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Abstract—Wireless local area networks (WLANs) have
been extensively studied over the past several years. So
far, research has primarily focussed on scenarios where all
nodes in the network can hear each other. The present pa-
per discusses interaction between nodes in a more complex
setting, where nodes may only hear parts of the network.
The analysis relies on a Markov process that keeps track of
the activity of nodes. Return times and hitting probabilities
in this process are related to interaction phenomena in the
wireless network and examples are given to illustrate how
these can be used to predict network performance. The
approximations are validated through simulations.

I. INTRODUCTION

Wireless networks have gone through tremendous
developments in the last few decades. One of these
advances is the emergence of multi-hop schemes, where
packets can travel through intermediate nodes towards
their destination. Typically the topology of these types of
networks is such that nodes can only sense the activity
of a subset of other nodes, which greatly impacts the
interaction between nodes. This is even more true for
a network using a distributed medium access protocol
such as 802.11.

The 802.11 protocol is a variant of Carrier-Sense
Multiple Access (CSMA) [1], which can in turn be seen
as an extension of the well-known ALOHA protocol [2].
Nodes using the latter protocol access the medium after
a random backoff period, regardless of the behaviour of
surrounding nodes. Because of the nature of wireless
communication, when a node receives multiple strong
signals at the same time it might not be able to un-
derstand any. So, a natural extension to the ALOHA
protocol is then to let a node sense for the activity
of surrounding nodes, as CSMA dictates. This greatly
reduces the likelihood of collisions. The 802.11 protocol
further specifies CSMA by for example adding the binary

exponential backoff scheme and by defining interframe
spaces. For a detailed description of 802.11, see for
example [3].

Recently some studies have emerged that among oth-
ers consider node interaction in a multi-hop setting.
Wang and Kar [4] use a Markov process based approach
to analyze multi-hop networks in saturated conditions.
Medepalli and Tobagi [5] investigate an unsaturated net-
work using a mean-value analysis. Garetto et al. [6] take
a more elaborate approach, employing separate models
to analyze collisions and node behaviour. The authors
mention the possibility of extending their analysis to
unsaturated networks, but do not go into detail.

In the current paper we present an analysis of the
interaction between nodes where each has a fixed offered
load, independent of surrounding nodes. While we allow
for general routes, we do not explicitly keep track of
traffic moving between nodes. The approach is based on
the framework Boorstyn and Kershenbaum [7] provide
for analyzing packet radio networks, in which they use a
Markov process that describes the activity of the nodes.
We extend this analysis by using return times and hitting
probabilities in the Markov process to capture node
interaction.

Our approach differs from the other analyses men-
tioned in that it is more detailed and accommodates
a broader framework that allows for unsaturated net-
works as well as more involved traffic patterns and
unsynchronized nodes. This framework distinguishes a
number of models, each describing a different part of
the network: the backoff mechanism, node interaction,
the time between successive transmissions and network
traffic. Each model is then used to input information
into the others. For example, information from the node
interaction is used to determine the average time between
two successful transmissions. This can in turn be used

peri
Typewriter
WIOPT 2008, 1st–3rd Apr 2008, Berlin, Germany. 

Copyright © 2011–2012 ICST ISBN 978-963-9799-18-9

DOI 10.4108/ICST.WIOPT2008.3221

peri
Typewriter



in the network model to determine the throughput. See
Van de Ven [8] for more details.

The remainder of this paper is structured as follows.
Section II provides an outline of the model used for
the analysis performed in Section III. In Section IV the
approximations developed are compared to simulations,
and in Section V we work out an example of how the
analysis can be applied to study collisions. Finally, Sec-
tion VI lists some conclusions. Due to page constraints,
only a few proofs are presented in their entirety, while
the others are outlined.

II. MODEL OUTLINE

We consider a 802.11 based wireless network consist-
ing of a set of nodes N . Traffic flow from one node to
another is represented by a link. Let L denote the set
of all links and let h = 〈a, b〉 ∈ L, a, b ∈ N , a 6= b,
then we refer to a as the source of link h, and to b
as its destination. We make the following simplifying
assumptions concerning all links h ∈ L.
• Whenever link h is transmitting, a set Ch of links

surrounding h is silenced, independent of other
activity in the network;

• similarly, we define a set Ih of links such that a
transmission of link h fails if and only if one or
more links in Ih are active.

The latter is called boolean interference, as a transmis-
sion over a link in Ih always collides with h, while links
outside of this set never do. Moreover, the assumption
also implies a zero-capture collision model, where a
transmission fails when a nearby transmission takes
place, independent of the progress of the transmission.
This is different from perfect capture, where a transmis-
sion only fails when a link from Ih is active when h
activates. Although this model is a simplification, it is
fairly realistic, while allowing for tractability. The sets
Ih and Ch can overlap, but neither need to be contained
in the other.

To simplify the analysis we assume k ∈ Ch ⇔ h ∈
Ck, and we say that h and k are neighbours when
this is true. We also require h 6∈ Ih, Ch, as link h
cannot interfere with, or silence itself. For convenience,
we introduce C+

h = Ch ∪ {h}, CA =
⋃

h∈A Ch and
C+

A = CA ∪A, A ⊆ L.
At any point in time, a link h ∈ L can be either

active or inactive, where the former corresponds to a
transmission taking place over the link. To facilitate
the analysis we assume that during an entire period of
activity of a link, its source node is transmitting. This
is a slight simplification of the exchange of data and

acknowledgements, and the interframe spaces defined in
802.11.

We distinguish two types of inactive links: blocked
and unblocked. An inactive link h is unblocked when all
links in Ch are inactive, and is blocked otherwise. An
unblocked link h activates after an exponential time with
rate αh, and the time until an active h link deactivates
is exponentially distributed with parameter µh. So a link
only activates when it is unblocked. Here we implicitly
assume that the transmission time is exponential, failed
transmissions take as long as successful ones and that
the time between events of the superposition of the
backoff and packet arrival process has an exponential
distribution.

This model can be traced back to the dining philoso-
phers’ problem introduced by Dijkstra [9], where it is
used to study resource sharing in computer networks. It
is also similar to models used in some other contexts.
This is illustrated by for example Kershenbaum [7] and
Tobagi and Brázio [10] for wireless networks, and by
Yemini [11] for statistical mechanics.

III. INTERACTION ANALYSIS

Let {X(t), t ≥ 0} denote the set of active links at time
t. As the time until activation and deactivation of links
is exponentially distributed, X(t) is a Markov process.
Let S = { D ⊆ L | CD ∩ D = ∅} be the set of
all subsets of links such that none are neighbours, so S
is the state space of X(t).

The transition rates of the process are as follows

q(D,E) =


αh, E = D ∪ {h}, D ∈ S,

h ∈ L \ C+
D ,

µh, E = D \ {h}, D ∈ S, h ∈ D,
0, otherwise.

Here we use that {k ∈ L | C+
k ∩ D = ∅} = L \ C+

D .
Let P (·) denote the limiting distribution of X(t), which
can be determined from the global balance equations.
For each D ∈ S:

P (D)

∑
h∈D

µh +
∑

k∈L\C+
D

αk


=

∑
h∈D

P (D \ {h})αh +
∑

k∈L\C+
D

P (D ∪ {k})µk.

By substitution it can easily be shown that

P (D) = P (∅)

 ∏
h∈D

gh

 ,



where gh = αh/µh and P (∅) =
∑

D∈S

∏
k∈D gk, the

normalizing constant. So the limiting distribution has a
product form. Using the results from Kelly [12, Theorem
1.3], it follows that the process is reversible.

A. Preliminaries

In this section we introduce additional notation and
discuss some preliminaries needed for the analysis in
Section III-B. Let h ∈ L, A ⊆ L and define:

1) A(h) ⊂ S, the set of states where link h is active,
A(h) = {D ∈ S | h ∈ D};

2) B(h) ⊂ S, the set of states where link h is blocked,
B(h) = {D ∈ S | h 6∈ D,D ∩ Ch 6= ∅};

3) U(h) ⊂ S, the set of states where link h is
unblocked, U(h) = {D ∈ S | D ∩ C+

h = ∅};
4) A(A) ⊂ S, the set of states where at least one link

in A is active, A(A) = {D ∈ S | D ∩A 6= ∅};
Let H ⊆ S and define P (H) =

∑
D∈H P (D), Hc =

S \H , PH(D) = P (D)/
∑

E∈H P (E), D ∈ H .
We now introduce the hitting time and return time on

H .

Definition 1. (Hitting time) The hitting time TH of a
subset H ⊆ S is the time it takes for X(t) to reach H ,
starting from time t = 0:

TH = min{t ≥ 0 | X(t) ∈ H}.

Similarly, we can define the return time.

Definition 2. (Return time) The return time T+
H on a

subset H ⊆ S is the time it takes for X(t) to return to
H , starting from time t = 0:

T+
H = min{t ≥ THc | X(t) ∈ H}.

Lemma 1. (Kac’s formula). Let H ⊆ S, then

E[TH | X(0) ∼ ρH ] =
P (Hc)
Q(H)

,

where ρH is the distribution of the process immediately
after exiting H and Q(H) the average rate out of H:

ρH(E) =
∑

D∈H

P (D)
Q(H)

q(D,E), E ∈ Hc,

Q(H) =
∑

D∈H

∑
E∈Hc

P (D)q(D,E).

The next lemma shows that when the process is
in steady state, the time until a link activates is ap-
proximately exponentially distributed. In order to show

this, we need a slightly alternate view of the activa-
tion process of link h, and introduce the concept of
activation attempts. Instead of links activating after an
exponential time when they are unblocked, we introduce
a constant Poisson process of activation attempts with
rate αh. When such an activation attempts occurs, and
link h is unblocked, this link activates. Because the time
between successive activation attempts is exponentially
distributed, these two systems are equivalent.

Lemma 2. Let A,B ⊆ L, such that A∩B = ∅, A∩CA =
∅ and take H =

⋂
h∈AA(h) ∩Ac(B). Let T̃A(k) denote

the approximation of TA(k) under the assumption that
successive activation attempts see the system in steady
state. Then

P(T̃A(k) > t | X(0) ∼ PH , T+
Hc ≥ TA(k))

= exp (−tαkPH(U(k))) , k ∈ L \ (C+
A ∪B).

So we fix the set of links A and B to be active and
inactive respectively, and approximate the time until
link k activates. The result can be explained by the
observation that, under the aforementioned assumption,
the time until activation is in fact a geometric sum of
independent exponentially distributed random variables.

We now introduce the sum of products.

Definition 3. (Sum of products) The sum of products
(SP) of a set A ⊆ L is the non-normalized sum of the
limiting probabilities over all possible states containing
just links in A:

SP(A) =
∑

D⊆A
D∈S

∏
h∈D

gh.

The following properties of the SP can easily be
proven by writing out its definition.

Lemma 3. Let A1, A2, A ⊆ L, and let A1 and A2 be
such that C+

A1
∩A2 = ∅, then

1) SP(A1 ∪A2) = SP(A1)SP(A2),
2) SP(A) = SP(A \ B) +

∑
D⊆B,D∈S

D 6=∅
(SP(A \ (B ∪

CD))
∏

h∈D gh), B ⊆ A,

3) SP(A) = SP(A \ {h})+ ghSP(A \C+
h ), h ∈ A.

B. Interaction analysis

We now use the preliminaries from Section III-A to
derive some properties of the Markov process under



consideration. These properties are related to link inter-
action. Let h ∈ L be a link, then we are interested in
the following quantities.

1) E[B(h)], the average duration of a blocked period
of link h;

2) p0(h) = P(X(0) ∈ A(Ih) | X(0) ∼ ρAc(h)), the
probability that any link in Ih is active when link
h activates;

3) p1(h) = P(TA(Ih) < TAc(h) | X(0) ∼
ρAc(h), X(0) 6∈ A(Ih)), the probability that a link
in Ih activates before link h deactivates, given that
h just activated and no link in Ih is active;

4) pb(h) = P(TB(h) < TA(h) | X(0) ∼ ρUc(h)) the
probability that link h becomes blocked before it
activates, given that it just became unblocked.

Here E[B(h)] and p0(h) will be determined exactly,
while p1(h) and pb(h) will be approximated. As men-
tioned before, these quantities can be used in a broader
context to determine the time between successive trans-
missions in [8]. This is done by constructing a Markov
process with four states representing the state of a link:
blocked, unblocked, collision and successful transmis-
sion. We are interested in the return time from the
state representing a successful transmission to itself, as
this is the time between two successful transmissions.
The rate at which each state is exited, as well as the
transmission probabilities needed in [8] depend on the
average blocked time, collision probabilities etc., which
are exactly the quantities that we will determine in this
section.

Because of the difficult structure of the process, it
seems impossible to derive the quantities needed directly.
Instead, we construct approximations using the descrip-
tion of the process rather than its structure.

Lemma 4.

E[B(h)] =
1− P (∅)SP(L \ C+

h )(1 + gh)
P (∅)

∑
k∈Ch

αkSP(L \ (C+
h ∪ C+

k ))
.

This result can easily be obtained using Kac’s formula.

Lemma 5.

p0(h) = 1−
SP(L \ (C+

h ∪ Ih))
SP(L \ C+

h )
.

Again, we can use Kac’s formula to write out the
definition of p0(h).

Let p̃1(h) be the approximation to p1(h) under the
assumption that (i) the links in Ih activate independently
and (ii) the distribution of the process just after link h
activates given that Ih is deactivated is PA(h)∩Ac(Ih).

Lemma 6.

p̃1(h) = 1− µh

µh +
∑

k∈Ih

αk
SP(L\(C+

h ∪C+
k ∪Ih))

SP(L\(C+
h ∪Ih))

.

Proof: Using the assumption concerning the initial
distribution of the process:

p̃1(h) = P
(
TA(Ih) < TAc(h) | X(0) ∼ PA(h)∩Ac(Ih)

)
.

Denoting

R(t) = P
(
TA(Ih) < t |X(0)∼PA(h)∩Ac(Ih), TAc(h) = t

)
,

and conditioning on TAc(h) yields

p̃1(h) =
∞∫

t=0

R(t)dP
(
TAc(h) ≤ t

)

=
∞∫

t=0

µhe−µht (1− (1−R(t))) dt. (1)

Now, using the independence assumption and Lemma 2:

P
(
TA(k) ≥ t | X(0) ∼ PA(h)∩Ac(Ih), TAc(h) = t

)
= exp(−αktP (U(k) | A(h) ∩ Ac(Ih))).

Substituting this into Equation (1) yields

p̃1(h) =
∞∫

t=0

µhe−µht

1−
∏

k∈Ih

exp(−αktP (U(k) |A(h) ∩ Ac(Ih)))

 dt

= 1− µh

∞∫
t=0

exp

−t(µh +
∑
k∈Ih

αkP (U(k) | A(h) ∩ Ac(Ih)))

 dt

= 1− µh

µh
∑

k∈Ih

αkP (U(k) | A(h) ∩ Ac(Ih))

= 1− µh

µh +
∑

k∈Ih

αk
P (U(k)∩A(h)∩Ac(Ih))

P (A(h)∩Ac(Ih))

= 1− µh

µh +
∑

k∈Ih

αk
P (∅)SP(L\(C+

h ∪C+
k ∪Ih))gh

P (∅)SP(L\(C+
h ∪Ih))gh

= 1− µh

µh +
∑

k∈Ih

αk
SP(L\(C+

h ∪C+
k ∪Ih))

SP(L\(C+
h ∪Ih))

.



Note that when Ih = {k} and µh = µk,

p̃1(h) = 1− µh

µh +
∑

k∈Ih

αk
SP(L\(C+

h ∪C+
k ∪Ih))

SP(L\(C+
h ∪Ih))

= 1−
SP(L \ (C+

h ∪ {k}))
SP(L \ (C+

h ∪ {k})) + gkSP(L \ (C+
h ∪ C+

k ))

= 1−
SP(L \ (C+

h ∪ {k}))
SP(L \ C+

h )
= p0(h),

where we use Lemma 3.3 in the third step.
We continue to approximate pb(h). Similar to what

was done for p1(h), we approximate pb(h) by p̃b(h).
We calculate p̃b(h) as if (i) the links in Ch activate
independent from each other and (ii) the distribution of
the process just after link h becomes unblocked is PU(h).
The derivation of the approximation is very similar to
that of Lemma 6

Lemma 7.

p̃b(h) = 1− αh

αh +
∑

k∈Ch

αk
SP(L\(C+

h ∪C+
k ))

SP(L\C+
h )

.

IV. VALIDATION

In order to verify the quality of the approximations p̃1

and p̃b, we compare them to simulations. We do not sim-
ulate the wireless network itself using a simulator such as
NS2. Instead, a Java simulation of the model described in
Section II is used. We consider a chain topology with N
nodes, where a node can hear neighbours two hops away.
Nodes transmit packets towards their right neighbour, so
collisions occur when the third neighbour on the right
starts transmitting. Let ha denote the ath link, between
nodes a, a + 1, then

Cha
= {ha−2, ha−1, ha+1, ha+2}, Iha

= {ha+3}.

Finally, we use the following parameters:

αha
= 0.2− 0.03(a− 1), a = 1, 2, . . . , N − 1,

µha
=

{
0.05, a odd,
0.1, a even.

Tables I and II contain the values and relatives differ-
ences for p1 and pb respectively, for various values of
N . Because p1(ha) = 0 for the rightmost three links,
Table I does not contain results for these links. Both

a 1 2 3 4

N = 6
p̃1(ha) 0.458 0.444 - -
p1(ha) simulation 0.377 0.445 - -
∆% 21.4 -0.2 - -

N = 7
p̃1(ha) 0.415 0.348 0.500 -
p1(ha) simulation 0.350 0.326 0.507 -
∆% 18.6 6.7 -1.3 -

N = 8
p̃1(ha) 0.468 0.296 0.417 0.166
p1(ha) simulation 0.397 0.266 0.388 0.166
∆% 17.9 11.3 7.2 0.0

Table I
THE RELATIVE DIFFERENCES OF p̃1(ha) PER LINK FOR VARIOUS

VALUES OF N .

tables suggest that the approximation is quite accurate.
The accuracy of p̃1(ha) seems to depend on the length
of the chain as well as the position of the link. On the
other hand, the results for p̃b(ha) are accurate up to the
point where they appear to be within the margin of error
of the simulation.

V. EXAMPLE

Besides being applicable in the broader context of the
framework presented in [8], a part of our contribution
can be used to extend the analysis presented by Boorstyn
et al. [13]. Specifically, the collision probabilities p0(h),
p1(h) can be used to soften the unrealistic assumption
of perfect capture.

We are interested in the throughput of each link,
defined as the fraction of time a link is active working
on a successful transmission. Let γp(h), γz(h) denote
the throughput in the perfect capture and zero capture
model respectively:

γp(h) = ghSP(L \ C+
h )(1− p0(h)),

γz(h) = ghSP(L \ C+
h )(1− p0(h))(1− p1(h)).

When approximating p1(h) by p̃1(h), γz(h) by γ̃z(h)
and considering the chain topology and parameter setting
discussed in Section IV, we get the results displayed in
Table III. This table shows relaxing the perfect capture
assumption has a significant impact on throughput.

VI. CONCLUSION

We have constructed an approximation for the interac-
tion between links in a 802.11 based wireless network.
This is done by interpreting the return times and hitting
probabilities in a Markov process tracking the activity
of links as interaction phenomena. Comparison to sim-
ulations demonstrates that the approximations are quite
accurate, at least for linear topologies.



a 1 2 3 4 5 6 7

N = 6
p̃b(ha) 0.440 0.635 0.800 0.563 0.562 - -
pb(ha) simulation 0.441 0.635 0.799 0.564 0.563 - -
∆% -0.2 0.0 0.1 -0.2 -0.2 - -

N = 7
p̃b(ha) 0.467 0.641 0.780 0.636 0.657 0.696 -
pb(ha) simulation 0.468 0.639 0.780 0.637 0.656 0.696 -
∆% -0.2 0.3 0.0 -0.2 0.2 0.0 -

N = 8
p̃b(ha) 0.461 0.653 0.779 0.585 0.684 0.729 0.771
pb(ha) simulation 0.459 0.652 0.782 0.585 0.682 0.733 0.770
∆% 0.4 0.2 -0.3 0.0 0.3 -0.5 0.1

Table II
THE RELATIVE DIFFERENCES OF p̃b(ha) PER LINK FOR VARIOUS VALUES OF N .

a 1 2 3 4 5 6 7

N = 6
γp(ha) 0.404 0.066 0.109 0.214 0.417 - -
γ̃z(ha) 0.219 0.037 0.109 0.214 0.417 - -

N = 7
γp(ha) 0.407 0.084 0.092 0.181 0.352 0.156 -
γ̃z(ha) 0.238 0.055 0.046 0.181 0.352 0.156 -

N = 8
γp(ha) 0.384 0.089 0.108 0.151 0.294 0.130 0.165
γ̃z(ha) 0.204 0.062 0.063 0.126 0.294 0.130 0.165

Table III
THE THROUGHPUT PER LINK WITH PERFECT CAPTURE AND ZERO CAPTURE FOR VARIOUS VALUES OF N .

We have also presented two possible applications
of the results derived in this paper. The first is a
broader framework presented in [8], which provides a
detailed yet mathematically tractable analysis of unsat-
urated 802.11 based networks. Moreover, using part of
our contribution it is possible to extend the model by
Boorstyn et al. [13] to relax the unrealistic assumption
of perfect capture.
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