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Abstract— Groups of robots can be used in a coordinated
fashion to achieve goals that individual robots cannot. One of
the key requirements for this is being able to communicate
amongst themselves in a timely and robust manner. This
capability has been assumed as available in many multi-robot
solutions but has not received enough attention in research. We
approach the subproblem of moving from a connected network
of robots to achieving biconnectivity. Biconnectivity provides
both robustness to change in links and better bandwidth for
communication by providing multiple paths to the destination.
We take two approaches to the same problem - one a determin-
istic graph-based approach and the other a Markov random
field approach. Both have their advantages. Preliminary results
indicate much promise in both these directions.

I. INTRODUCTION

When trying to create a multi-hop wireless network be-
tween two fixed terminals using mobile robots, an interesting
sub-problem is taking a singly connected network and repo-
sitioning the robots to make the network biconnected. Since
a biconnected graph remains connected even if you remove
one of the vertices, these networks would be robust to any
single robot failure. We are taking two possible approaches
to solving this problem, which we plan to implement on
identical robots in identical settings to get a head to head
comparison. First the problem can be studied from an graph
theory approach, where global information about the graph
is compiled and a strategy is devised. In Section 2 we will
explain the algorithm we use. The second method takes
a probabilistic approach, using a robot’s local sensing and
messages from only its neighbors in the network to come to
a local decision about the optimal action it should take. We
will explain in Section 3 how we use Markov random fields
and belief propagation to accomplish this. The first technique
has advantages in that its behavior is deterministic. Hence,
for the given problem, if the global network information is
sensed correctly the algorithm will be guaranteed to make the
graph biconnected or tell you it’s not possible. In the second
approach there are no guarantees, but its probabilistic nature
makes it possible for it to succeed even with some wrong

or incomplete information. Also using this general Markov
random field structure makes adapting this technique to other
problems easier.

II. RELATED WORK

The problem of achieving biconnectivity has received
some research attention previously. [1] proposes an algo-
rithm to check for biconnectivity by listing all the doubly
connected robots in a distributed fashion. It also proposes an
algorithm to fix a biconnected network of robots when robots
are added or deleted on an existing biconnected network.
This work, however, does not propose any algorithms to
create a biconnected network when one does not exist.

[2] does a more theoretical analysis on the problem of
minimizing motion to achieve biconnectivity. They have a
linear programming formulation of the problem in the 1-
dimensional case. They also propose a block-tree movement
heuristic to achieve biconnectivity in 2-dimensional topolo-
gies.

The key difference in our work in the algorithmic section
and the above two pieces of work is the lack of assumption
of accurate localization of the robots. Our work is based on
off-the-shelf robots with no special equipment for accurate
ranging/localization. We use the radio to determine gradients
of signal strength and thereby estimate the relative bearing of
the robots. Correspondingly, our algorithms work with angles
as opposed to position. Also, [1] does not have algorithms to
create biconnected networks from a connected network while
[2] assumes global knowledge of location of the robot.

III. ALGORITHMIC APPROACH

A. Introduction

A network of robots can be visualized as a unit-disk
graph [3] wherein nodes are mobile. We assume that each
node is a off-the-shelf robot (like an iRobot create) and
has ability to communicate wirelessly using a 802.11 type
radio. It is also assumed that the radio has a mechanism
to measure the received signal strength as is the case with
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most off-the-shelf 802.11 cards. The key observation is that
a connected graph can be split into biconnected components
using Tarjan’s algorithm [4]. Note that there are distributed
algorithms to check biconnectivity citemazda-aaai06. Shown
below in Fig. 1 is a graph and Fig. 2 shows its biconnected
components.

Fig. 1. A sample graph

These biconnected components are connected either via a
vertex or an edge. These nodes are called articulation points.
In Fig. 2, nodes a-e constitute two ends of an edge that
is an articulation point and node c is a vertex articulation
point. The next observation is that the only step to be
undertaken in connecting the two biconnected components
across articulation points is to add one edge between the
two biconnected components. If we were to assume equal
radii of communication for all the robots, then nodes B and
C have to subtend an angle of 60◦(Fig. 3). The articulation
point now commands the two nodes to approach each other.

Fig. 2. Biconnected components of the sample graph with articulation
points

Fig. 3. Movement heuristic to connect two biconnected components

B. Algorithm

Our algorithm works in two stages. Every node makes a
list of its neighbors. These neighbor lists are then sent to
a cluster head that is either chosen in advance or elected
on the fly. The cluster-head then computes the biconnected
component(s) using a slightly modified Tarjan’s algorithm. It
then communicates the biconnected component information
about each edge to its vertices. It also informs the articulation
points whether they are edge or vertex articulation points.
This concludes stage I involving the cluster head. The action
now shifts to the articulation points. The articulation points
list their neighbors in sorted order of the angle subtended
in its local coordinate system. It picks the two edges (and
corresponding neighbors) who are next to each other in the
list, belong to different biconnected componets and closest
in terms of angle subtended at the articulation point (if there
are more than one). The articulation point then asks the two
nodes to move “towards” each other. This is elaborated in
subsection III-D.

Algorithm 1 Phase I: Compute biconnected components
N ⇐ neighbors of this node
if I am server then

while i < Num.Nodes do
List[i]← receive neighor list from i

end while
Compute biconnected components and articulation
points
Classify articulation points as edge and vertex
Send this info back to the corresponding nodes

else
Send neighbor list to server
Receive biconnecitivity component information

end if

C. Angle estimation

Since we do not have any sensors from which we can get
the relative bearing of one robot from another, we need a way
to estimate the same. We use the radio signal strength for this
purpose. Our test setup had two iRobot create robots. Each



Algorithm 2 Phase II: At articulation points
A⇐ Angles of all neighbors
Sort(A)
if edge− articulation− point then

Assuming e ⇐ edge articulation point in neighbor set
N , pick i such that
i is either before or after e in A
i subtends the smaller angle

else if vertex− articulation− point then
From A, pick (i, j) such that
(i, j) are adjacent to each other
edges to i and j belong to different biconnected com-
ponents
Angle subtended by edges to i and j is the least among
nodes satisfying the first two conditions

end if

Fig. 4. Pattern to sample signal strength around the robot

robot has an x86-based ebox with a EMP mini-pci wireless
card based on the atheros chipset. Both robots are fitted with
the APXtender omnidirectional antenna. For the experiment,
we keep one robot stationary and make the other robot
sample the signal strength according to the pattern(Fig. 4).
At each point in the pattern, the robot samples the signal
strength every second for ten seconds (ten samples in total)
to ensure that the signal strength has settled. We then average
the signal strengths for that point. We varied the distance
between the two robots from ft to 35ft at intervals of 5ft
and repeat the experiment four times at each position for
redundancy. Based on these measurements, the line of three
collinear points with maximum gradient is assumed to be the
bearing of the neighboring robot.

Fig. 5 shows the angle estimation error as a function of
distance as measured between two robots. Overall, the error
is between 20-30 degrees with a standard deviation of 20
degrees.

D. Achieving biconnectivity

Given the angle estimates, the next step is to move
the robots such that biconnectivity is achieved. From our
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Fig. 5. Angle estimation error as a function of distance

algorithm, we want to move robots that are neighbors of an
articulation point but belong to different biconnected com-
ponents closer. However, the key issue here is the fact that
we have only bearing information and no range information.
Given such a scenario, it is hard to predict the exact location
(relative or absolute) of the robots with respect to each other.
Hence, we have come up with a coarse rule for the movement
of these robots. At the articulation point, we figure out which
quadrant each of these robots are. Depending on this, the
robots are asked to move toward each other along one of
the axes if they are in different quadrants(Fig. 6) in the
coordinate frame of the articulation point. If both the nodes
are in the same quadrant, they are asked to move diagonally
towards each other (Fig. 7).

E. Simulations

We are in the process of testing out our algorithm in
Player/Stage [5]. Preliminary results indicate that our algo-
rithm works reasonably well. Seen below is a screenshot of
the algorithm in action with four nodes on Stage(Fig. 8).
This is the case where the nodes from the different bi-
connected components are in different quadrants wrt to the
articulation point. The direction of motion as instructed by
the articulation point is as shown in Fig. 9. The nodes
move towards each other and get connected forming one
biconnected graph(Fig. 9).

F. Effect of angle error

Fig. 5 shows the error in angle calculated using signal
strength as illustrated in sectionIII-C. We study the effect of
angle error in our algorithm to achieve biconnectivity and
give ways to mitigate this effect. Fig. 10 shows the potential
worst case in angle estimation.

As shown in Fig. 5, the average error in angle estimate
is about 20 degrees. Fig. 10(a) shows the ground truth
configuration of two nodes A and B that are trying to
estimate the bearing of each other. For simplicity, they are
facing along the same axis but in opposite directions as
indicated by the arrows. Their relative bearing is 30 degrees
as shown. Node A’s angle estimate might be twenty degrees
off from this on average. This might be either toward or



Fig. 6. Motion commands at articulation point (Neighbors in diff quadrants)

Fig. 7. Motion commands at articulation point (Neighbors in same
quadrant)

away from the edge. Hence, half the time the angle estimate
is greater than the actual angle (as shown in Fig. 10(b)).
Similarly, node B’s estimate is greater than the actual angle
half the time. The angle error gets exacerbated about one
fourth the time as shown in Fig. 10(c).

Consider another node C that would have a similar error
of around 40 degrees one fourth of the time. The worst case
scenario is shown in Fig. 11. One-eighth of the time, the
nodes might move roughly at ninty degrees from what was
commanded and this leads to undesired results (as in figure).

Our current solution for this problem is to perform recal-
culation of the relative bearing after some distance. That way,
every new measurement of the bearing results in halving the
probability of this worst case scenario for each of the edges.
The total error thereby is rapidly decreased in cases where
nodes are further apart. We are working on methods to better
this angle estimate as well.

G. Future work

This is preliminary work in our study of networking of
robots. Our algorithm is a heuristic - the next step is to

Fig. 8. Initial configuration with four nodes

Fig. 9. Final configuration (graph biconnected)

Fig. 10. Angle error propagation

analyze its performance in detail both in simulation and
analytically which will hopefully lead us to better solutions.
Also the larger problem of connecting disconnected groups
of robots is not addressed here. Lastly, connectivity and
coverage are always at opposite ends of this optimization
problem. The final goal is to jointly optimize connectivity
and coverage at the same time.

IV. PROBABILISTIC APPROACH

A. Multi-robot Markov Random Fields

An MRF [6] is a graphical model that factors a system into
a finite set of observed and hidden, or latent, variables with
pairwise interactions between them. In a multi-robot MRF,
the robots are represented as nodes in the graph, with edges
between pairs of robots that are in direct communication



Fig. 11. Direction of motion - expected (dotted) and actual (filled)

Fig. 12. An MRF with edges between the actions (xi) of robots in
communication and with edges between each robot’s actions and its locally
sensed information (yi).

range. Each robot i maintains two random variables: yi, an
observed variable representing a robot’s own perception; and
xi, a hidden variable representing the action that it should
take (Figure 12). In this case the action space is made of
all the possible directions in which the robot can move.
Although these variables can either be discrete or continuous,
we will break xi into a set of the n − 1 discrete directions
and one stationary action for ease of implementation. We will
then use this MRF to find the probability that a particular
action is optimal (Figure 13).

Given these variables, a pairwise MRF factors all possi-
ble collective team actions x into two functions: pairwise
compatibility ψj,i(xj , xi) between each robot pair (ij) and
local evidence φi(xi, yi). The joint probability distribution

Fig. 13. A picture of the action space for each robot and an example of
an associated marginal probability.

can then be stated as follows:

Pr(x) =
1

Z

∏

(ij)

ψj,i(xj , xi)
∏

i

φi(xi, yi) (1)

The normalization constant Z ensures that the distribution
sums to 1. The formulation in (1) has two key benefits:
we factor the global coordination and local computation into
distinct terms; and we can express a spectrum of multi-robot
action selection methods by modifying these terms.

The local evidence φ(xi, yi) expresses the likelihood of
robot i choosing each of its actions xi, given its observations
yi. This function is analogous to likelihood models as they
are used in Bayes filters [7] for localization. In this case,
the likelihood function takes care of optimizing the locally
observable network. That is it pushes the robot towards op-
timizing the connections it already has. This function would
prefer actions that provide “good enough,” but not maximal,
signal quality between robots. If the robots were to simply
maximize the signal strengths, they would tend to cluster
very close together, leading to isolated network components,
and providing poor spatial coverage. We counteract these
tendencies by designing the function to prefer signal levels
that are high enough to provide the necessary quality of
service, but not any higher. Also the local evidence function
will have a term which encourages robots to stay connected
to terminals. For the non-stationary actions, combining these
functions gives:

φi(xi, yi) = α
∑

jǫN(i)

Sj(yi)θj(xi, yi) + βSt(yi)θt(xi, yi)

(2)
The function Sj is the squared difference between the
optimum signal strength and the actual signal strength from
robot j (or terminal t for St). θj is inversely proportional
to the squared difference between the angle of xi and the
optimal angle of movement for correcting the signal strength
of robot j. This angle will be calculated by keeping a
record of signal strength observations as the robot moves
and estimating the signal strength gradient. α and β are
constants to appropriately balance the weights of the two
terms. The stationary action will have a local evidence
function proportional to the inverse of the squared difference
between the desired signal strengths and the current signal
strengths:

φi(xn, yi) =



α
∑

jǫN(i)

Sj(yi) + βSt(yi)





−1

(3)

The pairwise compatibility ψj,i(xj = as, xi = at) en-
codes the likelihood of robots i and j selecting actions as ∈

xi and at ∈ xj , respectively, from their combined action
space xj × xi. We want this function to make robots move
towards the areas where robots have less connections, but we
want to ensure that the robots do not move towards isolated
robots that are not part of a useful path. To accomplish
this we will use a compatibility function that makes a robot
encourage other robots to move toward the direction where



it senses fewer robots, but only if it believes that direction
points toward a terminal. We use the following equation:

ψ(xi, xj) = R(xi, xj)T (xi, xj) (4)

R is proportional to the number of robots robot i can detect in
direction j and T is inversely proportional to the difference
between angle xj and the direction robot i believes the
terminal to be from robot j.

B. Belief Propagation

To perform action selection with a multi-robot MRF, each
robot must compute the probability of its actions being
optimal conditioned on all the other robots’ action selections
(1). That is, for each robot i, we want to compute the
marginal probability pi(xi), which expresses the likelihood
of robot i taking an action, given both its own observations
and knowledge of the other robots’ actions. Naively, this
inference procedure would require communicating all robots’
observations to a centralized decision-maker. Instead, we
will exploit the factored structure of the MRF to apply to
BP algorithm [6], which performs inference in a distributed
manner.

BP operates by passing “advice messages” between robots,
and using these messages, in combination with local ob-
servations, to maintain a belief bi(xi) for each robot i.
When BP converges, the belief bi(xi) is exactly equal to
the marginal probability pi(xi) that we need for coordinated
action selection. Robot i exchanges messages only with its
neighbors N(i), ensuring that the algorithm can scale to
large teams. Robot i’s belief bi(xi) is given by the following
product, with normalization constant Z:

bi(xi) = Zφi(xi, yi)
∏

j∈N(i)

mj,i(xi) (5)

The term mj,i(xi) is an advice message from robot j to
robot i suggesting how robot i should act, given what robot
j knows about the world. Robot j computes its message
to a neighboring robot i as a product of robot j’s local
evidence, the pairwise compatibility between their actions,
and incoming messages from robot j’s neighborhood (except
for those coming from robot i), summed over all possible
actions xj :

mj,i(xi) =
∑

xj

φj(xj , yj)ψj,i(xj , xi)
∏

k∈N(j)\i

mk,j(xj)

(6)
The essence of inference with belief propagation lies in these
pairwise messages mj,i(xi), which will be sent wirelessly
from robot j to robot i at each iteration of the robot control
loop. These messages are continually updated according to
(6), and they, in turn, update each robot’s beliefs. When
all the robots’ beliefs converge, they are exactly equal to
the marginal probabilities for each robot’s state conditioned
on the information available to all the robots. Each robot
listens only to its neighbors, but since the neighbors’ beliefs
are conditioned on the information from their neighbors, the
final result are beliefs that are conditioned on the information
available to the whole team.

Algorithm 3 Belief Propagation algorithm for robot i
Initialize messages mi,j and send to all neighbors j
while 1 do

Gather messages mj,i from all neighbors j
Gather local evidence yi

Recompute beliefs bi(xi) with new mj,i and φ(xi, yi)
Select (MAP) action from bi(xi)
Recompute and send messages mi,j to each neighbor

end while

Fig. 14. An image of a Pioneer robot facing a goal beacon from our COS
simulation in Player/Gazebo.

Selecting actions The result of multi-robot belief propa-
gation will be an action posterior, a probability distribution
over actions for each robot. Whenever an individual robot
needs to make a new action decision, it computes its action
posterior as a belief from local evidence and incoming
messages, according to (5). We’ll then use this posterior
distribution to find the action with the maximum probability
of being correct conditioned on the action distributions of
the surrounding robots.

Our previous work in distributed action selection for multi-
robot teams [8] provides some evidence that our MRF-based
approach can be effective. In this work, we conducted 50
“chain-of-sight” trials in simulation (Player/Gazebo [5]) with
five Pioneer robots (Figure 14). In each trial, inference using
MRF produced successful action allocations, causing the
team to produce a chain of sight from a start to a goal
location. The 50 trials consisted of test runs on five different
configurations of start, goal and robot locations, resulting in
10 trials per configuration. The number of total messages
transmitted before reaching a correct arrangement ranged
from 10 messages, in situations where only two robots
were required for the COS, to 80 messages for complicated
arrangements. The number of messages needed also varied
over multiple runs on the same scenario, an indication of the
randomness involved in the problem.



In 10 of these 50 trials, a strategically important robot
was purposely shut down to test dynamic recovery abilities
of the system. When such faults occurred, the robots properly
adapted their beliefs, which resulted in reallocations that
closed the gaps. Note that for obvious reasons the group can
only recover from such a failure if there are enough robots
left to physically span a chain. In cases where there a more
robots in a group than are needed to span a minimal COS,
the redundant robots do not impede normal execution and
allocate themselves along the chain-of-sight path. This ability
to reallocate in the case of robot failure will be especially
useful in the case of providing redundant multi-hop wireless
connectivity.

V. CONCLUSION

Both our deterministic graph-based approach and our
MRF approach have shown a lot of promise in simulation.
However, the real test for any robotics application is an actual
embodied situation. We plan to start testing both algorithms
on a common robot platform in controlled starting conditions
in order to provide accurate head to head comparison.
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