks. While the TopDog sheduler has fewer prioritylevels, it an support multiple threads of the same priorityand an manage up to 512 threads.TinyOS [8℄ is an open-soure embedded operating systemdeveloped at University of California Berkeley and is verypopular among developers of appliations for Wireless Sen-sor Networks (e.g. [12℄). It operates on many di�erentplatforms, speeds development, and is useful for testing re-searh ideas. It is written in nesC whih is a C-like stru-tured omponent-based language. In addition to the stan-dard funtions of task sheduling and interrupt handling, italso performs enryption and power management. The ma-jor system omponents inlude drivers for the radio inter-fae, UART, memory and timer. Other omponents inludedrivers for the LED interfae, an I2C protool implementa-tion and a CRC paket �lter. It has an event-driven arhi-teture whih is su�iently abstrat to enable the reationof ross-platform appliations while remaining lightweight.

The main strutural elements are on�gurations whih on-net omponents, modules whih de�ne how omponentsbehave by implementing ommands and event-handlers, andinterfaes whih de�ne the interation between any two om-ponents. Unfortunately, TinyOS provides only an elemen-tary onurreny model with limited operating system sup-port for a large number of threads or a platform with morethan one proessor. It has no inherent ability to speify mul-tiple priority levels. The two main system threads omprisetasks and hardware event-handlers respetively. Tasks mustrun to ompletion and annot preempt other tasks whilethey may be preempted by hardware interrupts.The SpotCore approah di�ers from this by allowing threadsin our system to pre-empt other threads regularly and by al-lowing the programmer to speify QoS onstraints in an ex-pliit manner. Contiki [4℄ builds on the event-driven modelby utilising �protothreads� [5℄ � lightweight threads whihan failitate multithreading. Sine eah protothread doesnot need its own stak, protothreads have been promotedas ideal for memory-onstrained systems. The onditionalbloking wait abstration provided by protothreads avoidsthe omplexity involved in dealing with expliit state ma-hines whih is ommon when developing software for event-driven systems. The TopDog gives threads the ability toblok until a ondition variable beomes true or an externalevent of interest (interrupt) ours. We argue that our ap-proah is more salable as there is no overhead in terms ofCPU time or ode size and we an also reap the bene�ts ofhardware aeleration of the sheduling algorithm.Rather than ommuniating with the TopDog module as amemory-mapped peripheral on the system bus, we reatedspeial instrutions to speed-up aess and promote �exibil-ity with di�erent memory arhitetures as no pointers haveto be alulated.The SpotCore instrutions whih are used to ommuniatewith the TopDog are:
• SET_VECTOR � this sets the address from whihthe new thread will start exeuting
• SET_PRIORITY� this spei�es a 4-bit priority valuefor the thread being reated
• SET_ONTIME� sets the parameter tON (10-bit value)
• SET_OFFTIME � sets the parameter tOF F (10-bitvalue)
• FORK � ativates the thread state mahine
• EXIT � removes all ative referenes to the exitingthread
• SIGNAL � derements the spei�ed variable held inone of the TopDog memory banks (this behaves in amanner similar to a onventional semaphore in thateah update is atomi and an event is generated whenthe ount value reahes zero)
• WAIT � bloks or suspends a thread until a spei�edevent suh as a semaphore value reahing zero or anexternal interrupt ours.



• CHECK � similar to wait but non-bloking
• SET_SIGNAL � initialise a given semaphoreThe state diagram shown in Figure 13 is implemented bymultiple memory bloks and a few assoiated logi on-trollers. The total memory required to manage 512 threadswith 16 priority levels, and 64 signals is about 720 bytes.The ontrollers were simple enough so that the hardwarefootprint of the TopDog module is barely over 2000 gates.Assuming a lok frequeny of 10MHz, the worst-ase la-teny between one thread sending a signal to the TopDog,and another one beoming dispathed after the TopDog hasupdated its READY queue due to the signal and determinedthe thread whih now has the highest priority, is 2 µs. Thekey to this fast inter-thread ommuniation and synhroni-sation mehanism was designing the logi whih maps eventsto thread IDs and that whih performs priority analysis onthe READY queue, to operate as onurrently as possible.

7. CONCLUSIONSIn this paper, we have applied a seletion of low-power CPUdesign strategies to develop a highly-optimised proessor de-sign whih an meet performane goals in a power-e�ientmanner. We demonstrated a 48% improvement in the ex-eution time of an IIR �lter routine over the TI MSP430whih is widely used on sensor platforms, and a 14% im-provement over an ARM7 proessor. Our synthesis resultsprove the extremely lightweight nature of the design; andoupled with redued exeution times, it an enable signi�-ant energy-savings to be made in the realm of sentient om-puting. We also noted improvements in ode density, anddisussed the possibility of very fast thread management us-ing our hardware-based sheduler module. We hope theseresults will stimulate more researh into suitable primitivesfor expressing omputation in the reation of very power-onsious CPU designs within the sensor network researhommunity. Our future work will involve leveraging thesmall size and performane of the SpotCore CPU to buildmultiproessing hubs whih will take advantage of the highdegree of data-parallelism inherent in sensor networks. Itis our belief that suh lightweight proessing elements willform the ornerstone of salable sentient omputing.
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