
Gestures are Strings: Efficient Online Gesture Spotting
and Classification using String Matching

Thomas Stiefmeier
Wearable Computing Lab

ETH Zürich
Zürich, Switzerland

stiefmeier@ife.ee.ethz.ch

Daniel Roggen
Wearable Computing Lab

ETH Zürich
Zürich, Switzerland

droggen@ife.ee.ethz.ch

Gerhard Tröster
Wearable Computing Lab

ETH Zürich
Zürich, Switzerland

troester@ife.ee.ethz.ch

ABSTRACT
Context awareness is one mechanism that allows wearable
computers to provide information proactively, unobtrusively
and with minimal user disturbance. Gestures and activities
are an important aspect of the user’s context. Detection
and classification of gestures may be computationally expen-
sive for low-power, miniaturized wearable platforms, such as
those that may be integrated into garments.
In this paper we introduce a novel method for online and
real-time spotting and classification of gestures. Contin-
uous user motion, acquired from a body-worn network of
inertial sensors, is represented by strings of symbols encod-
ing motion vectors. Fast string matching techniques, in-
spired from bioinformatics, spot trained gestures and clas-
sify them. Robustness to gesture variability is provided by
approximate matching efficiently implemented through dy-
namic programming. Our method is successfully demon-
strated by spotting and classifying the occurrences of trained
gestures within a continuous recording of a complex bicycle
maintenance task. It executes in real-time on a desktop
computer with a fraction of CPU time. Only simple integer
arithmetic operations are required, which makes this method
ideally suited for implementation on body-worn sensor nodes
and real-time operation.

Categories and Subject Descriptors
I.5.5 [Pattern Recognition]: Implementation; I.5.4 [Pat-
tern Recognition]: Application; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval

1. INTRODUCTION
Wearable computers, embedded in clothing or seamlessly
integrated in devices we carry with us, may revolutionize
the way we work, collaborate, learn or share experiences.
They aim to support users by providing information proac-
tively, unobtrusively and with minimal disturbance. One
key mechanism enabling wearable computers is the recog-
nition of the user’s context, such as his location, his social
interactions or his gestures and activities [6, 17]. By be-
ing “always on” and continuously evaluating the state of the
user, they are at the crossroads of personal assistants and
pervasive computers, and may provide feedback and infor-
mation tailored to the user’s needs, anytime and anywhere.

Physical activities and gestures are an important aspect of
the user’s context. By identifying gestures, wearable com-
puters may for instance support workers in industrial en-
vironments [27, 28]; they may enhance social interactions

[11]; or they may even provide an insight into affective dis-
orders or depression [9]. Gestures can be characterized by
the trajectory of the limbs in Cartesian space. These tra-
jectories may be acquired by external absolute trackers (e.g.
ultra-sound, vision), but in order to work in unconstrained
environments, wearable computers tend to rely on body-
worn sensors. Inertial sensors (e.g. accelerometers and gy-
roscopes) worn on the limbs are commonly used for this
purpose. The identification of gestures depends on their na-
ture. Periodic motions are often recognized by classification
of signal features [23, 29] with simple means like nearest
neighbor classifiers; non-periodic motions may be detected
by hidden Markov models (HMMs) [22], which were used to
detect intentional gestures from body worn-sensors [4] and
from limb motions tracked by vision systems [26, 30].

Real-time and continuous recognition of activities and ges-
tures remains a complex task which is often tackled in a two-
step approach: 1) segmentation and 2) recognition. Vari-
ous segmentation methods have been proposed: Keogh et
al. introduced a theoretical framework for the segmentation
of time series for data mining [12], Lee et al. proposed a
threshold model using HMMs to detect “non-gestures” [14],
Wilson et al. discussed the use of the probability of occur-
rence according to trained HMMs to segment gestures [30]
and Junker et al. proposed a segmentation based on closed
motions [10]. Ogris et al. investigated motion segmenta-
tion based on location information [21], whereas Stäger et
al. explored sound-based segmentation [25]. The isolated
recognition of the segmented motion is often achieved us-
ing HMMs [4, 30]. However, this two-step approach may be
computationally expensive.

We propose a single-step approach that does not require ex-
plicit motion segmentation to perform online and real-time
gesture spotting and classification of continuous user mo-
tion. It is related to threshold based HMMs although we
argue that the computational requirements are more suited
for low-power devices such as described in [24]. Our method
relies on very fast string matching techniques applied on
strings of symbols representing continuous motion. Strings
as an abstraction of motion has also been used in [18]. De-
spite variability in gestures of identical classes, robust spot-
ting is possible by using approximate string matching that
is efficiently implemented through dynamic programming.
Our method is also related to dynamic time warping (DTW)
[2],[13] but does not require costly arithmetic operations
such as divisions, and may be implemented entirely in in-

create-net
Typewritten Text

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.BODYNETS 2007, June 11-13, Florence, ItalyCopyright © 2007 ICST 978-963-06-2193-9DOI 10.4108/bodynets.2007.143

teger arithmetics. This makes it ideally suited for efficient
implementation in micro-controllers such as those available
on wearable sensor nodes.

We demonstrate our method by spotting and classifying oc-
currences of trained manipulative hand gestures within a
continuous sequence containing gestures and a predominant
amount of “non-gestures” of users performing bicycle main-
tenance tasks. We evidence its strength both as a method to
spot gestures within a continuous stream of data, as well as a
classification method. Its capacity to spot gestures may also
be used to segment data for traditional isolated classification
methods. In Section 2, we describe exact and approximate
string matching techniques and how they may be efficiently
implemented with dynamic programming. The process of
converting limb trajectories in Cartesian space into strings,
and how string matching is applied to those, is explained in
Section 3. Section 4 describes results of applying our novel
method to a real-life bicycle maintenance task. Results are
discussed in Section 5 and we conclude this paper in Sec-
tion 6.

2. STRING MATCHING
String matching techniques are used to support information
retrieval and computational biology (e.g. analysis of DNA
or protein sequences). It can be applied to any sequence
of symbols. We assume that gestures can be represented
by strings, as will be shown in Section 3. Following, we
introduce the theoretical framework of string matching.

A string is a sequence of characters or symbols over a fi-
nite alphabet Σ. In general, the string matching problem is
to find all occurrences of a given string S, also referred to
as the pattern, in a larger sequence of symbols, the text T .
String matching deals with two problems: exact matching
and approximate matching. We consider approximate string
matching since it allows to cope with variability of the pat-
tern’s occurrences in the text. A good introduction to string
matching and an in-depth overview on commonly deployed
algorithms is given in [20].

2.1 Approximate String Matching
In order to allow for a certain degree of deviation between
string S and potential occurrences in text T , edit operations
applied to string S and leading to a substring of T are al-
lowed. The edit operations are insertion of a symbol into
string S, deletion of a symbol from S and the substitution
of a symbol in S with another symbol. The edit distance
or Levenshtein distance characterizes the difference between
two strings [15]. It is the minimum number of edit opera-
tions to transform one string into another string. A general
form of the edit distance is obtained when dedicated weights
are assigned to the available edit operations. Approximate
matching consists in finding the substring of T that matches
best string S according to the weighted edit distance.

2.2 Algorithm
The weighted edit distance is computed through dynamic
programming, which allows an efficient implementation. Each
computational problem formulated using dynamic program-
ming is based on a recurrence relation. In the case of the
weighted edit distance, this relation is established using the

computation of D (i, j) which represents the minimum edit
operation cost needed to transform the first i symbols of
string S1 into the first j symbols of string S2. The recur-
rence relation including insertion and deletion cost d and
substitution cost r can be stated the following way (see [8]):

D (i, j) = min [D (i − 1, j) + d, D (i, j − 1) + d,
D (i − 1, j − 1) + t (i, j)]

Expression t (i, j) is used to handle substitution and equal-
ity, where t (i, j) = 0 if S1 (i) = S2 (j); otherwise t (i, j) =
r. The initial conditions of the recurrence relation are:
D (i, 0) = i · d and D (0, j) = j · d. They account for the
deletion costs for transforming the first i symbols of string
S1 into the empty string and the insertion costs for trans-
forming the empty string into the first j symbols of string
S2. In order to calculate the weighted edit distance for string
S1 of length n and string S2 of length m, the recurrence re-
lation needs to be invoked n ·m times. As can be seen easily,
there are no costly multiplications or divisions; only three
addition operations, a comparison and a minimum opera-
tion which can be implemented based on comparisons. The
computational complexity of the algorithm is O (nm). The
memory requirements to store intermediate results in this
general version of the algorithm can be stated as O (nm).

2.3 Application of String Matching
The edit distance gives a similarity measure for two strings
S1 of length n and S2 of length m. In the problem of spot-
ting gestures in a continuous stream of data, string S1 is the
pattern which is to be found in the continuous motion of
the user represented by string S2. The process of convert-
ing continuous motion into a string is described in detail in
Section 3. Expression D (n, j) is the minimum weighted edit
operation cost to align string S1 into an occurrence (or sub-
string) ending at index j within S2. The lower the cost, the
higher the likelihood of having found a gesture occurrence
within the continuous motion of the user.

3. GESTURE SPOTTING AND CLASSIFI-
CATION USING STRING MATCHING

This section describes how string matching is used to spot
occurrences of gestures in a continuous stream of data. We
consider gestures carried out with hands and refer to them
as manipulative gestures or simply gestures. For this work,
sensor modules placed on the body are used to acquire the
trajectory of the right hand. The trajectory is referred to as
continuous motion. It is aggregated, quantized and encoded
using a finite set of symbols resulting in a motion string. For
each gesture class to be spotted within the motion string, a
generic representation is created which is referred to as tem-
plate string. These templates are generated during training
as well as statistics are collected (e.g. spotting thresholds).
Template strings are continuously matched to the motion
string during spotting and classification. The matching cost
based on the edit distance is used to spot gestures and clas-
sify them. Figure 1 illustrates this procedure. The pro-
cessing path for template string training is indicated with
dashed arrows. Solid arrows depict the path taken by the
continuous motion and the motion string in which template
string occurrences are spotted and classified.

Trajectory Calculation

Distributed Sensor Modules

Trajectory Aggregation

Direction Vector Encoding

String Matching

Filtering

Generation

Spotting and Classification

Template

Strings

Gesture Template
Costs

Matching

Strings
Matching Costs

Spotted Gestures

Strings

Position (x,y,z)

Trained Parameters

Orientation

D
ire

ct
io

n
V

ec
to

rs

Figure 1: Overview of gesture spotting and classifi-
cation using string matching

3.1 Trajectory Calculation
A continuous stream of orientation data is acquired from a
distributed set of inertial sensor modules mounted on the
lower arms, the upper arms and the torso of the body. By
combining the modules’ orientation data, the relative po-
sition of the arms with respect to the torso is computed
including the limbs’ and the torso’s dimensions. Assuming
that the motion patterns of the hands are a good indica-
tor for manipulative gestures considered in this work, the
relative position of the hands is computed in Cartesian co-
ordinates. A continuous stream of such relative positions is
referred to as a trajectory in three-dimensional space.

3.2 Trajectory Aggregation
In order to transform trajectories, of which the coordinates
have continuous values, to a set of symbols appropriate for
string matching, quantization is required. Contiguous posi-
tions in the trajectories are first aggregated to form trajec-
tory segments. These segments are then transformed to di-
rection vectors which are encoded by discrete symbols. The
direction vectors represent the motion direction within tra-
jectory segments. Two aggregation modes are investigated:
(a) temporal aggregation: segments of identical temporal
duration w ·Ts are aggregated, (b) spatial aggregation: seg-
ments of the same spatial distance ε are aggregated. Ts

stands for the sampling period. These modes define the
start and end point of the trajectory segment to be aggre-
gated. End point of segment i is contiguous to start point
of segment i + 1 in terms of positions in a trajectory. The
direction vector of a segment is the vectorial difference of
the positions of its end and start points.

3.3 Direction Encoding
The direction vectors obtained in the previous steps are
quantized. Each direction vector is mapped to an entry
of a codebook which contains a finite set of unit direction
vectors. The codebook vectors are directionally uniformly
distributed. The actual mapping of a given direction vector
to one codebook vector is achieved by finding the closest
codebook vector in terms of angular distance. Every code-
book vector corresponds to a character or symbol. A neutral
symbol representing the null vector is also provided.

Figure 2 shows an example trajectory which is segmented
using temporal aggregation with w = 8. The start and end
points of one example segment are marked with circles. The
corresponding direction vector is plotted with a bold arrow.
In addition, 6 unitary codebook vectors are illustrated cor-

responding to symbols Σ = {a,b,c,d,e,f}. The 7th symbol
g (null vector) is not shown. In this example, the trajec-
tory segment is encoded into symbol e since it represents
the closest codebook vector. In Figure 3, the whole process
of encoding a motion string, matching template strings with
it and calculating the matching costs for two gesture classes
is depicted.

−1.5

−1

−0.5

00.10.20.30.40.50.60.70.80.91
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x

e

b

a

f

y

c

d

z

Figure 2: This example shows a trajectory in Carte-
sian space (samples are marked with X) and one
trajectory segment with its corresponding direction
vector (bold arrow) and start/end points (circles).
A codebook sphere with 6 codebook vectors not in-
cluding the null vector is overlaid to show the en-
coding of the segment into symbol e.

3.4 Matching Costs
As described in Section 2, the string matching method is
based on the computation of weighted edit distances. In
this work, the required insertion, deletion and substitution
costs are based on the angular relation of two codebook vec-
tors represented by symbols. In case two symbols, i.e. two
codebook vectors, are identical, no cost is assigned. Oth-
erwise, a cost based on the angular relationship of the two
vectors is associated. We assign an exponentially increasing
cost for an increasing angular distance of the two vectors to
penalize large angular deviations.

fc (i, j) = exp

„
∠ (vi, vj)

100

«
− 1 (1)

Equation 1 calculates the insertion, deletion and substitu-
tion cost for two symbols i and j, which represent direction
vectors vi and vj , using function ∠ to determine the angle
in degrees between two vectors.

3.5 Training
Training is carried out in two steps. At first, a template
string for each gesture class is created which represents all
training instances of that very class. For that, the weighted
edit distance is calculated for all combinations of two train-
ing instances. The training instance that minimizes the sum
of distances to all the other instances is selected as the tem-
plate string. In a second step, matching cost statistics be-
tween the template string and all the training instances of

abadabeffacbgMotion String

Continuous Motion
x

(x(t),y(t))

Current Sample

abadaf

abadabe

abada
=====dd==s

g
====

abadabe f

gf

= = =ii

Template String 1

Template String 2

d f fd f D=s+d+d

D=i+i

Direction Vector

y t-w

t-2w

t

t-...

Figure 3: Continuous motion (here in two dimen-
sions) is aggregated into trajectory segments, trans-
formed into direction vectors and encoded into sym-
bols. The resulting sequence of symbols is called
motion string. Gesture classes are represented by
templates which are created during training result-
ing in template strings. These are aligned with
the motion string during spotting using approxi-
mate string matching which allows matches (’=’),
insertions (’i’), deletions (’d’) and substitutions (’s’).
For each gesture class, a threshold acquired during
training is applied to the computed matching cost
D to spot gesture occurrences.

that class are collected. The mean µi and the standard de-
viation σi of the matching cost is computed for each gesture
class i. A class-related threshold kthr is then derived the
following way:

kthr,i = µi + ν · σi, (2)

where ν is a parameter which needs to be optimized for an
individual data set.

3.6 Spotting and Classification
Gesture spotting requires a template string for each ges-
ture class to be spotted. The matching cost for each tem-
plate string with the motion string (continuous data stream
of symbols) is computed resulting in a stream of matching
costs for each class. Within these cost streams, local min-
ima are detected. When local minima are below threshold
kthr,i for class i (see Equation 2), a spotted occurrence of
the particular class i is reported. The local minima being
below the thresholds are anticipated to be end points of the
spotted occurrences. Therefore, an implicit classification is
performed. Due to the particular template string length,
the start point of this occurrence can be computed.

3.7 Filtering
Since the spotting and classification is carried out in parallel
for all gesture classes, temporal collisions between spotted
gestures can occur. These collisions are detected by mon-
itoring the reported gesture occurrences in all classes and
checking their overlap. Collisions are resolved by compar-
ing the relative matching costs of colliding spotted gesture
occurrences, which is defined as the absolute matching cost
of a template string with the continuous stream of symbols
divided by the class-dependent threshold kthr,i. The occur-
rence with the lowest relative matching cost is the output
of the filtering and thus the result of the classification; all
other colliding spotted gestures are discarded.

4. EXPERIMENTAL RESULTS
4.1 Bicycle Maintenance Task
Gesture spotting and classification using string matching in
a continuous stream of data has been validated on a data set
which consists of manipulative gestures in a realistic setting.
This data set comprises 23 different distinguishable mainte-
nance tasks within a bicycle maintenance scenario [21]. Fig-
ure 4 shows the bicycle while one of the subjects is perform-
ing a task. Orientation data of the torso, the upper and
lower arms is acquired using MTx inertial sensor modules
from Xsens at a sampling rate of 50 Hz.

Figure 4: Bicycle maintenance scenario

Five tasks of this maintenance scenario have been selected
to demonstrate the functionality of the novel method. The
data set is partitioned into two parts: For each of the main-
tenance tasks, a data recording is available which contains
between 20 and 25 repetitions of the manipulative gesture.
This part is used to train the template strings and the class-
dependent thresholds which are used for gesture spotting.
The second part of the data set consists of test sequences
which contain all 23 gestures in a random order. These se-
quences are used to validate our method. Each sequence
contains 7 occurrences of gestures we wish to detect and
16 other gestures which form the null class in addition to
ordinary movements which are not related to any of these
23 gestures. This makes the sequence close to real-life con-
ditions for gesture spotting. To improve the realism even
more, the user was asked to clean random bike parts at
random time within each test sequence not interrupting the
ongoing gestures.

The following manipulative gestures are considered; their
number of occurrences per test sequence is given in brack-
ets: pumping a wheel (2), turning pedals (2), turning pedals
and mark unbalances on back wheel (1), open back light and
remove bulb (1) and insert bulb and close back light (1). 8
sequences per subject have been recorded which leads to 56
occurrences of gestures to detect. The data of 3 subjects
has been processed. In total this adds up to 208 minutes of
sequence data for validation.

4.2 Gesture Spotting
Figure 5 shows the matching cost at each time step (i.e.
for each encoded symbol) between a training sequence con-
taining 25 repetitions of a gesture and the template string
derived from this training sequence. The end points of the
training occurrences in the sequence (vertical lines) match

exactly the spotted occurrences, which are all the circles
below the dashed horizontal line representing kthr. It can

50 100 150 200 250 300 350 400 450
0

50

100

150

M
at

ch
in

g
C

os
t

Time in Seconds

Figure 5: Matching cost on training data (class:
pumping a wheel, 25 repetitions) using temporal ag-
gregation with w = 5 and a codebook size of 7

be clearly seen that data recorded before and after the 25
repetitions of this training sequence are not spotted as ges-
tures (matching cost above threshold). A noise-like char-
acteristic of the matching cost is observed in these ranges.
The template string lengths for all gesture classes using spa-
tial aggregation with ε = 20mm (temporal aggregation with
w = 5) are the following: pumping a wheel 90 (75), turning
pedals 89 (56), turning pedals and mark unbalances 69 (43),
open back light 44 (73) and close back light 41 (92). For the
results presented in this work, we used the following param-
eters: ν = 2.0, β = 0.5, w = 5 for temporal aggregation,
ε = 20mm for spatial aggregation and a codebook size of 7.

Figure 6 illustrates the spotting of two gesture occurrences
of the same class in a test sequence comprising 23 differ-
ent gestures as explained in Section 4.1. In addition to the
matching cost, the pitch angle of the right upper arm is plot-
ted (upper curve). The matching cost clearly falls below the
detection threshold at the end of the two occurrences whose
ground truth is indicated by the two shaded areas. Figure 7
shows a close-up on the first occurrence of the considered
gesture. It evidences the close match between the spotted
location of the end of the gesture and the ground truth which
corresponds to the time span in which the arm is performing
periodic motions as can be seen in the pitch angle signal.

4.3 Spotting and Classification Accuracy
We use an objective quality measure in order to evaluate
the performance of our spotting and classification method.
It counts the number of times when a gesture spotted by the
string matching method corresponds to the ground truth de-
fined by human labeling of the data set. In order to cope
with the temporal inaccuracy of the labeling, on overlap
parameter β defines the minimum overlap ratio of the spot-
ted gesture with a ground truth gesture that is required to
say that the spotting matches the ground truth. This ra-
tio is based on the length of the ground truth gesture. For
β = 0.5, the overlap needs to exceed 50% of the ground truth
length to obtain a correctly spotted gesture. Each spotted
gesture is assigned to one of the four following categories:
correct (the spotted gesture is aligned with the correct cor-
responding ground truth gesture according to β), inserted
(the spotted gesture does not correspond to any ground
truth gesture), deleted (the ground truth gesture has not
been spotted) and substituted (the ground truth gesture has
been spotted but classified incorrectly).

Figure 6: Matching cost of a template string (class:
pumping a wheel) on a test sequence using tempo-
ral aggregation with w = 5. Depicted is a whole
sequence of 1008 seconds length with two gesture
occurrences marked by shaded areas. For both oc-
currences, the matching cost (lower graph) falls be-
low the corresponding threshold which is shown as a
dashed line. In addition, the pitch angle of the right
upper arm is plotted (upper graph).

Figure 7: Close-up of the first gesture occurrence
(shaded area) as depicted within the whole testing
sequence in Figure 6.

0 50 100 150 200 250 300 350

#1 pumping

#2 turning pedals

#3 marking

#4 opening light

#5 closing light

Time in Seconds

G
es

tu
re

 C
la

ss

Deletion

Correct

Insertion

Substitution

Figure 8: Gestures of 5 classes are spotted and clas-
sified in a test sequence of 350 seconds. Spotted ges-
tures are depicted by rectangles with diagonal lines;
ground truth gestures by bold rectangles. We find
5 correct, 1 deletion, 1 insertion and 1 substitution.

Correct
Events

Deleted
Events

Inserted
Events

Substi-
tuted
Events

Ground
Truth
Events

Correct
Rate

Deletion
Rate

Insertion
Rate

Substi-
tution
Rate

Subject 1 46 4 2 6 56 82.1% 7.1% 3.6% 10.7%
Subject 2 44 11 9 1 56 78.6% 19.6% 16.1% 1.8%
Subject 3 49 7 15 0 56 87.5% 12.5% 26.8% 0.0%

Total 139 22 26 7 168 82.7% 13.1% 15.5% 4.2%

Table 1: Spotting and classification results for different subjects. To achieve these results, spatial aggregation
mode with ε = 20mm has been used.

Figure 8 illustrates the spotting and classification results
on a whole test sequence. 7 ground truth gestures are in-
cluded in this sequence of which 5 are spotted and classified
correctly. One insertion of gesture class 4 occurs around
time 145. A gesture of class 3 is deleted around time 300.
A substitution occurs between class 4 and 5 at time 155.
In general, the number of correct, deleted and substituted
gestures adds up to the number of ground truth gestures.
Table 1 shows the spotting and classification results for 24
test sequences from 3 different subjects. On average, 82.7%
of all ground truth gestures are spotted and classified cor-
rectly. This is an interesting result, since only comparatively
low processing effort is required for the string matching al-
gorithms. About 13.1% of the ground truth gestures have
been deleted producing errors which cannot be compensated
later on. However, the deletion rate is significantly varying
among the different subjects. Insertion (15.5%) and sub-
stitution (4.2%) errors can be coped with using additional
postprocessing, for example an additional classifier.

4.4 Performance
As explained in Section 2, the computational complexity of
the approximate string matching algorithm is O (nm) where
n represents the length of the template string and m the
length of the motion string. The algorithm is applied to
the symbol stream (motion string) for each of the t gesture
classes to be spotted. Defining the average template string
length n̄, the required CPU time of an online implementa-
tion is proportional to t · n̄. The template string lengths and
the number of gesture classes are constant during the whole
spotting procedure. For performance comparison reasons,
three algorithms, which are commonly used for segmenta-
tion as the first processing stage of spotting, have been im-
plemented and applied to the same data set: a) SAX [16]
approximates a given time series by piecewise constant seg-
ments which are encoded into a discrete alphabet , b) SWAB
[12] merges contiguous samples of a time series until a cost
measure is reached and c) a genetic algorithm (GA) based
approach [7] uses evolutionary search to find a proper seg-
mentation. It needs to be emphasized that SAX, SWAB
and GA only segment the data stream in our implemen-
tation. A second costly processing stage, i.e. a similarity
search, is needed for spotting and classification.

Table 2 indicates the CPU time required by each of the
algorithms on a Pentium 4 (3GHz, 1GByte RAM) to pro-
cess various sequences. All algorithms are implemented in
Matlab without special optimizations. The execution time
of our spotting and classification method is about 12.4% of
the duration of the sequences. This means the algorithm is
roughly 8 times faster than real-time. The CPU time is dis-
tributed among the five key processing blocks (see Figure 1)

Test
Sequence

Sequence
Dura-
tion

CPU
Time for
String
Matching

CPU
Time for
SAX

CPU
Time for
SWAB

CPU
Time for
GA

1 1008 129.7 73.9 1271.8 1750.5
2 532 66.2 21.9 875.5 913.1
3 466 57.7 20.2 824.0 795.6
4 487 60.1 20.6 875.4 856.4
5 434 52.3 14.1 794.9 759.0
6 423 51.8 15.0 812.8 736.1
7 495 60.4 16.7 892.1 848.6
8 378 45.8 10.0 715.1 643.3

Total 4223 524.0 192.4 7061.6 7302.6

Table 2: Test sequence duration and CPU time
in seconds for spotting and classification of 8 se-
quences. For these results, the temporal aggregation
with w = 5 has been used.

for spatial aggregation with ε = 20mm (temporal aggrega-
tion with w = 5) as follows: aggregation 1.65% (0.65%),
direction vector encoding 1.91% (2.23%), string matching
96.04% (96.41%), spotting and classification 0.36% (0.64%)
and filtering 0.04% (0.07%). We expect to reduce the re-
quired CPU time considerably by implementing the algo-
rithms in C or C++. SWAB and GA require more than 67%
more processing time in our implementation than would be
available for a real-time execution on this computer. SAX
is about 2.7 times faster than our spotting and classification
method, however it does not perform spotting nor classifica-
tion but only a segmentation of the continuous data stream.

5. DISCUSSION AND FUTURE WORK
We introduced a new method for online gesture recogni-
tion which encodes gestures by strings. String matching
between a template string and the ongoing motion string
is used to spot and classify gestures. This method has the
advantage of not requiring any time-consuming preliminary
gesture segmentation, in contrast to commonly used meth-
ods of isolated gesture recognition, e.g. based on hidden
Markov models [10]. In addition, gestures can easily be pro-
cessed online. Comparing the continuous matching cost of
the template strings with trained thresholds indicates ges-
ture occurrences. Spotting (the detection of an occurrence)
and classification (knowing which class of gestures occurred)
are carried out at the same time.

In this work, we used string matching to classify manipula-
tive gestures. Since the motion string is matched with sev-
eral template strings in parallel, a gesture may be classified
as belonging to several classes when its matching costs are
all below the detection thresholds computed during training.

To resolve this, gestures are assigned the class for which the
template has the lowest relative matching cost with the oc-
currence. Although providing the desired filtering, a more
sophisticated filter should take into account gesture length
as well as the history of previously spotted gestures. An-
other classifier may be used as a second stage classification
method when the string matching method comes with am-
biguous classification results, thereby potentially improving
the classification accuracy. In particular, string matching
may be used as a very fast segmentation method to pro-
vide isolated segments for classifiers operating on isolated
gestures, such as HMMs. Then string matching is used for
segmentation only and it may be optimized accordingly. In-
stead of trying to maximize correct classification while min-
imizing insertions, deletions and substitutions, the string
matching system may be optimized to mostly minimize the
number of deletions. High insertion or substitution rates
are not critical, since they would be handled by the second
classifier, as long as enough computing power is available to
classify (and potentially reject) spotted gestures. Deletions,
however, are critical: if a gesture is not spotted by the string
matching, this particular occurrence is lost regardless of the
second classifier.

Template strings should be a generic representation of the
class of gestures they stand for. They are currently gener-
ated by selecting the string from the training set of gestures
that has the smallest overall matching cost with all the other
strings. Thereby we constrain the search of the optimal tem-
plate string. Since an exhaustive search is computationally
prohibitive, another approach may be to synthesize a generic
gesture from the training class instances and encode it as a
template string. Synthesis may be done by traversing the
most likely sequence of states of a hidden Markov model
trained on the training gestures of one class. This method
is successfully exploited to program robots by imitation [1],
[3]. The generation of user independent template strings
may be carried out similarly.

Currently, only the trajectory of the right hand is processed.
A next step will be to find a way of combining this with the
processing of other trajectories which is conceivable on dif-
ferent levels: during trajectory encoding or after performing
the spotting in parallel on several trajectories.

A performance comparison of the string matching method
to related approaches such as dynamic time warping (DTW)
[2],[13] or HMM-based spotting methods [5],[14] remains ob-
ject of future work. However, the computational complexity
of the string matching approach is anticipated to be lower
than DTW and HMM. In [13], for each new data sample
the whole DTW algorithm has to be performed to find the
optimal warping path which is more costly than our string
matching approach which only involves few comparisons for
each new data sample. In addition, parameters for endpoint
detection have to be defined either by hand or in a complex
automated way making the DTW approach less generic. As
described in [5], the complexity of the HMM-based spotting
approach is O

`
TN2

´
with T equals the number of observa-

tion steps and N equals the number of states in the HMM.
This is clearly computationally more demanding than the
complexity of the string matching approach which accounts
for O (nm), where m corresponds to the number of observed

motion symbols and n equals the length of the string tem-
plate (see Section 2.2).

The current implementation of the spotting and classifica-
tion was done in Matlab without special optimizations, yet
it is about 8 times faster than real-time on a desktop com-
puter. The implementation in particular does not need any
complex arithmetic operation (e.g. divisions, trigonometric
functions) and can be implemented entirely in integer arith-
metic. As a consequence, the string matching method is well
suited for an implementation on low-power micro-controller
systems. We intend to capitalize on this efficient method by
investigating online gesture recognition on low-power sensor
nodes.

6. CONCLUSION
In this paper we introduced for the first time a method for
online gesture spotting and classification that is based on
efficient string matching techniques, similar to those used
in bioinformatics. Continuous motion trajectories are en-
coded as a sequence of symbols representing the direction of
motion vectors. Gesture templates (strings describing ges-
tures to be recognized) are matched online with the string
of symbols representing the ongoing motion trajectory. An
efficient approximate string matching algorithm based on
dynamic programming is used to spot gestures in a robust
way, allowing variability across gestures of the same class.
A high degree of match between a template gesture string
and the user motion string indicates a gesture occurrence of
the corresponding class.

We demonstrated this new approach by recognizing typical
manipulative gestures carried out in a bicycle maintenance
setup using the motion trajectories of the worker’s right
hand. Realistic sequences were recorded with 23 typical bi-
cycle maintenance tasks occurring in a random order and
with various null class events in between the worker’s main-
tenance activities. We detected occurrences of five classes
of gestures while the remaining worker activities were part
of the null class. Results showed that this new method was
able to spot trained gestures among continuous recording of
motion with a high success rate (correct rate > 82%), while
the number of misclassifications remained low. In addition,
processing was about 8 times faster than real-time on a desk-
top computer without any implementation optimizations.

The string matching method is fast and uses only simple
integer arithmetic operations (e.g. no costly division opera-
tions). Together with its good performance, it is well suited
for implementation on low-power sensor nodes that may be
placed on the body or integrated into garments for wearable
computing. This approach may also serve for fast gesture
segmentation and spotting, instead of more costly meth-
ods relying on motion dynamics analysis [10] or on hidden
Markov models [30, 14].

However, the real strength of string matching for gesture
recognition is yet to be realized. We envision that high-level
activities composed of sequences of elementary activities and
gestures may be spotted and classified in a similar way by
introducing string matching operators that apply to groups
of symbols in addition to isolated symbols [19], therefore
paving the way to hierarchical activity recognition.

7. REFERENCES
[1] A. Billard, Y. Epars, S. Colinon, S. Schaal, and

G. Cheng. Discovering optimal imitation strategies.
Robotics and Auton. Systems, 47(2-3):69–77, 2004.

[2] A. F. Bobick and A. D. Wilson. A state-based
approach to the representation and recognition of
gesture. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(12):1325–1337, Dec. 1997.

[3] S. Calinon and A. Billard. Recognition and
reproduction of gestures using a probabilistic
framework combining pca, ica and hmm. In Proc. of
the 22nd Int. Conf. on Machine Learning, 2005.

[4] G. Chambers, S. Venkatesh, G. West, and H. Bui.
Hierarchical recognition of intentional human gestures
for sports video annotation. In Proc. of Conference on
Pattern Recognition, pages 1082–1085, 2002.

[5] J. Deng and H. Tsui. An HMM-based approach for
gesture segmentation and recognition. In 15th
International Conference on Pattern Recognition,
volume 2, pages 679 – 682, September 2000.

[6] A. K. Dey and G. D. Abowd. Towards a better
understanding of context and context awareness.
Technical Report GITGVU-99-22, Georgia Tech, 1999.

[7] T. C. Fu, F. L. Chung, V. Ng, and R. Luk.
Evolutionary segmentation of financial time series into
subsequences. In Proc. of the 2001 Congress on
Evolutionary Computation, pages 426–430, May 2001.

[8] D. Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambrigde University Press, 1997.

[9] J. M. Hausdorff, C.-K. Peng, A. L. Goldberger, and
A. L. Stoll. Gait unsteadiness and fall risk in two
affective disorders: a preliminary study. BMC
Psychiatry, 4(39), 2004.

[10] H. Junker, P. Lukowitz, and G. Tröster. Continuous
recognition of arm activities with body-worn inertial
sensors. In Proc. of the Int. Symposium on Wearable
Computers, pages 188–189, 2004.

[11] M. Kanis, N. Winters, S. Agamanolis, A. Gavin, and
C. Cullinan. Toward wearable social networking with
iBand. In CHI ’05 - Human factors in computing
systems, pages 1521 – 1524, 2005.

[12] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online
algorithm for segmenting time series. In Proc. of the
Int. Conf. on Data Mining, pages 289–96, 2001.

[13] M. H. Ko, G. West, S. Venkatesh, and M. Kumar.
Online context recognition in multisensor systems
using dynamic time warping. In Conference on
Intelligent Sensors, Sensor Networks and Information
Processing, pages 283–288, Dec. 2005.

[14] H.-K. Lee and J. H. Kim. An hmm-based threshold
model approach for gesture recognition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 21(10):961–973, Oct. 1999.

[15] V. I. Levenshtein. Binary codes capable of correcting
spurious insertions and deletions of ones. 1:8–17, 1965.

[16] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic
representation of time series, with implications for
streaming algorithms. In Proc. of the 8th ACM
SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discorery, pages 2–11, 2003.

[17] P. Lukowicz, H. Junker, M. Staeger, T. von Bueren,

and G. Troester. WearNET: A distributed
multi-sensor system for context aware wearables. In
G. Borriello and L. Holmquist, editors, Proc. of the
4th Int. Conf. on Ubiquitous Computing, pages
361–370, Heidelberg, Sept. 2002. Springer.

[18] D. Minnen, T. Starner, I. Essa, and C. Isbell.
Discovering characteristic actions from on-body sensor
data. In Proc. of IEEE International Symposium on
Wearable Computing, pages 11–18, Oct. 2006.

[19] S. Muthu Muthukrishnan and S. Cenk Sahinalp.
Simple and practical sequence nearest neighbors with
block operations. In Proc. of the 13th Annual
Symposium on Combinatorial Pattern Matching, pages
262–278, 2002.

[20] G. Navarro and M. Raffinot. Flexible Pattern Matching
in Strings. Cambrigde University Press, 2002.

[21] G. Ogris, T. Stiefmeier, H. Junker, P. Lukowicz, and
G. Tröster. Using ultrasonic hand tracking to augment
motion analysis based recognition of manipulative
gestures. In Proc. of IEEE International Symposium
on Wearable Computing, pages 152–159, Oct. 2005.

[22] L. R. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285, Feb. 1989.

[23] C. Randell and H. Muller. Context awareness by
analysing accelerometer data. In Proc. 4th
International Symposium on Wearable Computers,
pages 175–176, 2000.

[24] D. Roggen, N. B. Bharatula, M. Stäger, P. Lukowicz,
and G. Tröster. From sensors to miniature networked
sensorbuttons. In Proc. of the 3rd Int. Conf. on
Networked Sensing Systems, pages 119–122, San
Diego, CA, 2006. Transducer Research Foundation.

[25] M. Stäger, P. Lukowicz, and G. Tröster.
Implementation and evaluation of a low-power
sound-based user activity recognition system. In Proc.
of the 8th International Symposium on Wearable
Computers, pages 138–141, Los Alamitos, CA, 2004.
IEEE Computer Society Press.

[26] T. Starner, J. Weaver, and A. Pentland. Real-time
American sign language recognition using desk and
wearable computer based video. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
20(12):1371–1375, 1998.

[27] T. Stiefmeier, C. Lombriser, D. Roggen, and
G. Tröster. Event-based activity tracking in work
environments. In Third International Forum on
Applied Wearable Computing, March 2006.

[28] T. Stiefmeier, G. Ogris, H. Junker, P. Lukowicz, and
G. Tröster. Combining motion sensors and ultrasonic
hands tracking for continuous activity recognition in a
maintenance scenario. In 10th IEEE International
Symposium on Wearable Computers, October 2006.

[29] P. Veltink, H. Bussmann, W. de Vries, W. Martens,
and R. Van Lummel. Detection of static and dynamic
activities using uniaxial accelerometers. IEEE
Transactions on Rehabilitation Engineering,
4(4):375–385, 1996.

[30] A. D. Wilson and A. F. Bobick. Parametric hidden
markov models for gesture recognition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 21(9):884–900, Sep. 1999.

