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Abstract—We discuss the dynamics of user handover
between two coexisting wireless service providers and
analyze the consequent exploitation of the offered diversity
by the use of multi-standard terminals. We show that
the potential capacity benefits of mobile-initiated vertical
handovers (VHO) are substantial, but it is important to
choose the correct VHO criteria in order to achieve opti-
mum load balancing and equilibrium states (both globally
and socially). A fast-handover scheme, based on replicator
dynamics is presented, which exhibits fast convergence to
the socially optimal states by allowing only a subset of the
necessary VHOs among the air interfaces to take place.

I. I

Given the massive deployment of wireless networks,
it is common for mobile users to have several choices of
collocated WLANs to connect to. This phenomenon is
made especially evident by the large scale appearance of
3G systems operated by major networks. In fact, mobile
user chips which support multiple standards already exist
and, additionally, there has been a significant amount
of work in creating flexible radio devices capable of
connecting to any existing standard [1]. It is therefore
reasonable to expect that in the near future users will
have the option to connect to different networks and to
switch dynamically between them on a real-time basis,
based on the offered throughput and/or price.

The dynamics of this process has several interesting
aspects. Firstly, with no central authority to moderate
and shepherd the users’ s selfish behavior, there is the
very real danger of total lack of coordination between the
users, leading to frustration and suboptimal performance.
Moreover, even though users now have more choices to
connect to, the (finite) resources of nearby access points
(AP’s) still remain an object of competition.

It is clear from the above that this process can be
modelled in terms of a non-cooperative game. Of course,
this is not a novel idea in and by itself: an excellent

survey of applications of game theory to networking
appears in [2]. For example, uncoordinated random ac-
cess channels have been analyzed by optimizing their
transmission probabilities [3], or their power control [4];
another application is in CDMA systems (e.g. [5]–[7]);
and, in the direction of connecting to multiple wireless
nodes, [8] considered the possibility of connecting to
several 802.11 APs using a single WLAN card.

In this paper we analyze instead the dynamics of verti-
cal handover between service providers possibly employ-
ing different standards.1 We will be assuming that users
can switch air interfaces in the time-scale of hundreds of
milliseconds and call this scheme multi-mode operation
(MMO), as opposed to single mode operation where
users are not capable to handover between air interfaces
(AIs). We thus postulate that parallel connections to both
AIs are available, allowing each user to switch between
AIs at rates faster than the typical session duration. Due
to the limited processing capabilities at the terminal, it
will only be able to process and thus accept data from
only one AI. Nevertheless, we will assume that it can
receive a small amount of data from both AIs, in order
to acquire knowledge of its possible throughput from
both AIs. Also, we will consider the handover rate to be
small enough so as to allow the user to feel the effect of
the presence of other users connected to that interface.

Specifically, we first introduce an asymmetric conges-
tion game to model our network, and we determine that
the game admits an essentially unique Nash equilibrium
in pure strategies. Of course, the existence of a pure
Nash equilibrium in games of this type has been proven
in [9], but the proof employed there is not well suited

1The results presented here were obtained within the EU-IST-2006
27960 project URANUS, with aim to design universal transceiver
structures, capable of switching among different air interfaces and
modes using a Generalized Multicarrier Representation (GMCR) of
signal waveforms.
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to our needs since it requires the users to be capable of
solving an exponentially complex problem in real time.
Moreover, the approach of [9] does not yield any insight
in the structure of the pure equilibria in terms of the
macroscopic parameters of the game (e.g. it is not at all
clear how to obtain even the users’ population per AI)
and uniqueness issues are not discussed at all. Instead,
we follow a different approach with which we com-
pletely characterize with the pure equilibria completely
in terms of the game’s parameters.

To facilitate the players to converge to this equilibrial
state, we propose an iterative scheme following the
dynamics of the so-called logit model [10], in which
each user rates the AI’s according to his connection
satisfaction. We show that this approach allows the
system to converge to a pure Nash equilibrium (whose
existence and essential uniqueness will be already es-
tablished), even in the presence of fading, wherein this
equilibrium state differs greatly from one instance to
the next. Remarkably, for relatively slow fading, we see
that the users learn to adapt quickly enough and remain
very close to this equilibrium state, despite its quickly-
changing nature.

Finally, we calculate the globally optimal state,
wherein the aggregate throughput is maximized. For the
realistic well-behaved distributions of users considered
here we find that the optimal states lie at the edges of
the bid space, i.e. when (almost) all users pile up to one
or the other service provider. This result highlights the
unstable nature of the optimal state, from which (almost)
every user will want to defect. Based on the above, we
calculate the game’s efficiency level which is the inverse
of the well-known price of anarchy introduced in [11]; in
short, we calculate the ratio of the aggregate throughput
in the evolutionarily stable user distribution to the one
achieved at the optimal state. In this way, we obtain a
sense of how efficient the “stable” distribution of Nash
really is, a sense which we illustrate with the help of
numberical simulations.

II. S M

Our system model will consist of two overlapping
access points belonging to two distinct standards. The
users, wishing to connect to one of the service providers,
have the capability to monitor both of them and are able
to switch when they deem it advantageous to do so. We
also assume that there are MAC schedulers at every base
that, over an intermediate time-scale, allow each user to
use the channel and transmit by taking into account the
number of users connected to the given base and its own

channel conditions. Specifically, if user i connects to base
r = ±, we will model his throughput by:

T±i =
c±i
N±

(1)

where N± is the number of users that connected to ± and
c±i = log2(1+S NR±i ) is the throughput the user connected
to AP r =“±” would experience in the absence of other
users.

Despite the fact that this seems like a very naı̈ve
model for the throughput, it has been shown to be of the
correct form for TCP and UDP protocols in IEEE802.11
systems [12], if we limit ourselves to a single class of
users. Furthermore, in the case of third-generation best
effort systems, the realistic total cell-service throughput
is approximately constant beyond a certain number of
connected users (see e.g. [13], [14]). Also, this formula
is strictly valid in the round-robin scheduling case, but
the functional form of the user-perceived throughput on
the instantaneous SNR and system load N is similar
in other scheduling systems (e.g. proportional fairness).
Moreover, the association of c±i with the instantaneous
Shannon capacity is not always valid, since the above
model for the perceived user-throughput is averaged over
several time windows. Hence, in this case, c±i should be
replaced by the time-averaged goodput, but we will not
make this distinction here.

III. T O S

We will now describe how to obtain the optimal state,
in which the aggregate throughput over both access
points is maximized, through cooperation between the
APs. To that end, we begin with N heterogeneous users
that will be employing one of two APs, their heterogene-
ity being manifested by the single user capacity c±i . A
priori, this sounds like an exponentially hard problem,
but we describe below a simple method that allows us
to easily calculate the aggregate payoff at the optimal
state.

In effect, when certain user i connects to a given AP,
he assigns a value to the random variable σi = ±1 that
describes his bet; then, as above, the number of users
employing the AP ± will be N± = 1

2
∑

i(1 ± σi). It is
therefore convenient to define the quantity m = N+−N−

N =
1
N

∑N
i σi. Then, (1) becomes:

Ti = 1
N

(
c+

i (1+σi)
1+m +

c−i (1−σi)
1−m

)
(2)

In this way, we see that Ti only depends on the user’s
particular choice σi = ±1 and on the aggregate quantity
m; in other words, what we have is an asymmetric



congestion game with the player-specific payoffs being
determined by (2).

We now want to maximize the sum Ttot =
∑

i Ti(σ).
To do this we will first find the (relative) optimal
state for a fixed m and then we will find the m that
yields the greatest aggregate throughput. This is quite
straightforward: we first need to order the users i in such
a way that the quantity c+

i /N+−c−i /N− is (for fixed N−), a
non-decreasing function of i; then, we allocate the lowest
N− users to “−” and the rest of the users to “+”. This
will be the optimal distribution for fixed m so, we are
only left to optimize the resulting aggregate payoff w.r.t.
m.

Omitting the algebra for the sake of clarity, we thus
obtain:

Tmax = max
|m|≤1

∑N
i=1(hi−mgi)+

∑N−
i=1(mgi−hi)+

∑N
i=N−+1(hi−mgi)

1−m2 (3)

where hi = c+
i + c−i and gi = c+

i − c−i −
∑N

i=1(c+
i − c−i )/N.

This last expression can be explicitly evaluated for any
given distribution of c±i and, in this way, we can get a
concise analytic expression for the maximum aggregate
throughput for any number of players.

IV. E S

We will now describe the game, which we will use to
study the system model of section II. In normal form, it
will consist of N users with the common set of actions
F = {±1} (facilities) and payoffs determined by (2); we
have already seen that this is a congestion game with
player-specific payoff functions, as in [9].

Clearly, the motivation of every (selfish) user is to try
and maximize their individual payoff Ti but, of course,
users all compete with one another for the limited re-
sources of the APs. The stable resolution of this conflict
is described by the notion of a Nash equilibrium, i.e. a
state σ∗ such that no user can gain anything by deviating
unilaterally. More rigorously, a bet σ∗ = {σ∗i }Ni=1 is said
to be a (pure) Nash equilibrium for the game when for
all users:

Ti (σ∗) = max
si=±1
{Ti(. . . , σi−1, si, σi+1, . . .)} . (4)

Such equilibria always exist in the mixed sense of
[15], whereby each user employs access point “±” with
probability p±i and one maximizes the expected payoff

instead. In the pure case, it has been shown in [9] any
congestion game with player-specific payoff functions
possesses a Nash equilibrium in pure strategies. The
approach used in [9] is to add players inductively and

construct a finite best-reply path2 whose endpoint is a
pure Nash equilibrium. However, in order for players to
carry out this construction, they will have to solve the
exponentially hard problem of deciding who will actually
be allowed to switch to a better strategy at every iteration
of the game, a calculation which is impossible to conduct
in real time. Moreover, this algorithmic construction does
not allow the characterization of the pure Nash equilibria
in terms of measurable macroscopic quantities of the
system (such as the number of players per AI).

To obtain such a characterisation, we first define the
users’ “+”-bias to be the ratio ψi = log c+

i
c−i

; then, without
loss of generality, we may assume that the players are
indexed in order of decreasing bias, i.e. ψ(i) ≥ ψ( j) for
i < j. So, if x ∈ N is the number of players that choose
“+” (0 < x < N)3, we easily see that a bet σ will be
at Nash equilibrium if and only if the x players that
connected to “+” have ψ(i) ≥ φ(x) while the other N − x
players have ψ(i) ≤ φ(x + 1), where φ(x) = log x

N−x+1 .
Let us assume now that σ∗ is a pure equilibrium state

with ξ users connected to “+”; obviously, the smartest
choice would be to have the users with the highest “+”-
bias connect to “+” and the rest to “−”. Thus, since ψ is
decreasing, the equilibrium condition reduces to finding
a ξ s.t. that ψ(ξ) ≥ φ(ξ) and, also, ψ(ξ + 1) ≤ φ(ξ + 1).
Then, if we let ξ = sup{x = 1 . . .N − 1 : ψ(x) > φ(x)}
the above conditions will be both satisfied since ξ will
be the greatest integer with the property ψ(ξ) > φ(ξ).
This shows that there exists an equilibrium point in pure
strategies.

Furthermore, it is easy to see that the only other
possible equilibrium points are obtained either by chang-
ing the allocation of users ξ and ξ + 1, or possibly by
allocating ξ + 1 users to “+” when φ(ξ + 1) = ψ(ξ + 1)
(otherwise, the inequality φ(ξ+1) ≤ ψ(ξ+1) is strict and
ξ + 1 cannot be an equilibrium). However, for a large
number N of users, and given that the c±i coefficients
are randomly distributed, the above conditions represent
events of measure 0 and we thus also see that, as N → ∞
the game admits a Nash equilibrium in pure strategies
which is almost surely unique.

2In short, this is a sequence of iterations of the game: at each
iteration one (and only one) player switches to his best-response
strategy.

3We will not consider the trivial cases where an equilibrium is
obtained in the borders of the bid space, i.e. the degenerate cases
whereby all users choose the same AI and still have no incentive to
deviate.



V. E  S S

Now, in order to actually reach this Nash equilibrium,
we will iterate the game described above by having
users keep track of their choices’ performances and then
employing the standard that performs best for them.
More concretely, each player keeps a recursive score:

U±i (t + 1) = U±i (t) + T±i (t) (5)

where T±i (t) is the payoff of equation (2) that user
i would have received at time t if he had employed
standard “±”. Then, each user updates the probability p±i
with which he employs AI ± based on the exponential
learning model:

p±i (t) =
eγU±i (t)

eγU+
i (t) + eγU−i (t)

=
1

1 + e∓γ∆Ui(t)
(6)

where ∆Ui = U+
i −U−i and γ is a parameter that controls

the users’ learning rate.4

Under this learning model, we will see that players
rapidly converge to an evolutionarily stable state which
is a Nash equilibrium in pure strategies. To see this
analytically, note that differentiation of (6) w.r.t. t readily
yields:

dp±i
dt

= γp±i


dU±i
dt
−

∑

±
p±i

dU±i
dt

 (7)

Then, coupled with (5) and some mild ergodicity as-
sumptions, we may easily see that the above equation
can actually be rewritten as:

dp±i
dt

= γp±i
[
T±i (p) − Ti(p)

]
(8)

where T±i (p) is the expected throughput of user i when
connected to the AI ± while the other users employ
AI ± with probabilities determined by p±j ( j , i),
and Ti = p+

i T +
i + p−i T−i . In this way, we see that the

exponential learning model (6) essentially leads to the
standard multi-population replicator dynamics (see e.g.
[16], [17]).

These dynamics are extremely powerful since, as is
shown in [16], their asymptotically steady states are
precisely the (strict) Nash equilibria of the underlying
game; however, it is also proven in [17] that only pure
profiles can be asymptotically steady states of (8). Hence,
having established the existence of pure Nash equilibria,
we conclude that, under exponential learning, the users
will almost surely converge to a Nash equilibrium in pure
strategies.

4Already, note that this is a generalisation of the “best-response”
scheme that can be recovered as γ → ∞.

VI. N E

Nevertheless, it is important to note that social sta-
bility does not necessarily imply optimality in aggregate
performance, a behaviour that can readily be observed in
numerical simulations. So, to gain concrete insight about
the system, we simulated an area with two base stations
(one for each of the 2 available air interfaces (AIs)) and
a number of users. For simplicity they were assumed to
have the same average SNR to both AIs. The objective
was to validate by simulation the analytical results that
were discussed in the previous sections. To that aim,
the following scheme was simulated: Each user within
the system was allocated to one of the two available
air interfaces in the beginning of the simulation. (1)
was used for the throughput of each user, allowing the
SNR of each user to fade independently (assumed speed
3km/hr and 15kmph, with frequency 2GHz). During the
simulation each user could perform a vertical handover
with a probability given by (6). The parameter γ was
set to 5000 and the throughput difference values were
averaged using a sliding window of length equal to 10
samples (1 sample=2ms). The users were assumed at
every instant to have full information about the offered
throughput of both air interfaces.

From (1) it can be observed that the throughput per
user is sensitive to both the received SNR and the number
of users per AI (load), therefore users in a heavily loaded
cell are bound to experience much lower throughput
levels. Each user is assumed to download content from
the base station consisting of sub-blocks at specific time
slots (infinite buffer lengths were assumed for each user
queue).

Figs. (1a) and (1b) illustrate the variation of the
aggregate throughput with time for 50 mobile users
having speeds of 3km/hr and 15km/hr, respectively. The
aggregate throughput was calculated in three different
ways. The top curve corresponds to the optimal aggre-
gate throughput as calculated using (3). The intermediate
curve is the aggregate throughput attained at the instan-
taneously evaluated Nash equilibrium, while the third
curve is the one generated through simulations using
the dynamics described by (6). Interestingly, for low
speeds (Fig. (1a)) the dynamics manage to closely follow
the Nash equilibrium. For faster fading (Fig. (1b)) the
dynamics can approach the Nash equilibrium values rel-
atively well. The initial ping-pong-like deviation is due
to the initial conditions, which eventually fades away.
Both estimation and simulation curves are below the
optimal values (as expected) and their ratio is depicted



on Figs. (1e) and (1f), denoted there as efficiency: this
is the game’s efficiency level

α =

∑N
i=1 Ti(σ∗)∑N
i=1 Ti(σ0)

(9)

where σ∗ is the game’s (essentially unique) pure equi-
librium5 and σ0 is the optimal state; i.e. the efficiency
level is the inverse ratio of what is usually called the
“price of anarchy” [11]. Figs. (1c) and (1d) illustrate the
load variation with time of one air interface (the other air
interface has a symmetric load curve), for speeds 3km/hr
and 15km/hr respectively. The handover rate hovers close
to 3% for v = 3km/hr and 15% for v = 15km/hr,
respectively. It can be seen that there is an initial period
of frequent handovers which leads to an oscillation of the
AI load, but in few time samples the system reaches the
equilibrium state of an average load equal to 25 users.

VII. C

Our main purpose has been to discuss the dynamics
of terminal handover between two co-existing service
providers and to discuss the consequent exploitation of
the offered diversity by the use of multi-standard termi-
nals. Indeed, it turns out that the potential benefits of
mobile-initiated vertical handovers are substantial since
one observes an increase of both the user-perceived as
well as the aggregate system capacity. The key instru-
ment to control these vertical handovers is to base them
on replicator dynamics which exhibit fast convergence
to evolutionarily stable equilibrial states, while main-
taining a relatively small handover rate. We see that
even though users do not communicate with one another
and act upon a completely selfish agenda, they quickly
learn to perform with an unexpected efficiency. In fact,
their performance closely rivals the (exponentially hard
to calculate) optimal distribution which maximizes the
aggregate throughput and which would be difficult to
implement even within the premises of a centrally con-
trolled network. It will be of interest in future studies to
check the sensitivity of these schemes when imperfect
system information is provided and the users would only
be able to estimate the throughput offered by the other
AI.

5Even for small N when multiple pure equilibria possible, it can be
shown that they have the same aggregate payoff up to order O(1/N);
alternatively, one might simply consider the inf of (9) over all pure
equilibria.
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(a) Aggregate throughput v = 3km/hr
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(b) Aggregate throughput v = 15km/hr
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(d) AP1 Load v = 15km/hr
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Fig. 1. Plots of total throughput, load of access point 1 and game efficiency for two fading speeds, v = 3km/hr and v = 15km/hr




