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Abstract—This paper addresses the problem of incorporating
soft and hard QoS support into the traditional utility-based
power control problem. We present some novel problem formula-
tions, prove relevant properties of optimal solutions and propose
decentralized recursive algorithms with global convergence. Fi-
nally, the convergence behavior and the throughput performance
are verified numerically.

I. INTRODUCTION

The main objective of classical QoS-based power control
is to allocate transmit powers to the users such that each
user meets its QoS (Quality of Service) requirement expressed
in terms of the signal-to-interference ratio (SIR) (see, for
instance, [1] and references therein). In contrast to that, utility-
based power control aims at optimizing the overall network
performance with respect to some aggregate utility function
(see [2] and references therein). This approach has attracted
a great deal of attention recently, mainly because of a more
efficient utilization of wireless resources. In view of many
important applications, however, the main drawback is that,
in general, no QoS can be guaranteed, even if given QoS
requirements are feasible.

One possible solution is to enforce the QoS requirements
by projecting the transmit powers on a set of so-called valid
transmit powers that provide the necessary QoS values (hard
QoS support). Here one of the main problems is to perform the
projection operation in a distributed environment. For instance,
a simple cyclic projection algorithm [3] in which the users
successively perform projections onto the individual sets may
require a lot of coordination in a network. In addition to
the issue of implementing the projection operation, another
key disadvantage of this approach is that there may be no
valid power allocation due to the fading effects, in which
case no solution exists to the problem as it is impossible to
meet the QoS requirements. In distributed wireless networks,
an efficient admission control to cope with the infeasibility
problem poses a significant challenge as the communication
overhead for such a control can explode. For this reason, we
actually argue in favor of soft QoS support in which case a
solution to the power control problem, which always exists,
attempts to approach the QoS requirements closely, provided
that the utility functions are chosen appropriately.

In this paper, we reformulate the conventional utility-based
power control problem (Eq. (4)) so as to take into account
the QoS requirements of the users. Section III is devoted to
the utility-based power control with hard QoS support. We
consider two different approaches to the problem. In Section
IV, we address the problem of utility-based power control
with soft QoS support. First we show that a widely-studied
max-min SIR balancing solution can be arbitrarily closely
approximated by a solution to a slightly modified utility-
based power control problem, with a class of utility functions
considered, for instance, in [4]. In Section IV-B, we combine
this approach with the conventional utility-based power control
problem. The main result (Proposition 4) states that under a
solution to this problem,
(a) the QoS requirements are met provided that some param-

eter is sufficiently large and the requirements are feasible,
(b) ”extra” resources1 are allocated to interested users so as

to maximize some aggregate utility function.
Section IV-D shows that the problem can be solved in a
distributed manner. In Section V, we present some simulation
results. The following section introduces the system model
and some definitions. We point out that most of the proofs are
omitted in this paper. They will be published elsewhere.

II. SYSTEM MODEL, ASSUMPTIONS AND DEFINITIONS

We consider a wireless network with an established network
topology, in which all links share a common wireless spec-
trum. Let K ≥ 2 users compete for access to the wireless links
and let K = {1, . . . ,K} denote the set of all users. We assume
that transmission of all users occur concurrently (no schedul-
ing in the time domain).2 The transmit powers pk, k ∈ K, of
the users are collected in the vector p = (p1, . . . , pK) ≥ 0.
For brevity, we assume individual power constraints so that
p ∈ P := {x ∈ RK

+ : ∀k∈Kxk ≤ Pk} for some given Pk > 0.
The main figure of merit is the SIR at the output of each
receiver given by
(A.1) SIRk(p) := pk/Ik(p), k ∈ K, where the interference

function Ik is Ik(p) := (Vp+z)k =
∑K

l=1 vk,lpl +zk.

1By ”extra” resources, we mean transmit powers that can be allocated after
all QoS requirements are satisfied.

2However, note that our power control algorithms can be combined with
any scheduling policy.
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Here and hereafter, V := (vk,l) ∈ RK×K
+ with

vk,l =

{
Vk,l/Vk,k k 6= l

0 k = l

is the gain matrix where Vk,l ≥ 0, Vk,k > 0, is the attenuation
of the power from transmitter l to receiver k. The kth entry
of z := (z1, . . . , zK) is zk = σ2

k/Vk,k, where σ2
k > 0 is the

noise variance at the receiver output. It is often reasonable to
assume that
(A.2) V ≥ 0 with trace(V) = 0 is irreducible [5], [6].
In this case, a network is entirely coupled by interference,
meaning that no subnetwork is interference-isolated in the
sense that its links perceive no interference from links outside
this subnetwork. Note, however, that many results presented
in this paper hold for any nonnegative (not necessarily irre-
ducible) matrix.

Let ωk ∈ Q ⊆ R be a QoS requirement of user k.
Throughout the paper, it is assumed that
(A.3) γ : Q → R++ is a twice continuously differentiable

and strictly decreasing function such that γk := γ(ωk)
is the minimum SIR which is necessary to provide ωk

to user k.
We refer to γ1, . . . , γK ≥ 0 as the SIR targets. If γk = 0 for
some k ∈ K, then user k has no QoS requirements, and thus is
called a best-effort user. Otherwise, we call it a QoS user. Now
the QoS vector ω := (ω1, . . . , ωK) ∈ QK is said to be feasible
if there is a power vector p ∈ P such that ∀k∈KSIRk(p) ≥ γk.
Note that since best-effort users have no QoS requirements,
they could be denied access to the channel under some power
control strategies such as those of [1]. In this paper, however,
we consider power control strategies under which each user is
allocated a positive transmit power. As a result, we can focus
on positive transmit powers and consider all the problems in
the logarithmic power domain:

S := {s ∈ RK : ∀ke
sk ≤ Pk} = ∩k∈KSk 6= ∅

where Sk := {s ∈ RK : esk ≤ Pk}. Throughout the paper,
s := log(p),p > 0, (component-wise) is used to denote the
(logarithmic) power vector.3

Definition 1: Given ω ∈ QK , we say that s ∈ RK is
valid if SIRk(es) ≥ γk, k ∈ K. So, the closed set S(ω) :=
∩k∈KSk(ω) with

Sk(ω) :=
{
s ∈ RK : SIRk(es) = esk/Ik(es) ≥ γk

}
(1)

is the set of all valid power vectors. The set

S̄(ω) := S(ω) ∩ S = ∩k∈K

(
Sk(ω) ∩ Sk

)
(2)

is the set of all feasible power vectors, which is closed as well.
Definition 2: Let ω ∈ QK be given (but not necessarily

feasible). Then, s(ω) ∈ S (if exists) is said to be max-min
SIR-balanced if and only if (iff)4

C
(
ω, s(ω)

)
= C(ω) := inf

s∈S
C(ω, s) (3)

3R++ → R : x → log(x) denotes the natural logarithm.
4Typically, it is reasonable to assume γk > 0, k ∈ K.

where C(ω, s) := maxk∈K(γk/SIRk(es)).
By the definitions, we have the following observations.

Observation 1: ω ∈ QK is feasible if S̄(ω) 6= ∅. The
converse holds if γk > 0, k ∈ K, in which case the infimum
in (3) is attained on S and s(ω) ∈ S exists.

Observation 2: For any ω ∈ QK , Sk(ω), S(ω) and S̄(ω)
are convex sets.

Proof: This follows from log-convexity of Ik [2] and the
fact that empty sets are convex sets.

Observation 3: ω is feasible iff C(ω) ≤ 1.

A. Utility-based power control without QoS support

The traditional utility-based power control problem is5

s∗ := arg min
s∈S

Fe(s) (4)

where the minimum is assumed to exist and Fe : RK → R is
the aggregate utility function defined to be

Fe(s) :=
∑
k∈K

wkψ(SIRk(es)) . (5)

Here and hereafter, w = (w1, . . . , wK) > 0 is a given weight
vector and ψ : R++ → Q is the inverse function of γ so
that γ(ψ(x)) = x, x > 0. Therefore, ψ(SIRk(p)) is the QoS
level of user k ∈ K under p or, in other words, −ψ(SIRk(p))
represents the degree of user satisfaction with the QoS.

Utility-based power control schemes have been considered
in [7], [8], [9]. These papers balance the throughput and
fairness performance against power consumption. In [7], the
utility function is a decreasing function of power and a
concave increasing function of SIR. Reference [9] considers
a sigmoid-like utility of SIR and a linear decreasing function
of power. The utility function considered in [8] is related to
the notion of power efficiency defined as the ratio of data rate
and transmit power. All the papers model the power control
problem as a noncooperative game where users maximize their
utilities. A game-theoretic approach is also taken in [10]. For
a class of increasing and strictly concave functions of SIR,
the authors propose power control strategies that converge to
a global maximum. This function class constitutes a proper
subset of utility measures defined in this paper. In [11], the
problem of joint power control and end-to-end congestion
control is addressed. The power control part of [11] assumes
ψ(x) = − log(x), x > 0.

In this paper (as in [2]), it is assumed that ψ satisfies the
following two conditions (in addition to Condition (A.3))
(A.4) limx→0 ψ(x) = +∞⇒ limx→0 ψ

′(x) = −∞.
(A.5) ψe(x) := ψ(ex) is convex on R.
Prominent examples of functions that satisfy (A.3)–(A.5) are
the (negative) logarithmic function ψ(x) = − log(x), x > 0
and ψ(x) = 1/xn, x > 0, n ≥ 1. The main reason for
considering this class of functions is the following [12], [2].

5We formulate the utility-based power control problem as a minimization
problem to be conform with standard results from the optimization theory.



Observation 4: Fe is convex on RK , and thus, by convexity
of S, the problem (4) is convex if (A.1) and (A.3)–(A.5) hold.
Moreover, if (A.2) is true, then Fe is strictly convex.

This result evolved from the work on the geometry of the
so-called feasible QoS region [13], [14], [15]. In [13], [14],
we showed that this region is a convex set if the SIR is a
log-convex function of a QoS parameter of interest. As a
consequence, the problem of optimizing the aggregate QoS
of a network over the set of all feasible QoS levels is a
convex problem. In [12], it was shown that if the SIR is log-
convex in the QoS, then the Karush-Kuhn-Tucker conditions
for the corresponding power control problem are necessary
and sufficient to characterize an optimal power allocation.
Furthermore, if the log-convexity property holds, the power
control problem can be converted into a convex optimization
problem by the logarithmic transformation of the power vector.

Distributed power control algorithms for the problem (4)
that do not resort to the use of classical flooding protocols
can be found in [16], [17]. The key ingredient in distributed
implementation of these power control schemes is the use
of an adjoint network to efficiently distribute some locally
measurable quantities to other (logical) transmitters. More
precisely, instead of each transmitter sending its message
separately as in case of classical flooding protocols, some
information is transmitted simultaneously over the adjoint
network such that each transmitter can estimate its gradient
component from the power of the received signal [16], [2].

The algorithms are recursive in nature and mostly require an
appropriate choice of step sizes. Since (adaptive) step size con-
trol is difficult to implement in distributed wireless networks,
the step size sequence {δ(n)} is usually a non-increasing real-
valued sequence satisfying one of the following.
(A.6) δ(n) = δ, n ∈ N0, for some sufficiently small δ > 0.

(A.7) δ(n) > 0,
∑∞

n=0 δ(n) = ∞ and limn→∞ δ(n) = 0.
Note that the second condition might be more reasonable
if an algorithm is based on some noisy measurements. An
appropriate choice of the step size is a key ingredient to
the effectiveness of the algorithm [18]. Throughout the paper,
{δ(n)} is an appropriate step size sequence assumed to fulfill
either (A.6) or (A.7).

III. HARD QOS SUPPORT

Power control with hard QoS support ensures that each link
satisfies its QoS requirement, provided that the QoS vector ω
is feasible. So, the problem takes now the following form

s∗(ω) := arg min
s∈S̄(ω)

Fe(s) (6)

where S̄(ω) ⊂ RK is given by (2) and Fe : RK → R is
defined by (5) with (A.3)–(A.5). Note that γk = γ(ωk) ≥ 0 is
not necessarily positive. By Observations 2 and 4, the problem
is convex if (A.1) and (A.3)–(A.5) hold. Moreover, (6) has a
solution (minimum) if S̄(ω) 6= ∅. In this section, we have
(A.8) int(S̄(ω)) 6= ∅. Here and hereafter, int(A) is used to

denote the interior of a set A ⊂ RK relative to RK .

This with Observation 2 implies that the Slater constraint
qualification for the problem (6) is satisfied [19, p. 371].

Comparing (6) with (4) reveals that the only difference to
the traditional utility-based power control is that the projection
must be performed on the set S̄(ω) = S(ω) ∩ S ⊂ S, instead
of S. As will be seen below, this projection operation may
be difficult to realize without a central network controller. In
what follows, we present three approaches to (6), two of which
solve the problem iteratively. In contrast, the third one only
approximates a solution to (6).

A. Gradient projection algorithm

A straightforward approach is to apply gradient-projection
methods to the problem (6). In this case, the iteration takes
the form

s(n+ 1) = ΠS̄(ω)

[
s(n)− δ(n)∇Fe(s(n))

]
(7)

where ΠS̄(ω)(x) denotes the projection (with respect to the
Euclidean norm) of x ∈ RK onto S̄(ω), which is well-defined
[19, pp. 88–90], and the kth entry of the gradient vector
∇kFe(s) yields [2]

∇kFe(s) = esk

(
gk(s)−

∑
l 6=k

vl,kSIRl(es)gl(s)
)

(8)

with
gk(s) = wkψ

′(SIRk(es)
)
/Ik(es) . (9)

The gradient vector can be computed in a distributed manner
using the adjoint network [2], [16]. So, the main problem is
that now the projection must be performed on the closed set
S̄(ω). Since S̄(ω) is the intersection of convex sets Sk(ω) ∩
Sk (see (2) and Observation 2), the projection operation can
be accomplished by means of a so-called cyclic projection
algorithm [3], in which case the users successively perform
their own projections, with user k projecting on Sk(ω) ∩ Sk.
Writing Sk(ω) as

Sk(ω) :=
{
s ∈ S : aT

k e
s = aT

k p ≤ −γkzk

}
(10)

with ak =
(
γkvk,1, . . . , γkvk,k−1,−1, γkvk,k+1, . . . , γkvk,K

)
shows that the projection on valid power region Sk(ω) of user
k ∈ K is (p = es)

ΠSk(ω)(s) = log
(
p− max{0,aT

k p + γkzk}
‖ak‖22

ak

)
(11)

which, if needed, must be corrected appropriately to satisfy
the power constraint. However, we already see from (11) that
the cyclic projection algorithm is in general not amenable to
distributed implementation as the operation may require a lot
of coordination between the nodes.

B. A distributed primal-dual algorithm

In order to simplify the projection problem, we now con-
sider a primal-dual algorithm and show that it can be imple-
mented in a distributed manner.



To this end, let L : S × R|A|+ → R be an associated
Lagrangian function defined to be6

L(s,λ) := Fe(s) +
∑

k∈A
λk fk(s) (12)

where s ∈ S, A = {k ∈ K : γk > 0}, λ = (λ1, . . . , λ|A|) ≥ 0
are dual variables and fk : RK → R, k ∈ A, are defined to be

fk(s) := Ik(es)/esk − 1/γk, k ∈ A . (13)

Observation 5: The function fk : RK → R given by (13)
are convex for each k ∈ A. Hence, by Observation 4, the
Lagrangian function is a convex-concave function [20].

Proof: This immediately follows since Ik(es)/esk is log-
convex on RK and hence also convex [2].

Since fk(s) ≤ 0, k ∈ A, for any fixed s ∈ S(ω) 6= ∅,
L(s,λ) ≤ L(s,0) for all s ∈ S(ω) and all λ ≥ 0. Hence, for
any given s ∈ S̄(ω) 6= ∅, L(s,λ) attains its maximum (which
exists) at λ = 0, From this and unboundedness of L(s, ·) on
R|A|+ for any s /∈ S(ω), it follows that mins∈S̄(ω) Fe(s) =
mins∈S maxλ≥0 L(s,λ), and therefore

s∗(ω) = arg min
s∈S

max
λ≥0

L(s,λ) . (14)

The corresponding dual problem to (6) is defined to be

λ∗(ω) := arg max
λ≥0

min
s∈S

L(s,λ) (15)

where the minimum (for any λ ≥ 0) and the maximum can
be shown to exist. Now an application of standard results
from convex optimization theory [19, pp. 355–371] and [20]
together with (A.8) and Observation 5 proves the following.

Observation 6: Strong duality holds and (s∗(ω),λ∗(ω)) ∈
S̄(ω)×R|A|+ is a saddle-point of the Lagrangian L. Moreover,
the complementary slackness conditions are satisfied.

All these observations imply that the Karush-Kuhn-Tucker
(KKT) conditions provide necessary and sufficient conditions
for optimality. In other words, the pair (s∗(ω),λ∗(ω)) pro-
vides optimal solutions to the primal and dual problems iff it
satisfies the KKT conditions [21]. As a consequence, we can
solve the problem (6) by solving the KKT conditions. Since
the complementary slackness conditions are satisfied and the
problem is convex, this is equivalent to finding a stationary
point of the Lagrangian function (12), which is the saddle
point x∗(ω) := (s∗(ω),λ∗(ω)) ∈ S̄(ω)× R|A|+ .

In order to find x∗(ω), we apply a primal-dual algorithm
of the following form (with x = (s,λ) ∈ RK × R|A|+ ):

x(n+ 1) = ΠX

[
x(n)− δ(n)

(
IK 0
0 −I|A|

)
∇L(x(n))

]
(16)

where Im is the identity matrix of dimension m, 0 is a suitable
zero matrix, ∇L(x) is the gradient vector with respect to x =
(s,λ), and

ΠX(x) =
(
min{s1, log(P1)}, . . . ,min{sK , log(PK)},
max{0, λ1}, · · · ,max{0, λ|A|}

)
.

6In the analysis, it is often useful to define L over RK × R|A| with
L(s, λ) = +∞ if s /∈ S, λ ∈ R|A|

+ and L(s, λ) = −∞ if λ /∈ R|A|
+ .

Computing the partial derivatives of L shows that the algo-
rithm (16) takes the form

sk(n+1) = min
{
sk(n)− δ(n)

[
gk(s(n))esk(n)

− µk(n)Ik(es(n))
esk(n)

+ esk(n)Σk

(
s(n),µ(n)

)]
, log(Pk)

}
, k ∈ K

λk(n+1) = max
{
0, λk(n) + δ(n)fk(s(n))

}
, k ∈ A

µk(n+1) = λk(n+ 1), k ∈ A

µk(n+1) = 0, k ∈ K \A

(17)

where the iterations are performed simultaneously and Σk :
RK × RK

+ → R is given by (note that vk,k = 0)

Σk(s,µ) =
∑

l
vl,k

( µl

esl
− SIRl(es)gl(s)

)
=

∑
l
vl,k

( µl

esl
+

∣∣SIRl(es)gl(s)
∣∣)

=
∑

l
vl,kml(s, µl), µ = (µ1, . . . , µK) .

(18)

The last step follows from the fact that gl(s) defined by (9)
is negative on RK since ψ is strictly decreasing.

Now considering [20, Theorem 10] (and the discussion after
the theorem) as well as Observations 4, 5 and 6, we can show
the following.

Proposition 1: If (A.2) hold, then the sequence
(s(n),λ(n)) generated by (16) converges to a saddle
point (s∗(ω),λ∗(ω)) ∈ S̄(ω)× R|A|+ given by (14) and (15).
Moreover, s∗(ω) minimizes Fe(s) over S̄(ω).

The algorithm can be implemented in distributed wireless
networks using the scheme based on the adjoint network [2],
[16]. Except for Σk(s(n),µ(n)) =

∑
l 6=k vl,kml(s(n), µl(n))

given by (18), all the other quantities (such as the weights
wk) are either known locally or can be computed from local
measurements (such as the SIR) and, if necessary, conveyed to
the corresponding transmitter/receiver by means of a low-rate
control channel. In contrast, Σk(s(n),µ(n)) can be estimated
from the received signal power in the adjoint network with
the exchanged roles of transmitters/receivers and a channel
inversion on each link as described in [16]. The only difference
to the scheme of [16] is that each receiver, say receiver
l ∈ K, transmits in the nth iteration a sequence of independent
zero-mean random symbols with the variance being equal
to ml(s(n), µl(n)) defined in (18). The main steps of the
distributed power control scheme is summarized below.

The algorithm assumes that the weight wk is known at both
the transmitter side and the receiver side of link k ∈ K. Also,
all transmitters and receivers must know the function ψ and its
derivative. If different functions ψk, k ∈ K, are associated with
distinct links, then it is sufficient that each transmitter-receiver
pair has only a local knowledge of the function associated with
the respective link.

The main disadvantages of the algorithm are, in general,
the lack of monotonicity and a relatively low convergence
rate. Monotonicity of an algorithm means that the performance
(with respect to the aggregate utility function) is improved



Algorithm 1 Distributed primal-dual algorithm
Require: w > 0, ε > 0, n = 0, s(0) ∈ S, ω with S̄(ω) 6= ∅,

non-increasing step size sequence {δ(n)}n∈N0 .
Ensure: s ∈ S

1: repeat
2: Concurrent transmission at transmit powers esk(n), k ∈

K, with receiver-side estimation of Ik(es(n)) and
SIRk(es(n)).

3: Each transmitter-receiver pair exchanges on a per-link
basis some of the estimates and variables including
Ik(es(n)), sk(n), k ∈ K and λk(n), k ∈ A.

4: Concurrent transmission in the adjoint network with
transmitter-side estimation of the received power [16],
[2]. The variance of the zero-mean input symbols is
mk(s(n), µk(n)) given by (18).

5: Transmitter-side computation of sk(n+ 1) and λk(n+
1), k ∈ K, according to (17).

6: n = n+ 1
7: until |Fe(s(n))− Fe(s(n− 1))| < ε

in each iteration step, which may be important in practice
where only a relatively small number of iterations is carried
out. Note that this property is provided by the gradient-
projection algorithm discussed before. The convergence rate
in turn can be improved by considering a modified (non-
linear) Lagrangian function, allowing us to avoid the projection
operation completely as discussed in [22], where the problem
of power and interference control was addressed. Reference
[17] presents a distributed Newton-like algorithm that provides
quadratic convergence rate but with global convergence guar-
anteed for a smaller class of utility functions.

C. A simple barrier algorithm
Another possibility for ensuring the QoS requirements is

to exploit barrier properties of the function ψ. Indeed, ω is
feasible if there is s ∈ S such that SIRk(es) − γk > 0. So,
since ψ fulfills (A.4) and (A.8) holds, this suggests using ψ as
a barrier function to ensure QoS requirements. More precisely,
the idea is to minimize

FΘ(s) :=
∑
k∈K

wkψ
(
Θk(s)

)
, s ∈ int(S(ω)) (19)

over int(S̄(ω)) 6= ∅ where Θk : RK → R is defined to be

Θk(s) := SIRk(es)− γk, k ∈ K . (20)

Formally, the power control problem under consideration is
formulated as follows:

s̄∗(ω) := arg min
s∈int(S̄(ω))

FΘ(s) (21)

where (A.8) is assumed to hold.
Lemma 1: If ψ : R++ → Q satisfies (A.3)–(A.5), then

FΘ(s) defined by (19) is a convex function of s ∈ int(S(ω)).
Proof: The lemma follows from the fact that Θk(s(µ))

is a log-concave function of µ ∈ (0, 1). Thus, due to (A.5),
proceeding as in [16] shows that FΘ is convex.

As an immediate consequence of Observation 2 and the
above lemma, we have the following proposition.

Proposition 2: If (A.1) and (A.3)–(A.5) holds, then the
problem (21) is a convex optimization problem.

The problem (21), can be solved using, for instance, a
gradient projection algorithm similar to that used for solving
the problem (4) and presented in [16], [2]. In fact, the only
differences are:
(a) A start point s(0) must be a valid power allocation so that

s(0) ∈ int(S(ω)) 6= ∅.
(b) The entries of the gradient vector ∇FΘ are given by the

right-hand side of (8) with gk(es) given by

gk(s) = wkψ
′(Θk(s))/Ik(es), k ∈ K . (22)

Again the algorithm can be implemented in a distributed
manner using the handshake protocol from [16], [2]. All the
differences to the scheme presented in [16], [2] result from
using Θk(s) as the basic performance measure of link k,
instead of the SIR. However, note that Θk(s) and with it
also gk(s) can be easily computed at the node where link k
originates if the corresponding SIR is known. The variance of
random symbols transmitted over the adjoint network should
be equal to |SIRl(es)gl(s)| with gl defined by (22).

IV. SOFT QOS SUPPORT

A. Approximation of Max-Min SIR balancing

One possibility for incorporating QoS into the utility-based
power control is to approximate a max-min SIR-balanced
power vector s(ω), which, by Observation 1, exists if
(A.9) γk > 0 for each k ∈ K (assumed in this subsection).
The approximation is motivated by Observation 3, which
implies that the SIR targets are met under s(ω) whenever they
are feasible. Unfortunately, a max-min SIR balancing problem
(3) is (for general power constraints) notoriously difficult to
solve in a distributed manner (see, for instance, the discussion
in [4] about achieving max-min fairness in wired networks).
On the positive side, however, we show that a max-min SIR-
balancing solution can be approximated by

s̄(α) := arg min
s∈S

F̄α(s) . (23)

Here and hereafter, for some given γk > 0, k ∈ K,

F̄α(s) :=
∑
k∈K

wkψα

(
SIRk(es)/γk

)
(24)

where ψα : R++ → Q is given by

ψα(x) :=

{
x1−α

α−1 α ≥ 2
− log x α = 1

x > 0 . (25)

Now s̄(α) can be shown to converge to some s(ω) ∈ M(ω)
as α→∞ where M(ω) denotes the set of all max-min SIR-
balanced power vectors.7

7Note that there may be more than one solution to the max-min SIR-
balancing problem.



Lemma 2: If (A.1) and (A.9) hold, then there is s ∈ M(ω)
with limα→∞ ‖s̄(α)− s‖ = 0 for any norm ‖ · ‖ on RK .

Now using this lemma yields the following result.
Proposition 3: Assume (A.1) and (A.9). Then, ω ∈ QK is

feasible iff, for any ε > 0, there exists α(ε) ≥ 1 such that

∀α≥α(ε) ∀k∈K SIRk

(
es̄(α)

)
/γk ≥ 1− ε . (26)

By the results, we can arbitrarily closely approximate a so-
lution to the max-min SIR-balancing problem by choosing the
parameter α in (23)–(25) sufficiently large. The approximation
becomes more accurate as α increases. In fact, the parameter
α can be used to achieve different tradeoffs between fairness
and efficiency in terms of total throughput: If V is irreducible,
the total throughput

∑
k log(1 + SIRk(es̄(α))) and the ratio

maxk(SIRk(s̄(α))/γk)
mink(SIRk(s̄(α))/γk) decreases as α increases. Thus, in some
sense, the fairness performance becomes better at the expense
of throughput performance (see also Figure 1).

Practically, the proposition implies that if ω is feasible,
then each user meets its QoS requirement under power control
(23) if α ≥ 2 is large enough. The choice of α, however, is
influenced by V, and hence also by the fading channel. So,
if α is fixed, the QoS requirements may be violated for some
realizations of the channel, even if they are feasible. Thus,
power control (23) provides only soft QoS support.

Finally, note that as ψα satisfies (A.3)–(A.5) and the ratio
SIRk(es)/γk is used instead of SIRk(es), all the results
presented in [16], [2] hold. In particular, the problem is convex
and can be solved in a distributed manner using a gradient
projection scheme based on the concept of the adjoint network,
if the kth receiver knows γk > 0. An additional problem is
that the function F̄α can be difficult to minimize for large
values of α since then the gradient vector varies rapidly for
relatively small SIRs, resulting in low convergence rates due to
small step sizes. This problem may be mitigated by starting the
algorithm for a small value of α, and then gradually increasing
this parameter after a number of steps.

B. Incorporation of Best Effort Traffic

One drawback of the power control strategy (23) is certainly
the inability of choosing γk = 0 for some k ∈ K. This raises
the question of how to incorporate best-effort users. Also, note
that, once all the SIR targets γk are met for sufficiently large α,
users with relatively high SIR requirements may be preferred
when allocating ”extra” resources. As a result, the throughput-
performance of (23) may be much worse than that of the
strategies with hard QoS support (and ψ(x) = − log(x)).

As a possible solution, we consider a strategy that combines
the power control strategy (23) with the traditional utility-
based approach (4). To this end, we define two user subsets
A ⊆ K and B ⊆ K such that A∪B = K. The set A is assumed
to include indices of those users which have some (positive)
SIR targets γk > 0, k ∈ A, while B contains all users without
any QoS requirements (best effort links) and may also contain
all other users. Hence, these sets are not necessarily disjoint.
Without loss of generality, we can assume that the users are
ordered so that A = {1, . . . ,ma},B = {mb + 1, . . . ,K}, 0 ≤

mb ≤ ma ≤ K. Now consider the following power control
problem

s̃(α) := s̃(α,ω) = arg mins∈S F̃α(s) (27)

where

F̃α(s) =
∑
k∈A

akψα

(SIRk(es)
γk

)
+

∑
k∈B

bkψ
(
SIRk(es)

)
(28)

and where
(A.10) a > 0 and b > 0 are given weight vectors. Without loss

of generality, it is assumed that ‖a‖1 = ‖b‖1 = 1.
(A.11) ψα : R++ → Q, α ≥ 2, is given by (25).
(A.12) ψ : R++ → Q is any function that satisfies (A.3)–(A.5).

Observation 7: Each of the following is true: (i) The min-
imum in (27) exists. (ii) The problem is convex. (iii) ∇F̃α(s)
is Lipschitz continuous on every bounded subset of RK .

Proof: The observation follows from [2] and some stan-
dard results from convex optimization theory.

A reasonable choice for ψ is ψ(x) = − log(x), x > 0. If α
is sufficiently large, the choice of the weight vector a ∈ Π+

K

has negligible impact on the optimal power vector s̃(α) so
that one can often assume a = 1/

∣∣A∣∣. Notice that (27) with
A = ∅,B = K, is the utility-based power control problem (4),
and if we choose A = K,B = ∅, the problem reduces to (23).

Lemma 3: Consider (27). If S̄(ω) 6= ∅, then, for any s ∈
S̄(ω), there are constants c1 > 0 and c2 = c2(s) < +∞ such
that c1 ≤ F̃α

(
s̃(α)

)
≤ F̃α(s) ≤ c2 for all α ≥ 2. So, if

S̄(ω) 6= ∅, there are 0 < c3 ≤ c4 <∞ such that

∀α≥2 c3 ≤ min
k∈K

SIRk(es̃(α)) ≤ max
k∈K

SIRk(es̃(α)) ≤ c4 (29)

and hence the entries of s̃(α) ∈ S are bounded for all α ≥ 2.
Proof: The lower bounds follow from Observation 7(i)

and the fact that ψα(x) > 0 for all x > 0. The upper bounds
hold as F̃α(s(α)) ≤ F̃α(s) for all s ∈ S and F̃α(s) is bounded
above for any s ∈ S̄(ω).

This simple lemma is used to show the following.
Proposition 4: Suppose that A 6= ∅,B 6= ∅ and A \ B 6=

∅. Then, for any ε > 0 and an irreducible matrix V ≥ 0
(Condition (A.2)), there exists α(ε,V) ≥ 1 such that

max
k∈A\B

SIRk(es̃(α))/γk ≤ 1 + ε (30)

for all α ≥ α(ε,V) ≥ 1. Moreover, if S̄(ω) 6= ∅, then, for any
nonnegative but not necessarily irreducible matrix V,

1− ε ≤ min
k∈A

SIRk(es̃(α))/γk . (31)

Notice that irreducibility of V (no isolated subnetworks) is
a key ingredient in the proof of (30).

C. Approximation of s∗(ω)

In a special case when B = K and b = w > 0, the power
vector s̃(α) given by (27) for any a > 0 tends to s∗(ω) defined
by (6) as α → ∞. This can be shown by proceeding in a



similar fashion as in [21, pp.564–568]. Intuitively, this can be
explained if we write the problem (6) as

s∗(ω) = arg min
s∈S

(
Fe(s) +D(s)

)
where D : RK → {0,∞} is a penalty (or indicator) function
defined to be

D(s) =

{
∞ ∃k∈ASIRk(es) < γk

0 otherwise .

Now considering (28) with B = K and b = w shows that
|Fe(s)+D(s)−F̃α(s)| = |D(s)−

∑
k∈A akψα(SIRk(es)/γk)|

for any s ∈ RK . Thus, s̃(α) is close to s∗(ω) if∑
k∈A akψα(SIRk(es)/γk) is a good approximation of D(s).

Now since D(s) = ∞ iff ∃k∈ASIRk(es)/γk < 1, it follows
from the properties of the functions ψα that the approximation
becomes better as α increases.

D. A Distributed Algorithm

The gradient-projection algorithm for the problem (27) is

sk(n+1) = min
{
sk(n)−δk(n)∇kF̃α(s(n)), log(Pk)

}
(32)

for each k ∈ K with s(0) ∈ S. The kth entry of the gradient
vector ∇kF̃α(s) is given by

∇kF̃α(s) = esk

(
φk(s)−

∑
l 6=k

vl,kSIRl(es)φl(s)
)

(33)

where

φk(s) =


uk(s) k ∈ A \B

uk(s) + vk(s) k ∈ A ∩B

vk(s) k ∈ B \A

(34)

and where

uk(s) = akψ
′
α

(
SIRk(s)/γk

)
/(γkIk(es))

vk(s) = bkψ
′(SIRk(es))/Ik(es) .

Now standard results from convex optimization theory together
with Observation 7 lead to the following observation.

Observation 8: A sequence {s(n)} generated by (32) con-
verges to s̃(α) ∈ S given by (27).

A distributed implementation is similar to that dis-
cussed in Section III-B. Again, except for Σk(s) =∑

l 6=k vl,kSIRl(es)φl(s), k ∈ K in (33) with φl, l ∈ K,
given by (34), all the other quantities (such as the weights)
are either known locally or can be computed from local
measurements (such as the SIR) and, if necessary, conveyed to
the corresponding transmitter/receiver by means of a low-rate
control channel. In contrast, Σk(s) can be estimated using
a scheme based on the concept of the adjoint network as
described in Section III-B. The only difference is that each
receiver, say receiver l ∈ K, transmits in the nth iteration a
sequence of independent zero-mean random symbols with the
variance equal to φl(s(n)) given by (33).
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Fig. 1. Minimum and maximum of SIRk/γk and total throughput over α.

V. NUMERICAL RESULTS

This section presents some simulations for a network with
K = 8 users (transmitter-receiver pairs) and a randomly
chosen irreducible gain matrix V ≥ 0. The weight vector and
the SIR targets are chosen to be w = 1 and γk = 6, k ∈ K,
respectively. Each user operates at SNR = 40dB.

Figure 1 shows the impact of the parameter α ≥ 1 on
the achievable SIRs and the total throughput for different
power control strategies. The simulations confirm Proposition
3, which says that we can arbitrarily closely approximate a
max-min SIR-balancing solution as α → ∞. So, if the SIR
targets are feasible, then they can be achieved provided that the
parameter α is sufficiently large. In contrast, in the case of hard
QoS support, α = 1 seems to be the most reasonable choice
because the SIR targets are achieved by means of projecting
the power vectors onto S̄(ω). Depending on the choice of
V, the link rate discrepancy may be significant. The barrier
algorithm of Section III-C has, as expected, a better fairness
performance than the other algorithms (III-A, III-B).

Figure 2 depicts exemplarily the convergence behavior for
two algorithms: The gradient projection algorithm and the
primal-dual algorithm. The step sizes are chosen to achieve
a fast convergence rate. Simulations suggest that the gradient
projection algorithm converges faster than the primal-dual one.
Moreover, the gradient-projection algorithm exhibits mono-
tonicity, which is not guaranteed by the primal-dual algorithm.

Figure 3 illustrates Proposition 4. As α increases, then (a)
the SIR of the QoS user in A approaches the SIR target
according to (30) and (31), (b) the QoS user in A ∩ B is
allocated ”extra” resources in addition to the SIR target and
(c) the both best-effort users benefit since the second summand
in (28) becomes dominant.

VI. CONCLUSIONS

The paper has addressed the problem of incorporating
QoS requirements of the users (expressed in terms of some
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a function of α.

SIR targets) into a traditional utility-based power control. A
straightforward approach is to maximize the aggregate utility
function over the set of feasible power vectors (hard QoS
support). Here, an additional challenge (in comparison with
the traditional approach) is to perform the projection operation,
which may require a lot of coordination in a distributed en-
vironment. Therefore, interesting alternatives are primal-dual
algorithms to find stationary points of associated Lagrangian
functions. In this paper, we have shown that a primal-dual
algorithm based on the standard Lagrangian function can be
efficiently implemented in a distributed manner.

Soft QoS support is of interest since the QoS requirements
might be infeasible for some channel states, in which case the
above problem with hard QoS support has no solution. This
paper shows that the QoS requirements can be achieved by
means of the traditional utility-based power control, provided
that they are feasible and the utility functions are chosen

suitably. Moreover, one can arbitrarily closely approximate a
solution to the utility-based power control problem with hard
QoS support.
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