
The Spinning problem 

Bogdan Munteanu, Richard Borie 

Department of Computer Science 

University of Alabama 

Tuscaloosa, AL 

Grzegorz Malewicz* 

Department of Engineering 

Google Inc. 

Mountain View, CA 

 

 

 
Abstract— Neighbor discovery in wireless networks with 

directional antennas is of crucial importance to many 

applications. In this paper we propose a variation of the classic 

neighbor discovery problem which we named the Spinning 

Problem. Here we are given an arbitrary number of devices on a 

plane. Each antenna starts spinning at a given rate and 

transmitting its location. The initial location and orientation are 

unknown. The goal is to find the rates that minimize the time for 

each device to find the location of every other device. We analyze 

a few particular cases of the problem. Specifically, we describe a 

polynomial time algorithm for 2 devices, and an exponential 

algorithm for n devices. It remains unknown whether there exists 

a polynomial time algorithm for an arbitrary number of 

antennas. 

I. INTRODUCTION 

Static wireless ad-hoc networks and sensor networks have 
received an increased interest in the past years, especially due 
to their applicability. Field operations, rescue operations, 
habitat monitoring and surveillance are just a few of the 
numerous applications ad-hoc and sensor networks can be used 
for. In most applications, after deployment, nodes must first 
independently discover their neighbors. After the localization 
phase, these nodes can start communicating among themselves 
or perform whatever task they were deployed for. The problem 
of discovering the location of other nodes is known as 
localization problem or neighbor discovery and it is a very 
important first step in the establishment of a wireless network. 
Of course, neighbor discovery should be fast and energy 
efficient, in order to allow subsequent actions to take place in 
the network.

  
 

Omni-directional antennas and directional antennas may 
seem closely related, but in practice they are quite different. 
We focus on directional antennas rather than omni-directional 
antennas because the former have a stronger signal, a greater 
range, increased performance and reduced interference from 
unwanted sources. 

We want to place an arbitrary number of battery-powered 
devices (nodes) on a plane. For example we want to drop these 
devices from an airplane over a field. We do not have control 
over how the devices get placed, so we assume their location is 
arbitrary and unknown. The nodes are equipped with 
directional antennas. All antennas have the same beamwidth, 
transmission power, frequency channel and modulation 
technique. Once deployed, the antennas will start spinning at a 
predefined speed transmitting and receiving signals at the same 
time. We do not know and we cannot set the initial orientation 

of the antennas, since the devise are dropped and not carefully 
deployed. The goal is for each device to determine the location 
of every other device so that later they can communicate. 

We assume that all devices are in each other’s range.  Every 
device has a unique ID. Once a node receives a successful 
transmission from a neighbor, it will record the identity and the 
location of that node. This can be done by using Angle-Of-
Arrival information of the received signal, or by including 
direction information in the sent packet. 

Before dropping the devices, we can set the rotation speed 
of the antennas. We want to minimize the energy consumption 
of the devices but also minimize the time until every device 
discovers all his neighbors. If the beamwidth is wider and the 
antennas rotate faster then the energy consumption is higher 
but also the meeting time may be lower. 

Our first question is: Is it possible to set the speeds such 
that the devices will discover one another? If yes, how can we 
optimize the total meeting time? Since in real life the speed is 
quite limited (by current technology), can we find a solution in 
the case we have an upper bound for the speed we may set? In 

the current paper we answer some of these questions. 
 
 

Substantial work has been done in the area of discovery 
problems with directional antennas. In this section we present 
some of the work which is closest to the Spinning Problem. 

In [1] the authors present several probabilistic algorithms 
for neighbor discovery in wireless networks. These algorithms 
are classified in two groups, Direct-Discovery Algorithms in 
which nodes discover their neighbors only upon receiving a 
transmission from them and Gossip-Based Algorithms in which 
nodes gossip about their neighbor’s location information to 
enable faster discovery. Time is divided in time slots and in 
every time slot each node transmits in a random direction. The 
authors’ goal is to maximize the probability of a node 
discovering its neighbors within a given amount of time. 

In [2, 3] a distributed algorithm for creating a multihop 
wireless network with a higher lifetime is presented. The 
lifetime depends on the battery power of the network and on 
the power consumption for communication. After creating the 
network using this algorithm, the power consumption will be 
close to the optimal. The basic idea of the algorithm is that a 
node u transmits with minimum power p required to ensure that 
in every cone of degree α around u, there is some node that u 
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can reach with power p. In these papers, energy consumption 
depends on the range of transmission. The authors are not 
concerned with the time required to build the network but with 
the power consumption for the communication when the 
network is in place. 

The idea in [4] is to equip only a small fraction of the nodes 
of the network with location determination hardware. These 
nodes, called “anchor nodes”, will act as reference points for 
location information. The rest of the nodes, called “target 
nodes”, can use the information from the anchor nodes to 
estimate their location. The sensor nodes, which are equipped 
with four directional antennas, will determine their own 
location by measuring the distance from each anchor node. 

The current paper uses new assumptions about the model 
which result in a totally different approach and we focus on 
minimizing the time until all nodes have discovered their 
neighbors.  

The assumptions and the model of our problem are 
presented next. In section 3 we present some particular cases 
which we find quite interesting. Section 4 consists of the 
formal model and analysis of the problem, leaving Section 5 
and 6 for the algorithm and conclusions. 

II. MODEL 

Next, we present the model for the problem which we 
named the “Spinning Problem”. 

1. We have a set of n static nodes arbitrary located on a 
plane and equipped with directional antennas; 

2. Every node has a unique ID from 1 to n. 

3. Each antenna has an unknown starting orientation 
(starting positioning angle); 

4. All antennas have the same beamwidth α, 0 ≤ α ≤ 2π; 

5. Two nodes meet (i.e. discover each other) if both emit 
in the other’s direction simultaneously; 

6. a)  Every node is equipped with a device capable of 
providing AOA (Angle of Arrival); 

   OR 

         b) The direction information is included in the 
transmitted signal; 

7. All nodes are in each other’s range (the graph forms a 
clique); 

8. Every antenna j, j=1..n, rotates clockwise at speed vj, 
Z ≤ v1 ≤ v2 ≤ … ≤ vn ≤ V, where vj is expressed in the number of 
rotations per unit of time and Z,V are constants; 

9. All antennas have the same transmission power, 
frequency channel and modulation technique. 

We want to find a set {v1, …, vn}, such that all n nodes will 
meet (i.e. each node will discover every other node). 

Definition 1: We call a solution to the spinning problem 
with given n, α and V, a pair ({v1, … , vn}, t) where {v1, … , vn} 
is a set of speeds such that the n nodes will meet in at most t 

time, for any distribution of the nodes on the plane and any 
starting positioning of the antennas. 

Definition 2: An optimal solution to the spinning problem 
with given n and α, is a pair ({v1, … , vn}, t) such that there 
exists no other solution ({v’1, … , v’n}, t’) such that t’ < t. 

We assume that the system of coordinates is defined prior 
to the deployment. 

Definition 3: The starting angle of an antenna is the angle 
formed by the beam and the Ox axis in the initial deployment 
of the device. 

Problem: How to find the optimal solution to the spinning 
problem? In case the problem is proven to be NP-complete, 
how to find a solution that is close to the optimal solution? 

We can see that if α ≥ π then any 2 beams meet during a full 
spin of the slower beam. And that no matter what starting 
positions and what speeds they have (even if they have the 
same speed). The optimal solution in this case would be to set 
maximum speed (V) for all beams such that the full spin occurs 
as fast as possible. Hence, this case does not interest us. From 
now on we assume that α < π. 

Also, it is not possible that V = v1 because that would mean 
all speeds must be equal, so for α < π it is possible to place the 
antennas such that the beams never meet (consider the case of 2 
antennas rotating at the same speed). 

Why is the problem interesting? Naturally, we assume that 
spinning requires energy and the energy consumption rises 
proportionally with the speed. Hence, if we spin longer or 
faster the energy consumption grows. Also, small α is better 
because we consume less energy when sending signals and we 
have lower chances of interference.  

We want to minimize the energy consumption by finding a 
trade-off between the beamwidth, speed and meeting time. This 
leads to the upper and lower bounds Z and V on speed. If Z or V 
are exceeded then the energy consumption would be too high 
and not worth considering. Now we want to minimize the 
meeting time for antennas rotating at speeds between Z and V. 
Even more, we want to pick the speeds such that the antennas 
will eventually meet. 

III. PARTICULAR CASES 

If we do not choose the speeds carefully some antennas 
might never meet. For example, consider the case n = 2, α < 
π/2 and a starting position like in the following figure where 
the second beam is very close to the meeting point: 

 

Figure 1.The two beams rotating clockwise are represented as sections 
 of a circle 
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For ease of representation, we consider C1 and C2 to be the 
circles described by the rotations. The sections (A1, B1) and (A2, 
B2) of the circles represent the beams. 

Consider the segment C1C2 which connects the locations of 
the 2 beams. We say that beam 1 is available for meeting if 
points A1 and B1 are on opposite sides of the segment C1C2. In 
the Fig. 1, beam 1 is available, but beam 2 is not. 

Next, we prove a trivial claim in order to introduce the 
reader to our notations. 

Claim 4: It is possible that the 2 beams will never meet. 

Proof: 

Let us pick v2 = 2v1 and α = π/6. By the time beam 1 ends 
being available (so it rotates α distance), beam 2 rotates 2α. No 
meeting occurs in this time. 

 

Figure 2. The two beams after beam 1 ends being available 

 

After t1/2 time (where t1 is the time it takes the first beam to 
make a full rotation) we have a placement where beam 2 has 
passed over the meeting point and beam one has moved half 
the distance: 

 

Figure 3. The two beams after t1/2 time 

 

After t1 time (since the initial deployment) the two beams 
will be in the starting positions. Beam 2 has completed two full 
circles while beam 1 has completed one circle. Now the 
scenario repeats, so the 2 beams will never meet.  

So if we pick v2 = 2v1 the beams might never meet. In fact, 
if we choose v2 = k · v1 the 2 beams might never meet (v2 = k · 
v1 must be smaller than the upper bound V). Of course, this also 
depends on α. If α is bigger then the second beam might reach 
the meeting point before beam 1 ends being available, so they 
meet. The conclusion is that there is a chance (which depends 
on α, speeds and the starting positions) that the two beams will 
never meet. 

q.e.d. 

Now let us consider the particular case in which α = 0. This 
would correspond to having laser rays (which are straight lines 
with no angle) instead of antenna beams. We cannot guarantee 
that the antennas will always meet in this case; it depends on 
the starting positions. The following Lemma states this 
formally for n = 2: 

Lemma 5: If α = 0 then for ∀ v1, v2 ∃ β1, β2 starting angles 
such that the spinning problem has no solution. 

Proof: 

We show that there is a starting position that will guarantee 
the 2 beams will never meet. The proof is non-constructive. 

Let β1 = 0, β2 = π (the antennas start in the meeting 
position) like in Fig. 4: 

 

 

Figure 4. The starting position of 2 rays 

 

Now, there are two possibilities: the antennas will meet 
again, or they will never meet again. 

Case 1: The antennas will never meet again. 

In this case, we can pick the positioning of the 2 antennas at 
time t1 (after one full rotation of the first beam) like in Fig 5. 

 

Figure 5. The starting position after one full rotation of C1 

 

Since beams never meet after t1 by assumption, the new β2 
will be smaller than π. So if we let the starting positions be 
these β1, β2, according to our assumption for this case, the 2 
beams will never meet. 

Case 2: The antennas will meet again after k rotations of 

beam 1, k∈N
+
 but not earlier (A1 will be at the starting point 

only after a number of full rotations).  

If the antennas started at the meeting position and they will 
meet again, it means we have a periodic pattern. That is, they 
will meet again after 2k rotations, 3k rotations, and so on. 
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Now, after (k - 1) rotations we will have a positioning like 
in Fig. 6. We will consider δ1 the angle between the second 
beam and the meeting point after 1 full rotation of the first 
beam, δ2 the angle after 2 rotations … δk-1 after k-1 rotations. 
Let δ be the smallest of them, which occurs after rotation j, 
where 1 ≤ j ≤ k – 1. 

 

Figure 6. The 2 beams after k – 1 rotations 

 

Now, if we choose other starting positions, with β1 = 0 and 
β2 = δ/2 it means that after j rotations beam one will be at the 
starting position, beam two will be δ/2 “behind”. After k 
rotations, the second beam will be δ/2 “ahead”. 

 

 

Figure 7. The 2 beams after k  rotations 

 

As we stated earlier, we have a pattern. They will not meet 

after i · j rotations, nor after i · k rotations, with i∈N. But they 
will never be as close to meeting position as after i · j rotations 
or i · k. That is because in the rest of the time the distance 
between beam 2 and the meeting point will always be greater 
than δ/2. So the two beams will never meet. 

Hence, in either case, we can construct a starting position 
such that the 2 beams will never meet.  

q.e.d. 

 

IV. PRELIMINARIES 

 

In this section we make a few assumptions about the 
Spinning Problem which will enable us to formally represent 
all the parameters of the problem. That is because in practice 
there will always be diffractions at the edges of the beams thus 
making the signal at the edges weaker than closer to the center. 
Hence we can “approximate” the continuous model with a 
discrete one. 

First we assume that α is a rational number, i.e. α = a/b, a, 

b∈ Z, b ≠ 0. This enables us to divide the circle formed by the 
rotation of the beam into m equal sections, where m is a 
multiple of b. Furthermore, the starting angles will also be a 
rational number of the form c/m. Note that it is possible to pick 
m = b. 

These assumptions allow us to reduce the starting position 
and the angle α to a natural number, representing the number of 
sections it covers. So an angle α of k means α covers k sections. 
Also we represent time as time units, without the concern of 
what a time unit really corresponds to in real world. The above 
assumptions enable us to formalize the problem and solve it 
more rigorously. 

Now we consider that the first beam rotates k1 sections in 
one time unit and the second beam k2, with k1 and k2 natural 
numbers. S1, S2 ≥ 0 are the starting positions of the two beams. 
We assume that the first beam starts in the meeting position, 
which will be true within some finite time after the initial 
deployment. S2 varies, and we consider S2 = 0 = m to be the 
meeting position. 

Next we present the particular case when α = 0. The theory 
presented here is an introduction for the general case. However, 
it cannot be applied in the real world. We have already proved 
that for α = 0, we cannot guarantee the 2 beams will ever meet. 
Now we have a few additional assumptions about our model 
which allow us to analyze this particular case: α is a rational 
number and the circle has m sections. We can see that as m 
tends to infinity, our discrete model allows more flexibility in 
the selection of parameters, and it “approaches” the continuous 
model. However, in order for meeting to occur, beam 2 must 
start at one of the m points on the circle, and not somewhere in-
between. These points are imaginary, but they are not flexible: 
one point on each circle must be placed such that when the 
beams are positioned on them, they are aligned (i.e. we have 
meeting). 

But the devices are dropped arbitrarily, and we cannot 
know in advance if the beams will start on one of the points. 
This may not matter when α > 0, but when α = 0, it is crucial 
the beams start on the points. So we just assume this happens, 
in order to provide the idea behind the proofs for the general 
case.  

Given these assumptions, we can now present the case α = 
0. 

Lemma 6: For α = 0 and for given S2, k1, k2 and m, we 

have meeting iff ∃ i, j ∈N such that i · m · k2/k1 = j · m – S2 

Proof:  

Note that if S2 = 0 then we have meeting already, so i and j 
will be 0. The first beam will rotate a full circle in m/k1 time.  

In m/k1 time, the second beam will rotate m · k2/k1. For α = 
0, the two beams will meet iff the second beam will be at the 
meeting point at the same time with the first beam. The first 
beam will be at the meeting point after every m/k1 time units. 
But every m/k1 time units the 2nd beam will rotate m · k2/k1 
distance. 
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In order to be at the meeting point after i rotations of the 
first beam, the 2nd beam will have to rotate a total distance of j 
· m – S2 (j full rotations minus the starting shift). Therefore, for 

given S2, k1, k2 and m, if ∃ i, j ∈N such that i · m · k2/k1 = j · m – 
S2, then we have meeting.  

q.e.d. 

We are interested in the smallest natural i which satisfies 
this equation.  

We can write the previous equation as i · m · k2 = j · m · k1 –  
S2 · k1. And since S2, k1, k2 and m are known, we can rewrite the 

equation as j · a – i · b=c with a, b, c∈N. This is a linear 
Diophantine equation with the form a · x + b · y = c. There 
exists a polynomial time algorithm for solving Diophantine 
equations which is presented in this paper but the reader can 
find it at [5]. 

Corollary 7: For α = 0 if beams meet then k1 = p · m, 

p∈N
+
. 

Proof: 

We have solution iff ∃ i, j∈N such that j · m · k1 – i · m · k2 
= S2 · k1 

We know from the Diophantine Equation algorithm that the 
gcd(a,b) must divide c, in other words m · gcd(k1,k2) must 

divide S2 · k1 for∀ S2 = 1..m. In particular, for S2 = 1, m must 

divide k1, which means k1 can be written as k1 = p · m, p∈N
+
. 

q.e.d. 

Theorem 8: For α = 0 the two beams meet after at most m-
1 spins of the first beam in the worst case, or they never meet. 

Proof: 

After each rotation of the 1st beam, the second beam will 
visit (be positioned on) one of the m points of the circle. Let pi 
be the point the second beam is positioned after i spins. After a 
number of rotations (let us say r rotations) the beam will be 
again positioned at point p0 = S2. After this, all positions 
become repetitive, meaning that p0 = pr, p1 = pr+1… and so on. 
If r < m then there exist some points on the circle that have not 
been visited. Hence, there exists a starting position for which 
the meeting point will not be visited, therefore there is no 
meeting. So in order to have meeting, the second beam must 
visit all m points on the circle. In the worst case, the meeting 
point is last visited; therefore the two beams will meet after at 
most m-1 spins in the worst case. 

q.e.d. 

We now extend our analysis to the case α > 0. 

Theorem 9: Given k1, k2, S2, m, if α > 0 then we have 

meeting iff	 ∃ i, j∈N such that 

0 ≥ i · m · k2/k1 + S2 –  j · m ≥  – α · k2/k1 – α 

Proof: 

In the case α > 0 we consider S2 to be the distance between 
the meeting point and the rear margin (A2) of the second beam, 
like in the Fig. 8: 

  

Figure 8. Starting position S2 

Every m/k1 time, the first beam will be in the same position 
as the initial position and it will be available for α/k1 time. 
Where should the second beam be positioned on the circle in 
order to have meeting? If after m/k1 time the rear margin (A2) of 
the second beam is positioned on the meeting point, then we 
have meeting (Fig. 9). 

 

Figure 9. Meeting after m/k1 time 

 

 Or, if the front margin (B2) is α · k2/k1 away from the 
meeting point we still have meeting (Fig. 10). That is because 
the first beam will be available for α/k1 time, and in this time 
the second beam will rotate a distance of α · k2/k1. In this case, 
the rear margin is α + α · k2/k1 away from the meeting point. 

 

 

Figure 10. Meeting if B2 is a·k2/k1 away 

 

These are the 2 extreme cases. If the 2nd beam is anywhere 
between these points, we will have meeting. So, if the rear 
margin is between 0 (the meeting point) and 0 – (α + α·k2/k1) 
(the distance beam 2 will rotate in α/k1 time plus the distance α 
to the rear margin) then we have meeting.  

The total distance the rear margin of the 2nd beam must 
rotate in i·m/k1 time should be smaller than j·m – S2 and bigger 
than j · m – S2 – (α + α · k2/k1).  

Hence, 

i · m · k2/k1 ≤ j · m – S2 and i · m · k2/k1 ≥ j · m – S2 – α · k2/k1 – α 
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Or, 

 i · m · k2/k1 – j · m + S2 ≤ 0  

and  

i · m · k2/k1 – j · m + S2 ≥ – α · k2/k1 – α. 

Therefore, in the case α > 0 we have meeting iff	 ∃ i, j∈N 
such that  

0 ≥ i · m · k2/k1 + S2 – j · m ≥ – α · k2/k1 – α 

q.e.d. 

 

 

V. AN ALGORITHM FOR COMPUTING THE MEETING TIME 

 

 
5.1. Description of the algorithm 

The inequality of Theorem 9 can be also written as: 

 – S2 · k1 ≥ i · (m · k2) – j · (m·k1) ≥ – S2 · k1 – α · (k1 + k2) 

We need to solve all Diophantine Equations  

i·(m·k2) – j·(m·k1) = c where c ∈ Z  

  and  

 – S2 · k1 ≥ c ≥ – S2  · k1 – α · (k1 + k2).  

Then, for every solution i, we must compute the exact 
meeting time. Because at this point we only know the two 
beams will meet after i full rotations of the first beam, but we 
do not know exactly when this meeting occurs. First we 
compute the position of the second beam after i · m/k1 time. Let 
pi be the position of the rear margin of the second beam after i · 
m/k1 time.  

pi = (i · m · k2/k1)mod m 

If m – pi ≤ α then we have the situation from Fig 11: 

 

 

Figure 11. When m-pi ≤ α 

 

Hence, after exactly i · m/k1 time, the 2 beams meet. But if 
m – pi > α, then after i · m/k1 time the two beams are positioned 
like in Fig 12.: 

 

 Figure 12. When m-pi > α 

 

Hence, it will take a while until the second beam will be in 
the meeting position. The second beam will have to rotate the 
distance between B2 (the front margin) and the meeting point. 
That distance is m – pi – α. Hence, the exact meeting time is i · 
m/k1 + (m – pi – α)/k2. After solving all the Diophantine 
Equations, we can pick the smallest solution as the best 
meeting time for this choice of k1, k2, S2, m. 

Remember, that this is the meeting time if we consider the 
starting position of the first beam like in Fig. 13:  

 

 

Figure 13. Starting position of beam 1 

 

Now we need to compute the meeting time for any starting 
positions. 

Lemma 10: Assume t is the worst case meeting time of the 
2 beams if S1 = 0 and 0 ≤ S2 ≤ m – 1 (computed by our 
algorithm). Then the worst case meeting time for any S1, S2 is 
smaller than t + m/k1. 

Proof: Obvious: For any S1 the first beam will have to rotate 
less than a full spin to get into position S1 = 0 (at most m – 1/k1 
time). So it will take less than m/k1 to reach S1 = 0 and once it 
is there, it will take t time to meet.  

q.e.d. 

Theorem 11: Given k1, k2, S1, S2, m and α > 0 we have 

meeting iff ∃ i, j ∈ N such that  

0 ≥ i · m · k2/k1 + S2 + (m – S1) · k2/k1 – j · m ≥ – α · k2/k1 – α 
  or 

 (α – S1) · k2/k1 + S2 ≥ m – α and S1 < α. 

Proof: 

In the Lemma 6 we proved the same result but for S1 = 0. If 
S1 > 0 we have two possibilities: either the two beams meet 
during the first full rotation of the first beam or the beams meet 
later.  
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The first case is a particular case, and may occur only if S1 
< α (so the first beam is already available) and the second 
beam rotates so fast, that it will reach the meeting point before 
beam one ends being available. That means, in α – S1/k1 time, 
beam two will rotate more than m – α – S2 distance.  

Hence 

 (α – S1) · k2/k1 + S2 ≥ m – α.   

The second case is trivial, considering the Theorem which 
was already proven at the beginning of section 4. For S1 = 0, 
the equation was  

0 ≥ i · m · k2/k1 + S2 – j ·m ≥ – α · k2/k1 – α 

Since the beams do not meet during the first rotation of the 
first beam, then we can consider the problem with S1 = 0 but 
with a different (later) S2. S2 will be S2 plus the distance beam 
two rotates in (m – S1)/k1 time (the time it takes until beam one 
reaches position S1 = 0). Therefore, the new S2 will be S2 + (m 
– S1) · k2/k1. Replacing S2 in the equation we get  

0 ≥ i · m · k2/k1 + S2 + (m – S1) · k2/k1 – j · m ≥ – α · k2/k1 – α 

q.e.d. 

How to compute the exact meeting time for any initial shift 
of both beams?  

First we compute the meeting time t when S1 = 0, using the 
previous algorithm. Then we try to find the exact snapshot of 
the meeting: exactly what point of the first beam will overlap 
the meeting point? In order to do this, we first compute the 
distance d between the front margin B1 and the meeting point 
after t time.  

d = (k1 · t) mod m 

For any S1 < α – d the meeting will occur at the same time 
as for S1 = 0 because after t time the distance between the front 
margin and the meeting point will be smaller than α – d + d = 
α. Hence, the meeting point will be between the two margins, 
therefore we have meeting. 

For any S1 ≥ α – d the meeting will not occur at the same 
time as for S1 = 0 (same justification). Therefore, it will occur 
later. When? The beam will first have to get in position S1 = 0. 
Once it is there, it will take t time to meet. Hence, the first 
beam will have to rotate m – α + d distance. 

In this case, the worst case meeting time is 

 t + (m – α + d)/k1. 

5.2. Algorithm for two devices 

In this section we present the algorithm for finding the best 
choices of speed for 2 devices. The following algorithm outputs 
a matrix where every value at row x and column y represents 
the meeting time if k1 = x and k2 = y. To find the best meeting 
time we need to compute the minimum meeting time inside the 
generated matrix (which can easily be done in O(m

2
)) 

additional time. 

 
MatrixGeneration{ 

  for k1=Z to V-1 do 

    for k2=k1+1 to V do{ 

 a = m*k2; 

 b = -m*k1; 

 g = gcd(a,b); 

 max = 0; // max is the longest time   

  // until we guarantee meeting 

 for S=1 to m do{ 

   min = MAXINT; // min is the soonest 

   // meeting time 

   for c=-S*k1-alpha*(k1+k2)to -S*k1 

     if c%g = 0 then { 

  a2 = a/g; 

  b2 = b/g; 

  c2 = c/g; 

  solve Diophantine Eq a2*i+b2*j=c2; 

      

 // return a solution (i,j) 

 find minimum strictly positive solution (i,j) 

  if (min > i) 

  min = i; 

     } 

     if (max < min) 

       max = min; 

        } 

  Matrix[k1][k2] = max + m/k1;  

 //we add one more rotation to the final 

 //meeting time  

    } 

} 

For a better understanding of the MatrixGeneration 
algorithm, the reader should be familiarized with the algorithm 
for solving linear Diophantine Equations ([5]). 

It is obvious that the matrix is generated in polynomial 
time. Also, finding the best meeting time for 2 devices can be 
done in polynomial time. But in order to determine the best 
time for n devices, we would have to check all possible 
solutions, because a good meeting time for devices 1 and 2 
might result in a very bad meeting time between devices 2 and 
3, etc. Hence, we have an exponential running time solution for 
the Spinning Problem.  

 

5.3 Algorithm for n devices 

Next, we present the algorithm for computing the best 
meeting time for n devices using the matrix generated by the 
previous algorithm. This algorithm is recursive and it has 
exponential running time. For every possible solution A (where 
A is an array of n speeds) we compute the worst case meeting 
time (compute_time function) then we find the minimum of all 
these meeting times. 

 
spin() 

{ 

  A[0]=Z-1; 

  compute(1); 

  min= ; 

  for all solutions A 

    if min>time  then 

      min=time ; 

 best_solution = A;  

  //the best worst case meeting time is min 

  // and the best solution (choice of speeds) is A 

} 

compute(int i) 

{ 

  if i<n then 

    for A[i]=A[i-1]+1 to V-n+i 



      compute(i+1); 

  else 

    for A[i]=A[i-1]+1 to V-n+i 

      time  = compute_time(A); 

} 

int compute_time(array A) 

{ 

  max=0; 

  for j=1 to n-1 

    for k=j+1 to n 

      if max<Matrix[A[j]][A[k]] then 

        max=Matrix[A[j]][A[k]] 

  return max; 

} 

 

 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented and analyzed a model for 
neighbor discovery in static wireless ad-hoc networks using 
directional antennas. We defined our variant of the problem 
and made some assumptions about our model after which we 
provided theoretical descriptions of the solutions and a simple 
algorithm. 

The solution for two devices is intuitive and quite simple. 
Even though we have presented a method to determine the 

optimal solution to the Spinning Problem for n devices, this 
method requires exponential time. The next step in solving this 
problem is proving that it is NP-Hard, or finding a polynomial 
time algorithm.  

Another approach could be to use random rotation speeds 
and compute the discovery probability or the expected meeting 
time.  
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