
The Spinning problem

Bogdan Munteanu, Richard Borie

Department of Computer Science

University of Alabama

Tuscaloosa, AL

Grzegorz Malewicz*

Department of Engineering

Google Inc.

Mountain View, CA

Abstract— Neighbor discovery in wireless networks with

directional antennas is of crucial importance to many

applications. In this paper we propose a variation of the classic

neighbor discovery problem which we named the Spinning

Problem. Here we are given an arbitrary number of devices on a

plane. Each antenna starts spinning at a given rate and

transmitting its location. The initial location and orientation are

unknown. The goal is to find the rates that minimize the time for

each device to find the location of every other device. We analyze

a few particular cases of the problem. Specifically, we describe a

polynomial time algorithm for 2 devices, and an exponential

algorithm for n devices. It remains unknown whether there exists

a polynomial time algorithm for an arbitrary number of

antennas.

I. INTRODUCTION

Static wireless ad-hoc networks and sensor networks have
received an increased interest in the past years, especially due
to their applicability. Field operations, rescue operations,
habitat monitoring and surveillance are just a few of the
numerous applications ad-hoc and sensor networks can be used
for. In most applications, after deployment, nodes must first
independently discover their neighbors. After the localization
phase, these nodes can start communicating among themselves
or perform whatever task they were deployed for. The problem
of discovering the location of other nodes is known as
localization problem or neighbor discovery and it is a very
important first step in the establishment of a wireless network.
Of course, neighbor discovery should be fast and energy
efficient, in order to allow subsequent actions to take place in
the network.

Omni-directional antennas and directional antennas may
seem closely related, but in practice they are quite different.
We focus on directional antennas rather than omni-directional
antennas because the former have a stronger signal, a greater
range, increased performance and reduced interference from
unwanted sources.

We want to place an arbitrary number of battery-powered
devices (nodes) on a plane. For example we want to drop these
devices from an airplane over a field. We do not have control
over how the devices get placed, so we assume their location is
arbitrary and unknown. The nodes are equipped with
directional antennas. All antennas have the same beamwidth,
transmission power, frequency channel and modulation
technique. Once deployed, the antennas will start spinning at a
predefined speed transmitting and receiving signals at the same
time. We do not know and we cannot set the initial orientation

of the antennas, since the devise are dropped and not carefully
deployed. The goal is for each device to determine the location
of every other device so that later they can communicate.

We assume that all devices are in each other’s range. Every
device has a unique ID. Once a node receives a successful
transmission from a neighbor, it will record the identity and the
location of that node. This can be done by using Angle-Of-
Arrival information of the received signal, or by including
direction information in the sent packet.

Before dropping the devices, we can set the rotation speed
of the antennas. We want to minimize the energy consumption
of the devices but also minimize the time until every device
discovers all his neighbors. If the beamwidth is wider and the
antennas rotate faster then the energy consumption is higher
but also the meeting time may be lower.

Our first question is: Is it possible to set the speeds such
that the devices will discover one another? If yes, how can we
optimize the total meeting time? Since in real life the speed is
quite limited (by current technology), can we find a solution in
the case we have an upper bound for the speed we may set? In

the current paper we answer some of these questions.

Substantial work has been done in the area of discovery
problems with directional antennas. In this section we present
some of the work which is closest to the Spinning Problem.

In [1] the authors present several probabilistic algorithms
for neighbor discovery in wireless networks. These algorithms
are classified in two groups, Direct-Discovery Algorithms in
which nodes discover their neighbors only upon receiving a
transmission from them and Gossip-Based Algorithms in which
nodes gossip about their neighbor’s location information to
enable faster discovery. Time is divided in time slots and in
every time slot each node transmits in a random direction. The
authors’ goal is to maximize the probability of a node
discovering its neighbors within a given amount of time.

In [2, 3] a distributed algorithm for creating a multihop
wireless network with a higher lifetime is presented. The
lifetime depends on the battery power of the network and on
the power consumption for communication. After creating the
network using this algorithm, the power consumption will be
close to the optimal. The basic idea of the algorithm is that a
node u transmits with minimum power p required to ensure that
in every cone of degree α around u, there is some node that u

 * The research of G. Malewicz was supported in part by NSF Grant ITR-

800864

peri
Typewriter
WIOPT 2008, 1st–3rd Apr 2008, Berlin, Germany.
Copyright © 2011–2012 ICST ISBN 978-963-9799-18-9
DOI 10.4108/ICST.WIOPT2008.3216

peri
Typewriter

can reach with power p. In these papers, energy consumption
depends on the range of transmission. The authors are not
concerned with the time required to build the network but with
the power consumption for the communication when the
network is in place.

The idea in [4] is to equip only a small fraction of the nodes
of the network with location determination hardware. These
nodes, called “anchor nodes”, will act as reference points for
location information. The rest of the nodes, called “target
nodes”, can use the information from the anchor nodes to
estimate their location. The sensor nodes, which are equipped
with four directional antennas, will determine their own
location by measuring the distance from each anchor node.

The current paper uses new assumptions about the model
which result in a totally different approach and we focus on
minimizing the time until all nodes have discovered their
neighbors.

The assumptions and the model of our problem are
presented next. In section 3 we present some particular cases
which we find quite interesting. Section 4 consists of the
formal model and analysis of the problem, leaving Section 5
and 6 for the algorithm and conclusions.

II. MODEL

Next, we present the model for the problem which we
named the “Spinning Problem”.

1. We have a set of n static nodes arbitrary located on a
plane and equipped with directional antennas;

2. Every node has a unique ID from 1 to n.

3. Each antenna has an unknown starting orientation
(starting positioning angle);

4. All antennas have the same beamwidth α, 0 ≤ α ≤ 2π;

5. Two nodes meet (i.e. discover each other) if both emit
in the other’s direction simultaneously;

6. a) Every node is equipped with a device capable of
providing AOA (Angle of Arrival);

 OR

 b) The direction information is included in the
transmitted signal;

7. All nodes are in each other’s range (the graph forms a
clique);

8. Every antenna j, j=1..n, rotates clockwise at speed vj,
Z ≤ v1 ≤ v2 ≤ … ≤ vn ≤ V, where vj is expressed in the number of
rotations per unit of time and Z,V are constants;

9. All antennas have the same transmission power,
frequency channel and modulation technique.

We want to find a set {v1, …, vn}, such that all n nodes will
meet (i.e. each node will discover every other node).

Definition 1: We call a solution to the spinning problem
with given n, α and V, a pair ({v1, … , vn}, t) where {v1, … , vn}
is a set of speeds such that the n nodes will meet in at most t

time, for any distribution of the nodes on the plane and any
starting positioning of the antennas.

Definition 2: An optimal solution to the spinning problem
with given n and α, is a pair ({v1, … , vn}, t) such that there
exists no other solution ({v’1, … , v’n}, t’) such that t’ < t.

We assume that the system of coordinates is defined prior
to the deployment.

Definition 3: The starting angle of an antenna is the angle
formed by the beam and the Ox axis in the initial deployment
of the device.

Problem: How to find the optimal solution to the spinning
problem? In case the problem is proven to be NP-complete,
how to find a solution that is close to the optimal solution?

We can see that if α ≥ π then any 2 beams meet during a full
spin of the slower beam. And that no matter what starting
positions and what speeds they have (even if they have the
same speed). The optimal solution in this case would be to set
maximum speed (V) for all beams such that the full spin occurs
as fast as possible. Hence, this case does not interest us. From
now on we assume that α < π.

Also, it is not possible that V = v1 because that would mean
all speeds must be equal, so for α < π it is possible to place the
antennas such that the beams never meet (consider the case of 2
antennas rotating at the same speed).

Why is the problem interesting? Naturally, we assume that
spinning requires energy and the energy consumption rises
proportionally with the speed. Hence, if we spin longer or
faster the energy consumption grows. Also, small α is better
because we consume less energy when sending signals and we
have lower chances of interference.

We want to minimize the energy consumption by finding a
trade-off between the beamwidth, speed and meeting time. This
leads to the upper and lower bounds Z and V on speed. If Z or V
are exceeded then the energy consumption would be too high
and not worth considering. Now we want to minimize the
meeting time for antennas rotating at speeds between Z and V.
Even more, we want to pick the speeds such that the antennas
will eventually meet.

III. PARTICULAR CASES

If we do not choose the speeds carefully some antennas
might never meet. For example, consider the case n = 2, α <
π/2 and a starting position like in the following figure where
the second beam is very close to the meeting point:

Figure 1.The two beams rotating clockwise are represented as sections
 of a circle

C1 C2 α
α

A1

B1

A2

B2

For ease of representation, we consider C1 and C2 to be the
circles described by the rotations. The sections (A1, B1) and (A2,
B2) of the circles represent the beams.

Consider the segment C1C2 which connects the locations of
the 2 beams. We say that beam 1 is available for meeting if
points A1 and B1 are on opposite sides of the segment C1C2. In
the Fig. 1, beam 1 is available, but beam 2 is not.

Next, we prove a trivial claim in order to introduce the
reader to our notations.

Claim 4: It is possible that the 2 beams will never meet.

Proof:

Let us pick v2 = 2v1 and α = π/6. By the time beam 1 ends
being available (so it rotates α distance), beam 2 rotates 2α. No
meeting occurs in this time.

Figure 2. The two beams after beam 1 ends being available

After t1/2 time (where t1 is the time it takes the first beam to
make a full rotation) we have a placement where beam 2 has
passed over the meeting point and beam one has moved half
the distance:

Figure 3. The two beams after t1/2 time

After t1 time (since the initial deployment) the two beams
will be in the starting positions. Beam 2 has completed two full
circles while beam 1 has completed one circle. Now the
scenario repeats, so the 2 beams will never meet.

So if we pick v2 = 2v1 the beams might never meet. In fact,
if we choose v2 = k · v1 the 2 beams might never meet (v2 = k ·
v1 must be smaller than the upper bound V). Of course, this also
depends on α. If α is bigger then the second beam might reach
the meeting point before beam 1 ends being available, so they
meet. The conclusion is that there is a chance (which depends
on α, speeds and the starting positions) that the two beams will
never meet.

q.e.d.

Now let us consider the particular case in which α = 0. This
would correspond to having laser rays (which are straight lines
with no angle) instead of antenna beams. We cannot guarantee
that the antennas will always meet in this case; it depends on
the starting positions. The following Lemma states this
formally for n = 2:

Lemma 5: If α = 0 then for ∀ v1, v2 ∃ β1, β2 starting angles
such that the spinning problem has no solution.

Proof:

We show that there is a starting position that will guarantee
the 2 beams will never meet. The proof is non-constructive.

Let β1 = 0, β2 = π (the antennas start in the meeting
position) like in Fig. 4:

Figure 4. The starting position of 2 rays

Now, there are two possibilities: the antennas will meet
again, or they will never meet again.

Case 1: The antennas will never meet again.

In this case, we can pick the positioning of the 2 antennas at
time t1 (after one full rotation of the first beam) like in Fig 5.

Figure 5. The starting position after one full rotation of C1

Since beams never meet after t1 by assumption, the new β2
will be smaller than π. So if we let the starting positions be
these β1, β2, according to our assumption for this case, the 2
beams will never meet.

Case 2: The antennas will meet again after k rotations of

beam 1, k∈N
+
 but not earlier (A1 will be at the starting point

only after a number of full rotations).

If the antennas started at the meeting position and they will
meet again, it means we have a periodic pattern. That is, they
will meet again after 2k rotations, 3k rotations, and so on.

β2 < π

C1 C2
A1

A2

β1=0

β2= π

C1 C2

A1 A2
β1=0

C1
C2

α

α

A1

B1

A2

B2

C1
C2

α

 α

A1

B1

A2
B2

Now, after (k - 1) rotations we will have a positioning like
in Fig. 6. We will consider δ1 the angle between the second
beam and the meeting point after 1 full rotation of the first
beam, δ2 the angle after 2 rotations … δk-1 after k-1 rotations.
Let δ be the smallest of them, which occurs after rotation j,
where 1 ≤ j ≤ k – 1.

Figure 6. The 2 beams after k – 1 rotations

Now, if we choose other starting positions, with β1 = 0 and
β2 = δ/2 it means that after j rotations beam one will be at the
starting position, beam two will be δ/2 “behind”. After k
rotations, the second beam will be δ/2 “ahead”.

Figure 7. The 2 beams after k rotations

As we stated earlier, we have a pattern. They will not meet

after i · j rotations, nor after i · k rotations, with i∈N. But they
will never be as close to meeting position as after i · j rotations
or i · k. That is because in the rest of the time the distance
between beam 2 and the meeting point will always be greater
than δ/2. So the two beams will never meet.

Hence, in either case, we can construct a starting position
such that the 2 beams will never meet.

q.e.d.

IV. PRELIMINARIES

In this section we make a few assumptions about the
Spinning Problem which will enable us to formally represent
all the parameters of the problem. That is because in practice
there will always be diffractions at the edges of the beams thus
making the signal at the edges weaker than closer to the center.
Hence we can “approximate” the continuous model with a
discrete one.

First we assume that α is a rational number, i.e. α = a/b, a,

b∈ Z, b ≠ 0. This enables us to divide the circle formed by the
rotation of the beam into m equal sections, where m is a
multiple of b. Furthermore, the starting angles will also be a
rational number of the form c/m. Note that it is possible to pick
m = b.

These assumptions allow us to reduce the starting position
and the angle α to a natural number, representing the number of
sections it covers. So an angle α of k means α covers k sections.
Also we represent time as time units, without the concern of
what a time unit really corresponds to in real world. The above
assumptions enable us to formalize the problem and solve it
more rigorously.

Now we consider that the first beam rotates k1 sections in
one time unit and the second beam k2, with k1 and k2 natural
numbers. S1, S2 ≥ 0 are the starting positions of the two beams.
We assume that the first beam starts in the meeting position,
which will be true within some finite time after the initial
deployment. S2 varies, and we consider S2 = 0 = m to be the
meeting position.

Next we present the particular case when α = 0. The theory
presented here is an introduction for the general case. However,
it cannot be applied in the real world. We have already proved
that for α = 0, we cannot guarantee the 2 beams will ever meet.
Now we have a few additional assumptions about our model
which allow us to analyze this particular case: α is a rational
number and the circle has m sections. We can see that as m
tends to infinity, our discrete model allows more flexibility in
the selection of parameters, and it “approaches” the continuous
model. However, in order for meeting to occur, beam 2 must
start at one of the m points on the circle, and not somewhere in-
between. These points are imaginary, but they are not flexible:
one point on each circle must be placed such that when the
beams are positioned on them, they are aligned (i.e. we have
meeting).

But the devices are dropped arbitrarily, and we cannot
know in advance if the beams will start on one of the points.
This may not matter when α > 0, but when α = 0, it is crucial
the beams start on the points. So we just assume this happens,
in order to provide the idea behind the proofs for the general
case.

Given these assumptions, we can now present the case α =
0.

Lemma 6: For α = 0 and for given S2, k1, k2 and m, we

have meeting iff ∃ i, j ∈N such that i · m · k2/k1 = j · m – S2

Proof:

Note that if S2 = 0 then we have meeting already, so i and j
will be 0. The first beam will rotate a full circle in m/k1 time.

In m/k1 time, the second beam will rotate m · k2/k1. For α =
0, the two beams will meet iff the second beam will be at the
meeting point at the same time with the first beam. The first
beam will be at the meeting point after every m/k1 time units.
But every m/k1 time units the 2nd beam will rotate m · k2/k1
distance.

C1
C2

A1
A2

β2 = δ/2 β1=0

C1
C2

A1

A2
δ

In order to be at the meeting point after i rotations of the
first beam, the 2nd beam will have to rotate a total distance of j
· m – S2 (j full rotations minus the starting shift). Therefore, for

given S2, k1, k2 and m, if ∃ i, j ∈N such that i · m · k2/k1 = j · m –
S2, then we have meeting.

q.e.d.

We are interested in the smallest natural i which satisfies
this equation.

We can write the previous equation as i · m · k2 = j · m · k1 –
S2 · k1. And since S2, k1, k2 and m are known, we can rewrite the

equation as j · a – i · b=c with a, b, c∈N. This is a linear
Diophantine equation with the form a · x + b · y = c. There
exists a polynomial time algorithm for solving Diophantine
equations which is presented in this paper but the reader can
find it at [5].

Corollary 7: For α = 0 if beams meet then k1 = p · m,

p∈N
+
.

Proof:

We have solution iff ∃ i, j∈N such that j · m · k1 – i · m · k2
= S2 · k1

We know from the Diophantine Equation algorithm that the
gcd(a,b) must divide c, in other words m · gcd(k1,k2) must

divide S2 · k1 for∀ S2 = 1..m. In particular, for S2 = 1, m must

divide k1, which means k1 can be written as k1 = p · m, p∈N
+
.

q.e.d.

Theorem 8: For α = 0 the two beams meet after at most m-
1 spins of the first beam in the worst case, or they never meet.

Proof:

After each rotation of the 1st beam, the second beam will
visit (be positioned on) one of the m points of the circle. Let pi
be the point the second beam is positioned after i spins. After a
number of rotations (let us say r rotations) the beam will be
again positioned at point p0 = S2. After this, all positions
become repetitive, meaning that p0 = pr, p1 = pr+1… and so on.
If r < m then there exist some points on the circle that have not
been visited. Hence, there exists a starting position for which
the meeting point will not be visited, therefore there is no
meeting. So in order to have meeting, the second beam must
visit all m points on the circle. In the worst case, the meeting
point is last visited; therefore the two beams will meet after at
most m-1 spins in the worst case.

q.e.d.

We now extend our analysis to the case α > 0.

Theorem 9: Given k1, k2, S2, m, if α > 0 then we have

meeting iff	 ∃ i, j∈N such that

0 ≥ i · m · k2/k1 + S2 – j · m ≥ – α · k2/k1 – α

Proof:

In the case α > 0 we consider S2 to be the distance between
the meeting point and the rear margin (A2) of the second beam,
like in the Fig. 8:

Figure 8. Starting position S2

Every m/k1 time, the first beam will be in the same position
as the initial position and it will be available for α/k1 time.
Where should the second beam be positioned on the circle in
order to have meeting? If after m/k1 time the rear margin (A2) of
the second beam is positioned on the meeting point, then we
have meeting (Fig. 9).

Figure 9. Meeting after m/k1 time

 Or, if the front margin (B2) is α · k2/k1 away from the
meeting point we still have meeting (Fig. 10). That is because
the first beam will be available for α/k1 time, and in this time
the second beam will rotate a distance of α · k2/k1. In this case,
the rear margin is α + α · k2/k1 away from the meeting point.

Figure 10. Meeting if B2 is a·k2/k1 away

These are the 2 extreme cases. If the 2nd beam is anywhere
between these points, we will have meeting. So, if the rear
margin is between 0 (the meeting point) and 0 – (α + α·k2/k1)
(the distance beam 2 will rotate in α/k1 time plus the distance α
to the rear margin) then we have meeting.

The total distance the rear margin of the 2nd beam must
rotate in i·m/k1 time should be smaller than j·m – S2 and bigger
than j · m – S2 – (α + α · k2/k1).

Hence,

i · m · k2/k1 ≤ j · m – S2 and i · m · k2/k1 ≥ j · m – S2 – α · k2/k1 – α

C1 C2 α

α
A1

B1

A2
B2

S2

C1 C2 α α

A1

B1

A2

B2

C1
C2

α

α

A1

B1

A2
B2

α·k2/k1

Or,

 i · m · k2/k1 – j · m + S2 ≤ 0

and

i · m · k2/k1 – j · m + S2 ≥ – α · k2/k1 – α.

Therefore, in the case α > 0 we have meeting iff	 ∃ i, j∈N
such that

0 ≥ i · m · k2/k1 + S2 – j · m ≥ – α · k2/k1 – α

q.e.d.

V. AN ALGORITHM FOR COMPUTING THE MEETING TIME

5.1. Description of the algorithm

The inequality of Theorem 9 can be also written as:

 – S2 · k1 ≥ i · (m · k2) – j · (m·k1) ≥ – S2 · k1 – α · (k1 + k2)

We need to solve all Diophantine Equations

i·(m·k2) – j·(m·k1) = c where c ∈ Z

 and

 – S2 · k1 ≥ c ≥ – S2 · k1 – α · (k1 + k2).

Then, for every solution i, we must compute the exact
meeting time. Because at this point we only know the two
beams will meet after i full rotations of the first beam, but we
do not know exactly when this meeting occurs. First we
compute the position of the second beam after i · m/k1 time. Let
pi be the position of the rear margin of the second beam after i ·
m/k1 time.

pi = (i · m · k2/k1)mod m

If m – pi ≤ α then we have the situation from Fig 11:

Figure 11. When m-pi ≤ α

Hence, after exactly i · m/k1 time, the 2 beams meet. But if
m – pi > α, then after i · m/k1 time the two beams are positioned
like in Fig 12.:

 Figure 12. When m-pi > α

Hence, it will take a while until the second beam will be in
the meeting position. The second beam will have to rotate the
distance between B2 (the front margin) and the meeting point.
That distance is m – pi – α. Hence, the exact meeting time is i ·
m/k1 + (m – pi – α)/k2. After solving all the Diophantine
Equations, we can pick the smallest solution as the best
meeting time for this choice of k1, k2, S2, m.

Remember, that this is the meeting time if we consider the
starting position of the first beam like in Fig. 13:

Figure 13. Starting position of beam 1

Now we need to compute the meeting time for any starting
positions.

Lemma 10: Assume t is the worst case meeting time of the
2 beams if S1 = 0 and 0 ≤ S2 ≤ m – 1 (computed by our
algorithm). Then the worst case meeting time for any S1, S2 is
smaller than t + m/k1.

Proof: Obvious: For any S1 the first beam will have to rotate
less than a full spin to get into position S1 = 0 (at most m – 1/k1
time). So it will take less than m/k1 to reach S1 = 0 and once it
is there, it will take t time to meet.

q.e.d.

Theorem 11: Given k1, k2, S1, S2, m and α > 0 we have

meeting iff ∃ i, j ∈ N such that

0 ≥ i · m · k2/k1 + S2 + (m – S1) · k2/k1 – j · m ≥ – α · k2/k1 – α
 or

 (α – S1) · k2/k1 + S2 ≥ m – α and S1 < α.

Proof:

In the Lemma 6 we proved the same result but for S1 = 0. If
S1 > 0 we have two possibilities: either the two beams meet
during the first full rotation of the first beam or the beams meet
later.

C1
C2

α
α

A1

B1
A2

B2

pi

C1
C2

α

α

A1

B1

A2

B2

pi

C1 α

A1

B1

The first case is a particular case, and may occur only if S1
< α (so the first beam is already available) and the second
beam rotates so fast, that it will reach the meeting point before
beam one ends being available. That means, in α – S1/k1 time,
beam two will rotate more than m – α – S2 distance.

Hence

 (α – S1) · k2/k1 + S2 ≥ m – α.

The second case is trivial, considering the Theorem which
was already proven at the beginning of section 4. For S1 = 0,
the equation was

0 ≥ i · m · k2/k1 + S2 – j ·m ≥ – α · k2/k1 – α

Since the beams do not meet during the first rotation of the
first beam, then we can consider the problem with S1 = 0 but
with a different (later) S2. S2 will be S2 plus the distance beam
two rotates in (m – S1)/k1 time (the time it takes until beam one
reaches position S1 = 0). Therefore, the new S2 will be S2 + (m
– S1) · k2/k1. Replacing S2 in the equation we get

0 ≥ i · m · k2/k1 + S2 + (m – S1) · k2/k1 – j · m ≥ – α · k2/k1 – α

q.e.d.

How to compute the exact meeting time for any initial shift
of both beams?

First we compute the meeting time t when S1 = 0, using the
previous algorithm. Then we try to find the exact snapshot of
the meeting: exactly what point of the first beam will overlap
the meeting point? In order to do this, we first compute the
distance d between the front margin B1 and the meeting point
after t time.

d = (k1 · t) mod m

For any S1 < α – d the meeting will occur at the same time
as for S1 = 0 because after t time the distance between the front
margin and the meeting point will be smaller than α – d + d =
α. Hence, the meeting point will be between the two margins,
therefore we have meeting.

For any S1 ≥ α – d the meeting will not occur at the same
time as for S1 = 0 (same justification). Therefore, it will occur
later. When? The beam will first have to get in position S1 = 0.
Once it is there, it will take t time to meet. Hence, the first
beam will have to rotate m – α + d distance.

In this case, the worst case meeting time is

 t + (m – α + d)/k1.

5.2. Algorithm for two devices

In this section we present the algorithm for finding the best
choices of speed for 2 devices. The following algorithm outputs
a matrix where every value at row x and column y represents
the meeting time if k1 = x and k2 = y. To find the best meeting
time we need to compute the minimum meeting time inside the
generated matrix (which can easily be done in O(m

2
))

additional time.

MatrixGeneration{

 for k1=Z to V-1 do

 for k2=k1+1 to V do{

 a = m*k2;

 b = -m*k1;

 g = gcd(a,b);

 max = 0; // max is the longest time

 // until we guarantee meeting

 for S=1 to m do{

 min = MAXINT; // min is the soonest

 // meeting time

 for c=-S*k1-alpha*(k1+k2)to -S*k1

 if c%g = 0 then {

 a2 = a/g;

 b2 = b/g;

 c2 = c/g;

 solve Diophantine Eq a2*i+b2*j=c2;

 // return a solution (i,j)

 find minimum strictly positive solution (i,j)

 if (min > i)

 min = i;

 }

 if (max < min)

 max = min;

 }

 Matrix[k1][k2] = max + m/k1;

 //we add one more rotation to the final

 //meeting time

 }

}

For a better understanding of the MatrixGeneration
algorithm, the reader should be familiarized with the algorithm
for solving linear Diophantine Equations ([5]).

It is obvious that the matrix is generated in polynomial
time. Also, finding the best meeting time for 2 devices can be
done in polynomial time. But in order to determine the best
time for n devices, we would have to check all possible
solutions, because a good meeting time for devices 1 and 2
might result in a very bad meeting time between devices 2 and
3, etc. Hence, we have an exponential running time solution for
the Spinning Problem.

5.3 Algorithm for n devices

Next, we present the algorithm for computing the best
meeting time for n devices using the matrix generated by the
previous algorithm. This algorithm is recursive and it has
exponential running time. For every possible solution A (where
A is an array of n speeds) we compute the worst case meeting
time (compute_time function) then we find the minimum of all
these meeting times.

spin()

{

 A[0]=Z-1;

 compute(1);

 min= ;

 for all solutions A

 if min>time then

 min=time ;

 best_solution = A;

 //the best worst case meeting time is min

 // and the best solution (choice of speeds) is A

}

compute(int i)

{

 if i<n then

 for A[i]=A[i-1]+1 to V-n+i

 compute(i+1);

 else

 for A[i]=A[i-1]+1 to V-n+i

 time = compute_time(A);

}

int compute_time(array A)

{

 max=0;

 for j=1 to n-1

 for k=j+1 to n

 if max<Matrix[A[j]][A[k]] then

 max=Matrix[A[j]][A[k]]

 return max;

}

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented and analyzed a model for
neighbor discovery in static wireless ad-hoc networks using
directional antennas. We defined our variant of the problem
and made some assumptions about our model after which we
provided theoretical descriptions of the solutions and a simple
algorithm.

The solution for two devices is intuitive and quite simple.
Even though we have presented a method to determine the

optimal solution to the Spinning Problem for n devices, this
method requires exponential time. The next step in solving this
problem is proving that it is NP-Hard, or finding a polynomial
time algorithm.

Another approach could be to use random rotation speeds
and compute the discovery probability or the expected meeting
time.

REFERENCES

[1] S. Vasudevan, J. Kurose, D. Towsley “On Neighbor Discovery

inWireless Networks With Directional Antennas”. 24th Annual Joint
Conference of the IEEE Computer and Communication Societies,
Proceedings IEEE. Infocom 2005.

[2] Wattenhofer R., Li Li, Bahl P., Wang Y. ”Distributed Topology Control
for Power Efficient Operation in Multihop Wireless Ad Hoc Networks”.
Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), Anchorage, Alaska, April
2001.

[3] Li Li, Halpern J.Y., Bahl P., Wang Y., Wattenhofer R. “Analysis of a
Cone-Based Distributed Topology Control Algorithm for Wireless
Multi-hop Networks”. Twentieth ACM Symposium on Principles of
Distributed Computing (PODC), Newport, Rhode Island, August 2001.

[4] N.Malhotra, M. Krasniewski, C. Yang, S. Bagchi, W. Chappell
“Location Estimation in Ad-Hoc Networks with Directional Antennas”.
The 25th International Conference on Distributed Computing Systems
(ICDCS 2005), Columbus, Ohio, June 2005.

[5] MathWorld at Wolfram Research, http://mathworld.wolfram.com

