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Abstract— In this paper we evaluate four different metrics for
non intrusive bottleneck detection based on TCP counters. This
work is based on the full TCP statistics recorded on five days
spread over the last one and a half year within the core network
of a mobile network operator in Austria. Scatterplots, so called
“footprints”, were generated counting the number of packets
and the number of retransmission for each user during the peak
hours. Two of the datasets had a known capacity bottleneck in
place. Based on those datasets we benchmarked the different
metrics for the detection of a bottleneck event. We preprocessed
the traces in order to remove the traffic increase. After this step
all metrics were able to detect the special bottleneck case. Even
traces separated for more than one year deliver a clear result.
The performance of a PSNR metric was similar to the other
metrics based on more sophisticated functions.

I. INTRODUCTION

In this paper we evaluate metrics for non intrusive bottle-

neck detection in a mobile core-network using TCP (Transmis-

sion Control Protocol) related counters. The protocol guaran-

tees reliable exchange of data between sender and receiver.

This is achieved by the retransmission of data packets. The

number of retransmission in the network is an indicator for

losses. In wired networks the probability to lose a packet

due to a link error is very small, therefore a high number

of retransmissions indicate congestion in the network. Due to

errors on the radio link the BER (Bit Error Rate) in a mobile

UMTS (Universal Mobile Telecommunications System) net-

work is larger than in wired networks. Coupled with a higher

delay many retransmissions are caused by the physical errors

rather than by network congestion [1, 2]. Retransmissions are

a part of normal operation in a mobile environment. Therefore

the detection of a bottleneck purely based on packet loss can

be ambiguous.

There are two main tracks to analyze available bandwidth,

the passive and the active. Active tools generate traffic patterns

to evaluate the available bandwidth via certain routes [3].

These tools are able to extract exact figures under all network

conditions — passive tools can only work if there is user traffic

— however the implementation puts extra load to all network

components. Common passive tools record the actual load and

compare it with the available bandwidth on the local link.

Ref. [1] extended the idea by applying statistical methods on

the bandwidth values. The key idea is to extract the second

and third order moments of different bandwidth values. A

bottleneck is detected via a decreasing variance for higher

numbers. The same authors show in [2] that this effect is due

to the TCP mechanism. To analyze the effect more deeply, we

used an improved version of TCP-Trace presented in Ref. [4]

to extract retransmission events on the TCP layer.

A straight forward extension to the use of retransmitted

packets, ni, is a metric that is based on the normalization

ni/Ni, where Ni is the total number of packets for this

user. Mobile data traffic is always related to a specific user,

therefore it is possible to extract these numbers on a per user

base. However the burstiness of the link error can rise false

alarms, e.g., small number of Ni and bad radio conditions. To

avoid this problem we decided to work with pairs of [Ni, ni]
in scatterplots and applied a distance metric to compare the

different scenarios. The goal was to find a metric that can be

used as an indicator for hidden, e.g. not at the observed link,

bottlenecks based on retransmissions. The anomaly is only

visible as a part of the total traffic monitored.

The paper is structured in the following way. Section

II presents the measurement setup, which is based on the

METAWIN testbed developed at the ftw. Furthermore we use

this section to describe the used traces. Section III we analyze

the samples. In a first step we analyzed only visually and then

in a second step via a metric based approach. Section IV uses

a generated sample to benchmark the different metrics. The

last section presents a summary and the conclusions.

II. MEASUREMENT SETUP

The reference network scenario is depicted in Fig. 1. As

most access networks, the 3G mobile network has a hierarchi-

cal tree-like deployment. The mobile stations and base stations

are geographically distributed. Going up in the hierarchy (first

BSC (Base Station Controller) / RNC(Radio Network Con-

troller), then SGSN (Serving GPRS Support Node), ultimately
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GGSN(Gateway GPRS Support Node)) the level of concen-

tration increases, involving a progressively smaller number

of equipments and physical sites. In a typical network there

are relatively few SGSNs and even fewer GGSNs. Therefore

it is possible to capture the whole data traffic from home

subscribers on a small number of Gn/Gi links. For further

details of the structure of a 3G mobile network refer to [5].

To meet privacy requirements traces are anonymized by

hashing all fields related to user identity at the lower 3G layers

(e.g. IMSI, MSISDN), and removing the user payload above

the TCP/IP layer.

The input traces were captured on a live GPRS/UMTS

network at the Gn interface by the METAWIN monitoring

system 1. It is a monitoring tool designed to record traffic in a

mobile core network. Although the underlying protocols and

interfaces are similar to normal core networks, the presence

of user mobility introduces intermediate protocols between

the transport network and the user data (see [5]). Therefore

METAWIN has to accomplish two main tasks: decoding the

additional protocols and tracking the individual user sessions.

In addition to this the system anonymizes all the traces and

strips off the payload in order to protect the privacy of the

customers. This preprocessing allows to do research on live

traces. The system is capable to monitor at three interfaces:

IuPs, Gn and Gi. The Gi interface is a normal Ethernet

interface between the mobile and the internet service provider.

No further user specific information is transmitted. The IuPs

interface is used between SGSN and RNC units. Although

the user specific information is present, the extraction and

reassembling is, due to the high number of links and protocol

stacks, very complex at this interface. Due to these facts we

decided to extract the Gn interface, because it provides both:

few interfaces and the whole user specific information.

The extraction parser called MOTRA dumps the packet

traces to a ring-buffer. The TCP statistics were extracted using

a modified version of tcptrace2.

This work is based on TCP statistics on the Gn interface

refined per user. This is possible because in a mobile network,

like GPRS or UMTS as well as EDGE (Enhanced Datarates

for Global Evolution) and HSDPA (High Speed Data Packet

Access), each data packet is dedicated to a specific user.

However, due to ciphering and security only session keys are

stored in the packet header of the transport protocol visible on

the interfaces (e.g. GPRS Transport Protocol (GTP) on Gn).

The connection setup contains the user identifier (IMSI) and

the session key. Therefore, the monitor unit has to perform

some kind of tracking.

As the traces were captured in a live network they include

several error sources like misbehaving terminals, portscans

and so on (see [6]). These errors impact the tracking, and

reduce the number of tracked packets to about 98%. The

remaining 2% of packets could not be addressed to any user

1More Information on the METAWIN project can be found here: http:
//www.ftw.at/ftw/research/projects/

2A diff package can be downloaded from the following homepage http:
//userver.ftw.at/˜vacirca/.

Fig. 1. Measurement Setup

and were excluded from the further processing. In addition to

this we filtered out the TCP ports 135 and 445 because most

of spurious packets in the network address these ports, e.g.,

from port scans and/or attacks see [7], and could inflate Ni.

III. ANALYSIS OF TCP FOOTPRINTS

The core dataset used in this work consists of the full TCP

statistics for one UMTS SGSN during five different periods:

one day in March 2006, one day in September 2006, one

day in April 2007, four hours around the maximum load in

September 2007 and finally four hours around the maximum

load in October 2007. The two most recent traces focus only

at a time frame from 7 p.m. to 11 p.m., including the peak

hour around 9 p.m. in the evening.

In [8] we discovered that an up-coming bottleneck will

be visible around the daily peak throughput rate first. For

the following section we reduced the older datasets to the

same time frame. The measurements were taken from the live

network of a major mobile provider in Austria, EU. Hereafter

the datasets will be indicated by S with an index starting at

one for the oldest and ranging up to five for the most recent

trace (e.g., S3 represents the trace taken in April 2007).

Two samples are expected to be different from the rest: S1

and S4 were recorded with a bottleneck in place. The first

sample was already used in the last publication and showed

a clear difference when compared to footprints of normal

operation. However, in the following the second trace will be

of more interest, as we monitored the same GGSN one week

later without the bottleneck and recorded it to S5. Now we

are able to draw a direct comparison between traces taken at

the same weekday with and without bottleneck.

The TCP statistics 〈Ni, ni〉 were extracted for 30 minutes

time bins in order to speed up the processing done with

tcptrace. As the impact of a bottleneck is more evident

during the peak hour we focus our analysis only on the

period from 7 to 9 pm, for a total of four bins. We used

scatterplots to visualize the process 〈Ni, ni〉, i.e., to create

“TCP footprints”. As both variables span several orders of

magnitude we introduced a logarithmic binning with 150 bins

on each axis. The color of each pixel represents the number

of occurrences within the bin.

We already described this procedure in [8]. There we

compared one bottleneck trace with several different footprints



without bottleneck. However, with the new traces we are now

able to see the long term evolution of the TCP footprints.

This evolution is important to decide whether the approach

we chose in [8] is applicable for anomaly detection.

A. Putting TCP Footprints to Scatterplots

In this paragraph we will present the unfiltered and not

normalized footprints for the different traces recorded over the

last two years. The following Fig. 2 depicts the scatterplots for

S1−5, in Figs. 2(a), 2(b), 2(c), 2(d), 2(e), and a GPRS footprint

to extend the intra technology comparison in Fig. 2(f).

At a first glance we can see that there is a difference between

the leftmost figures in line one and two and the other four

footprints. In fact these two depict the bottleneck cases. The

two figures have a strong positive correlation between Ni and

ni, especially for larger values of Ni. This was expected:

In fact, a capacity bottleneck can be modeled as an element

introducing random packet loss with a certain probability p
on all flows. Hence the absolute number of retransmissions

for each flow will be roughly proportional to the flow size,

i.e. ni ∝ p · Ni. In contrast to this all other footprints in

Fig. 2 (without bottleneck) yield a much weaker correlation.

Furthermore there is no significant difference in the shape of

the footprints figures 2(b), 2(c), 2(e), which represent the non

congested cases (S2,3,5).

It is striking how similar the GPRS sample is compared

to the UMTS samples. This is an interesting observation,

since the different radio technologies offer different kinds of

capacity and therefore one could expect different shapes in

footprints. We assume that the TCP footprint is caused by the

services used, which are basically dominated by HTTP as we

have shown in [9].

The shape of the footprint seems to be invariant for the non

congested scenarios. However, the growth in traffic, which

took place between the oldest and the most recent dataset,

lead to a shift along the x-axis (Ni). In case of the congested

footprints, Fig. 2(a) and Fig. 2(d), this shift is clearly visible.

Also in these scenarios the shape is similar, however, the

footprint in March 2006 shows less variance, which indicates

that there was a stronger limitation in place than during

September 2007.

Concluding this paragraph we can say that there is a clearly

visible difference between a footprint affected by a bottleneck

and a footprint recorded under normal operation conditions.

In addition we see that there is only a slight difference

in the shape after one year of network evolution and also

between two fundamentally different technologies like UMTS

and GPRS. The only visible difference between the figures is

a shift in Ni toward higher values.

B. Matching the TCP Footprints

In this paragraph we apply four different metrics to analyze

footprints for bottleneck situations. To make the benchmarking

more robust to outliers we applied the following preprocessing

steps. First we filtered the datasets using a median filter to

remove outliers. In case a region of the scatterplot is only

∆C S1 S2 S3 S4 S5

S1 1.00 0.41 0.27 0.87 0.43
S2 — 1.00 0.93 0.49 0.94
S3 — — 1.00 0.38 0.97
S4 — — — 1.00 0.48

S5 — — — — 1.00

TABLE I

CORRELATION RESULTS (NORMAL VS. BOTTLENECK)

sparse populated a point by point comparison may fail, if bins

containing events do not overlap. To avoid this problem we

applied a mean filter with a window size of five to smooth the

footprint. In a final step we normalized the value of the bins

by the number of events in the traces. This step eliminates the

growth of the population between the different measurement

periods. The datasets are now equal to an empirical binned

bi-dimensional probability density function.

In order to cope with the increase in Ni we calculated a

center of gravity for each plot. In metrics that need a reference,

like the correlation coefficient, we aligned the values for Ni

before applying the metric. Please note that this was not done

in our last publication. Therefore, the values may differ, in

fact some values improve while other values degrade.

a) Correlation Coefficient: The first metric we tested was

the 2-D correlation coefficient (Eq.(1)) for all permutations.

Hence the parameter is relative simple to compute (see [10])

we decided to use it as a starting point. A correlation coef-

ficient returns a dimensionless value in the interval of -1 to

1. A value of 1 indicates a perfect correlation while a value

of 0 indicates that there is no dependency between the two

parameters.

∆C(A, B) =

∑

x

∑

y (Axy − A) · (Bxy − B)
√

∑

x

∑

y (Axy − A)2 ·
∑

x

∑

y (Bxy − B)2

(1)

The results of this first metric are presented in Table I. As

the metric is symmetric we only write down the upper half of

the resulting matrix.

The results for the different datasets are similar to what

we have already observed visually. The coefficients for non

congested datasets, e.g., S2,3,5, are well above 0.9 indicating a

high similarity. If a non congested footprints is compared with

a congested one we get a value in the order of 0.45. Although

sample S4 originated from a weaker bottleneck condition the

correlation coefficient does not exceed 0.5, leaving a gap of

0.4 as detect threshold. In case we compare the bottleneck

traces, S1 and S4, we also get a high correlation of 0.87. We

conclude that this metric is well suited to detect such kind of

events.

b) Kullback-Leibler distance: The second metric we

evaluated was the Kullback-Leibler (KL) distance between two

datasets. The KL-distance is a distance measure between a

given probability distribution P and an arbitrary distribution

Q. Often P represents some reference data obtained by

measurements and Q is generated by a model approximating
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(f) GPRS 09-2006 without bottleneck

Fig. 2. Scatterplot of Ni over ni in the peak hours (log-binning, log scale)

P . Eq. (2), shows the KL-distance metric.

∆KL(P‖Q) =
∑

i,j

P (i, j) · ln
P (i, j)

Q(i, j)
(2)

The KL-distance is known to be very sensitive against changes,

this is why we chose this metric. We applied the distance to

our two dimensional domain. The logarithm in this equation

was a problem for our datasets with empty bins, as in case

Q is equal zero the fraction will be undefined. In this case it

is not possible to use the common domain only, as it would

neglect outliers outside this region. To overcome this problem

we modified the equation in such a way that we only calculated

the sum over all bins where P differs from zero. If we still

encounter bins where Q equals zero we added a constant offset

c = 0.01 to these bins of Q.

Note that the KL-distance is not, in general, symmetric (see

[11]). We defined a symmetrized version of the metric as in

Eq. (3), similar to [12].

∆KLs
(P, Q) =

1

2
· (∆KL(P‖Q) + ∆KL(Q‖P )) (3)

The value of ∆KLs
obtained by Eq. (3) is zero, if and only if

P equals Q and larger than zero in any other case. A larger

value of ∆KLs
indicates a stronger deviation of P from Q.

The second metric calculates the distance values given in

Table II. Again the matrix is symmetric and we omitted the

lower part of the results. The KL-distance is equal to zero in

case of equality, therefore every element on the main diagonal

is equal to zero.

The basic results are identical to the first metric. The

bottlenecks are clearly detected, note this time lower values

indicate higher similarity. Again there is a clear gap between

the two cases observed in the network.

∆KL S1 S2 S3 S4 S5

S1 0.00 1.74 3.65 0.32 1.59

S2 — 0.00 0.40 1.20 0.34
S3 — — 0.00 1.75 0.35
S4 — — — 0.00 1.23

S5 — — — — 0.00

TABLE II

RESULTS FROM A SYMMETRIC KL-DISTANCE (NORMAL VS.

BOTTLENECK)

The interesting result we obtain here is the fact that the

manipulation of the center of gravity delivered a degraded per-

formance in this case, compared to our previous publication.

These problems come from the different distributions in case

of bottleneck and non bottleneck scenarios. Therefore, a shift

along the x-axis increases the KL distance. However, the new

preprocessing leads to a higher detection sensitivity (larger gap

for bottleneck cases).

c) Principle Component Analysis: The third metric is

based on a PCA (Principle Component Analysis). In contrast

to the first two metrics, this metric does not need a reference.

This has several advantages, first we do not have to define a

reference day in order to use our metric and second as we only

consider the shape, we are independent from shifts in Ni, as

seen over the last months.

The PCA is a mathematical transformation. Given that

variance is a measure of information, the PCA tries to match

the new coordinate system accordingly. It applies a linear

orthogonal transformation which converts the original coor-

dinates to a new coordinate system so that the projection of

the greatest variance is identical with the first coordinate. This

first coordinate is also called first principle component.

In practice PCA is often used to reduce dimensionality.

This is possible by omitting higher principle components,



PCA S1 S2 S3 S4 S5

λ1 33.3 26.8 27.7 31.1 25.8
λ2 5.82 12.5 13.0 8.16 12.4

Fracpca 5.72 2.14 2.13 3.81 2.08

TABLE III

RESULTS FROM A PRINCIPLE COMPONENT ANALYSIS (NORMAL VS.

NORMAL)

depending on the energy left in those variables.

Given a set of N data vectors x1 . . . xN , where each vector

xn is a single observation of the M variables, here M is the

dimension of the underlaying dataset, which is two in our case.

We first generate a Matrix X of the size MxN, with one row per

variable and one column per observation. To apply a rotation

we have to remove the mean, in our case the empirical mean

of X. Now we need a orthonormal transformation matrix P of

the form:

Y = PT X (4)

so that cov(Y) is a diagonal matrix. After some matrix

manipulations we get the final results,

Pcov(Y) = cov(X)P (5)

which shows that the new matrix P can be found by calculating

the eigenvectors of cov(X). However, as we only have one

observation, we have to calculate an empirical covariance

matrix.

Table III shows the results of the variance along the new

axes in the rotated coordinate systems for each dataset in log

scale. In case of a bottleneck, e.g., S1,2, the variance in the

second direction is smaller. This can also be interpreted with

the fact that the footprint turns into a small ellipsoid like

figure in the case of a bottleneck. Under normal operational

conditions the footprint has a higher variance in the second

component and a lower in the first, in other words the footprint

is more round in this case. We then calculated the fraction,

Fracpca = λ1/λ2, for the variance in the first and the second

component, e.g., the energy in the different components. Under

normal operation Fracpca stays around 2, while in a bottleneck

scenario Fracpca rises up to 4 in case s4 or even up to 5 in

case of S1. There are several advantages in this method: first

it does not need any preprocessing like the shift in Ni, second

it can be used reference free and third it has the capability to

detect the difference between the two bottlenecks. In fact s1

was a quite heavy restriction in traffic, while S3 was only an

up-coming bottleneck, which is visible in the different results.

However, the computational effort here is higher than it is in

the PSNR case.

d) Peak Signal to Noise Ratio: We used a peak mean

square error as a forth metric, also called PSNR (Peak Signal

to Noise Ratio). This is a term from engineering, which is

used to compare the maximum possible power of a signal and

the power of a corrupting noise. It is commonly expressed in

logarithmic scale. The PSNR is often used in image processing

as a benchmark for image quality.

In a first step the mean square error is calculated over

every bin of P and Q. The result is then normalized to the

PSNR S1 S2 S3 S4 S5

S1 ∞ 20.3 18.1 24.9 19.2
S2 — ∞ 25.0 18.9 27.7
S3 — — ∞ 20.4 30.9
S4 — — — ∞ 21.6

S5 — — — — ∞

TABLE IV

PSNR VALUES IN dB (NORMAL VS. BOTTLENECK)

maximum level of P and Q. As we have renormalized these

values already before to minimize the effect of a population

growth, we can directly compare two scatterplots. This metric

needs a reference, therefore we again would have to set a

reference day in order to perform a benchmark. However, we

will not consider this problem here. In case P equals Q the

metric will go to infinity, see main diagonal in Table IV. A

lower value indicates less similarity between P and Q.

MSE(P, Q) =
1

m · n

m−1
∑

i=0

n−1
∑

j=0

‖P (i, j) − Q(i, j)‖ (6)

PSNR = 10 · ln
I2
max

MSE
(7)

The results improve if we align the center of gravity for

both scatterplots. This comes from the fact that this metric

is extremely sensitive to small shifts, whereas it becomes

less sensitive for larger deviations, e.g., an error in the least

significant bit of a single pixel results in a PSNR number of

about 91dB, a further pixel error results in a degradation of

2.3dB. This metric gains most from a good alignment between

the traces.

The values for the PSNR metric are given in Table IV.

The numbers are in the order of 20dB in case we compare

a bottleneck with a non bottleneck case, else they are around

25-30dB. There is a clear gap of more than 5dB usable for

detection. This metric is computationally simple and effective

in detecting the bottlenecks.

IV. PERFORMANCE ANALYSIS

In this paragraph we want to benchmark the performance

of the different metrics for an artificial generated dataset.

The new dataset Snew[x] was generated by randomly taken

samples from the two datasets S1 and S5. The value x indicates

the percentage of samples taken from S1, e.g., Snew[80] is

generated from samples that originate to 80% from S1, or in

other words this represents a relatively congested scenario.

Table V presents the detection result for the different

metrics. In the correlation based metric we set the limit to raise

an alarm to the lowest score for a bottleneck free dataset and

subtracted 10% as detection threshold. The alarm is triggered

in case that approximately 30% of traffic originate from the

congested trace. For the KL-distance we took the largest

distance from a bottleneck free operation and added 10% as

a detection threshold. In this case the alarm was triggered for

25% of congested traffic. Applying the same rules for PSNR

leads to a detection limit of 26%.



snew[x] Corr KL-dist PSNR PCA

x = 30% 25% 26% 51%

TABLE V

SHARE OF CONGESTED TRAFFIC TO RAISE AN ALARM

At a first glance results for the PCA were a bit weired, it

took more than 50% of congested traffic to raise an alarm.

To explain this problem we have to go back to the footprint

figures. Comparing Fig. 2(d) with Fig. 2(e) we see that the first

figure, which shows the congestion, is shifted to higher values

of ni. If we now randomly add a small amount of values from

a congested scenario to the normal operation, the variance of

both the first and the second principle component is increased.

If we reach a certain threshold the outer samples originating

from the non congested trace start to disappear rapidly and

in conjunction with this the variance of the second principle

component starts to drop fast. In fact for 10–20% of congested

traffic added, we obtain a lower or better Fracpca than listed

in Table III. However, detection on a decrease of Fracpca is

not reliable as there only is a small variation.

Concluding this benchmark we found out that KL performs

best. However, the simple PSNR performs similar in this

scenario. We propose the PSNR metric as it is the best trade

off between complexity and detection threshold reached.

V. SUMMARY AND CONCLUSIONS

In this paper we present four different methods for non

intrusive bottleneck detection in a cellular mobile core network

based on counters for TCP related events. The datasets we

used were recorded in a live 3G network at a major operator

in Austria.

We worked with five different datasets spanning nearly one

and a half year of network evolution, of which two represent

known bottleneck problems in the network. A first interesting

result was that there is no significant difference in shape

between the different non bottleneck cases although there was

a huge increase in throughput between 2006 and 2007. We

observed only a slight shift in the size of TCP packets send

per user, called Ni.

In this paper we used four different metrics, namely: the cor-

relation coefficient, a modified KL-distance, a PSNR method

and a principle component analysis. The first three metrics

give a distance between the actual footprint and a reference.

Therefore, one needs two references, e.g., one with and one

without bottleneck. In contrast to these the PCA method needs

no reference and can directly tell if there is a bottleneck or

not. This last metric identifies the shape of the given footprint.

All four metrics allowed a clear detection of the bottleneck.

It was interesting to see that also the second bottleneck,

which had a much smaller impact on the footprint, is detected

flawlessly. By applying a shift in Ni, e.g., aligning the center

of gravity, the detection event even works for traces that where

taken more than one year apart.

We concluded that the correlation coefficient is reliable

enough to detect a bottleneck footprint. However, in case one

does not have a reference bottleneck, and this may be true for

most of the operators, the PCA is the best choice because it

does not need a reference footprint.

In our following work we want to exploit the fact that the

footprints in GPRS do look similar to the UMTS case. We will

try to extend the detection to the total traffic in the network.
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