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Abstract—In classical routing strategies for multihop mobile
wireless networks packets are routed on a pre-defined route usu-
ally obtained by a shortest path routing protocol. In opportunistic
routing schemes, for each packet and each hop, the next relay
is found by dynamically selecting the node that captures the
packet transmission and which is the nearest to the destination.
Such a scheme allows each packet to take advantage of the
local pattern of transmissions and fadings at any slot and at
any hop. The aim of this paper is to quantify and optimize
the potential performance gains of such opportunistic routing
strategies compared with classical routing schemes. The analysis
is conducted under the following lower layer assumptions: the
Medium Access (MAC) layer is a spatial version of Aloha which
has been shown to scale well for large multihop networks; the
capture of a packet by some receiver is determined by the Signal
over Interference and Noise Ratio (SINR) experienced by the
receiver. The paper contains a detailed simulation study which
shows that such time-space opportunistic schemes very signifi-
cantly outperform classical routing schemes. It also contains a
mathematical study where we show how to optimally tune the
MAC parameters so as to minimize the average number of time
slots required to carry a typical packet from origin to destination
on long paths. We show that this optimization is independent of
network density.

Index Terms—Network design, stochastic process, simulation,
point process, stochastic geometry, optimization, transport capac-
ity, signal to interference ratio, interference, collision, multiple
access protocol, MAC layer, geographic routing, cross layer
optimization.

I. INTRODUCTION

Many studies have been carried out on routing protocols
for Mobile Ad Hoc Networks (MANETs), especially at the
Internet Engineering Task Force (IETF) in the MANET work-
ing group. The aim of these protocols is to build a route
maded up of several hops or relay nodes from every source
to every destination. Routing protocols are usually subdivided
into two classes: reactive protocols and proactive protocols. In
reactive protocols the routes are only built on demand. The
origin node wishing to obtain a route to a destination floods
the network with a request packet. When the destination node
receives the request packet, it responds to the origin node
and the path used by the request packet determines the route
from the origin to the destination node. Ad hoc On-Demand
Distance Vector (AODV) and Dynamic Source Routing (DSR)
[1], [2] are examples of such protocols. On the other hand,
proactive protocols maintain the knowledge of the network
topology through the exchange of periodic packets. In such
protocols the main issue is to reduce the control overhead.
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When a link state protocol is used, it is important to optimize
the broadcast in the network. Optimized Link-State Routing
(OLSR) and Topology Dissemination Based on Reverse-Path
Forwarding (TBRPF) [3], [4] are examples of such protocols.
With all these routing protocols, the route which is selected
between a source and a destination is usually a shortest path
route, namely the one with the smallest number of hops, and
it remains the same for all the packets of the stream.

In the present paper, we analyze yet another class of routing
strategies, called opportunistic, where the next relay can be
defined at each hop of each packet depending on the local
configuration of simultaneous transmitters and the fading or
shadowing variables at that time. These strategies imply that
we use geographical routing. Instances of such strategies have
been considered in e.g. [5], [6] and [7]. The general aim
of these opportunistic routing algorithms is to minimize the
end-to-end delay required to carry a packet from origin to
destination. This metric is more fundamental than simply the
number of hops in the route (optimized by the shortest path
route), which does not include the time which is wasted in
unsuccessful attempts to make a particular hop. The main
achievements of the present paper within this context are:

(i) a quantification of the performance gain obtained using
opportunistic strategies which are based on geographic
routing alone; our simulations show that the average end-
to-end delay from an origin to some distant destination
is at least two and a half shorter for time-space oppor-
tunistic routing than for a typical shortest path routing
(cf. Observation 4.1).

(ii) a cross-layer optimization of the MAC and routing layers
for such strategies; we proved that for long source-
destination paths, there exists an optimal tuning of that
MAC layer that minimizes the average end-to-end delay
and that this optimal tuning is the same for all values
of node density in the network (cf. Observation 4.3 and
Corollary 6.4).

The model used in this paper to address these quantitative
questions has the following features:

• it uses a spatial Aloha protocol for the MAC; Aloha [8]
along with Time Division Multiple Access (TDMA) was
one of the first protocols used in radio networks; one of
the main reasons for selecting Aloha here is that it can
be tuned in an optimal way that was proved to scale well
with node density in [6].

• it uses an SINR criterion for the capture (successful
reception) of packets; this model has an information
theoretic basis and is used in most papers on the subject,
particularly in [9].

The paper is organized as follows. Section II reviews related
work and positions the contributions of the present paper in
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this context. Section III gives details on the simulated scenar-
ios and the simulation assumptions. Section IV presents the
main observations obtained by the simulations. Some issues
related to routing on long paths are discussed in Section V. A
mathematical framework for the analysis of the opportunistic
routing is developed in Section VI.

II. STATE OF THE ART, RELATED WORK

A. Shortest Path Routing and Dijkstra’s Algorithm

Routing protocols are distributed algorithms which select
paths along which to send data for all pairs of origin and
destination nodes (O-D pairs). Usually, routing protocols send
control packets containing topology information to compute
the routes. Distance vector and link state routing [10] protocols
are the most common within this framework. In link state
protocols, each node broadcasts the list of its neighbor nodes
within the network. In wireless networks the neighborhood is
determined by the transmission range of the radio modem:
the neighbors of a node are those at a distance less than this
transmission range. Using Dijkstra’s algorithm [11], each node
running a link state routing protocol can compute the path with
the smallest number of hops (called the shortest path below)
to any other node. An instance of such a shortest path from
the origin node O to the destination node D is depicted in
Figure 1 (left).

In conventional routing protocols, when a route is estab-
lished between an origin and a destination, this route remains
the same as long as the network nodes do not move and the
links are stable.

B. Geographic Routing

In geographic routing [12], the positions of the nodes are
used to determine the route to the destination. Geographic
routing is generally proposed more to reduce the routing state
of each node than to optimize the routing path from the origin
to the destination node. However most of the proposed geo-
graphic routing protocols try to optimize geographic criteria.
Examples of such criteria can be:

a) Progress towards the destination: in the case of
a destination at infinity (say in the x axis direction), one
selects a neighbouring receiver that has the largest possible
abscissa (see Figure 1 (right)). This was the first approach
of geographical routing proposed by Takagi and Kleinrock in
1984 (see [13]); in what follows this approach will be referred
to as directional routing.

b) Distance to destination: one selects a neighbouring
receiver that is the nearest to the destination (cf [14], [15];
see Figure 1 (left)). This will be referred to as radial routing.

Geographic routing like conventional routing may be used
to establish fixed routes between an origin and a destination.
In this case the optimal (according to the above geometric
criteria) nodes are chosen within a fixed given transmission
range of the transmitter (as, for instance, in the shortest path
routing). However, the next hop can also be decided when
the packet is forwarded. In this case the optimal relays can
be selected among the nodes which are in some “dynamic”
neighborhood of the transmitters; then the routing is oppor-
tunistic in the sense that will be fully explained in the next
section.

D

O O

Fig. 1. Left: Shortest path (solid blue curve) versus radial (dashed red
curve) routing, with neighborhoods defined by discs of fixed radius (maximum
transmission range). Right: Directional routing towards infinity with the same
transmission ranges.

Fig. 2. Firs hop in time-space diversity routing which optimizes the relaying
at each time slot.

The following articles propose some form of geographical
routing: Greedy Perimeter Stateless Routing (GPSR) in [16])
Implicit Geographic Forwarding (IGF) in [5], and [7], where
the distance and the delivery ratio matrix are used to compute
the next relay towards the destination.

C. Time-Space Opportunistic Routing — Mac and Routing
Interplay

Time-space opportunistic routing is based on a dynamic
selection of the next relay which takes advantage not only
of the local topology of the network but also of the current
MAC and channel conditions.

To gain a better understanding of this idea, let us consider
a time slot where the MAC layer prescribes a given node to
transmit some tagged packet. The set of nodes which transmit
in the same slot is random (because of the random primitives in
any MAC) as is the fading from any transmitter to any receiver
(because of random scatterers and/or motion). Hence the set
of receivers which capture this tagged packet according to the
SINR condition is also random. Let us define the best relay
as the receiver of this random set which captures this tagged
packet and which optimizes some geographical criterion. For
example, in radial routing, this is the node which is the nearest
to the destination of the tagged packet (as depicted in Figure 2,
where we represent a part of the network during a time slot
with four simultaneous transmissions). This best relay will
then be in charge of forwarding the tagged packet further
whereas the other receivers of the random set will discard
it and refrain from forwarding it any further.

Note that since the set of nodes which transmit in this slot
depends on the MAC decisions, which change with time, and
on the fading variables, which may also change with time, two
tagged packets transmitted from the same given node and with
the same destination will in general use different relays.

In order to justify the use of the term ”opportunism”, let us
consider the following scenario where a tagged packet with a
given destination D is currently transmitted by the origin node
O under two routing scenarios: 1) the shortest path routing
protocol and 2) the time-space opportunistic radial one. With
1), the next relay is some fixed node A. Under 2), denote by S
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the random set of receivers which capture the tagged packet. If
A belongs to S, then in this time slot 1) will deliver the packet
no further from the destination than 2). Indeed S may contain
a node which is closer to the destination than A. If S does not
contain A, then the same conclusion obviously holds since 1)
leaves the packet at O and S may contain some node closer
to the destination than O. In fact, it may even contain a node
closer to the destination than A due to good fading conditions,
a situation where opportunism pays off quite substantially. The
fact that 2) does better in this time slot than 1) does not of
course imply that 2) does better globally on the whole route to
the destination. The main aim of the paper is actually to clarify
this question and to optimize the global performance of 2).

The implementability of time-space opportunistic routing is
discussed in [6] and [5] under the assumption that all nodes
have access to a positioning system such as Global Positioning
System (GPS). More complete treatment of this problem can
be found in [17].

D. Survey of the Field and Position of our Contributions

References [5] and [6] seem to be the first where geographic
routing has been used in combination with a MAC protocol to
provide such a time-space opportunistic routing. Both papers
concentrate on directional routing. Reference [7] also uses the
idea of opportunistic routing but there are several important
differences with respect to the present paper: a) the packets
are sent in batches rather than one by one; b) a mixture
of geographic and shortest path routings is actually used:
directional routing is used far away from the destination and
a shortest path mechanism is used for the termination of
the routing algorithm close to the destination. Both protocols
presented in [5] and [7] use an 802.11 as the MAC access
solution. In contrast, the present article uses an Aloha scheme
as in [6].

The present paper continues the performance analysis of
time-space opportunistic routing that can be found in [6], [12]
and [7]. To the best of the authors knowledge, the simulation
study of the present paper (Section IV) is the first to address
the comparison of a purely geographic routing scheme (radial
routing) with shortest path schemes, whereas the simulations
of [7] focused on a comparison of the mixed routing scheme
proposed there with shortest path routing protocols. It is also
the first to address this comparison issue under various radio
channel assumptions (e.g. with or without slow or fast fading).
Last but not least, it is the first to address the optimal tuning
of the MAC parameters within this multihop routing context.

The mathematical framework for the study of the oppor-
tunistic routing that is presented in Section VI allows us
to formalize our simulation observations. In particular, using
this framework we will explain why the tuning of the MAC
Aloha parameter that minimizes end-to-end delays over large
distances is independent of node density. This is in line with
observations made in [6], where it was shown that a lower
bound on the mean progress in one hop is independent of the
node density in the Poisson model.

III. SIMULATION SCENARIOS

A. Time-Space Node Patterns generated by Aloha MAC

We consider networks formed of nodes randomly distributed
on the plane. Specifically, nodes are assumed to be sampled

according to some homogeneous Poisson point process with
intensity λ. In practice, the network model considers a finite
planar network on the square [0, 1000] m ×[0, 1000] m. The
locations of the nodes do not change with time slots, but
mobility is taken into account in the radio channel model (see
model M3 in Section III-B below). In our simulations, the
default option is λ = 10−3 nodes /m2.

Various routing strategies will be combined with the fol-
lowing slotted Aloha scheme: at each time slot, each node
tosses a coin with bias p, independently of everything else.
The nodes tossing heads are the transmitters of this time slot;
the other nodes are the receivers.In the following, we call p
the transmission probability.

B. Radio Channel

The power used by all the transmitters is assumed to be
equal to some constant S = 1. We use the following simplified
power attenuation function l(r) = (Ar)−β for some constants
A > 0 and β > 2, which gives the fraction of the emitted
power that is received at the distance r from the transmitter.
Even if this function has a pole at the origin, it is reasonable
and commonly used if the density λ of points is not too large
or, equivalently, the points are not to close to each other. In
the simulations, we take a path-loss exponent β = 3.

In certain models, in addition to the above attenuation
function, we assume that the received powers are multiplica-
tively modified by some location and possibly time dependent
random path-loss factors. The following 3 scenarios will be
considered.

(M1): Path loss factors are constant equal to 1. This
assumption might correspond to a very slow channel fading
and/or coding which allows for empirical averaging over fad-
ing effects during packet transmission (e.g. based on symbol
interleaving).

(M2): Path loss factors are position dependent; they
are sampled independently for each transmitter-receiver pair
and stay constant for all time slots of the simulation. This
corresponds to a slow fading or shadowing effect.

(M3): Path loss factors are position and time dependent;
they are sampled independently for each time slot and each
transmitter-receiver pair. This might correspond to user mo-
bility and will be the default option in the simulations below.

For models M2 and M3, we assume a Rayleigh fading,
where path-loss factors are exponential random variables with
parameter 1 (see e.g. [18, p. 50 and 501]). In Section VI
we also consider a thermal noise independent of everything
else with power denoted by W . In the simulations, the default
option is W = 0.

C. Capture

Suppose that some station transmits during a given time
slot. We assume that it can successfully transmit to some given
receiver of this time slot if the SINR ratio at this receiver is not
less than some fixed threshold T . By the SINR we mean the
ratio between the power received from the given transmitter
(attenuated and modified by the path-loss factor) and the sum
of powers received from all other transmitters of the given
time slot, including the power W of the thermal noise. In the
simulations, we set T = 10.
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Fig. 3. Left: Samples of routing paths with opportunistic radial routing (with
and without fading) and with a shortest path algorithm. Right: When radial
and directional schemes diverge.

D. O-D Pairs and Background Traffic

In the simulations O-D pairs are selected on opposite parts
of the network as shown in Figure 3 (left) with a distance of
about 1130 m from each other. This represents a moderate
distance (appr. 9 hops away for a transmission range of
140 m.).

For a fixed O-D pair, and for a given set of network
nodes sampled according to a Poisson point process, a basic
simulation experiment is the end-to end transmission of one
packet of the tagged O-D pair flow, with a tracking of the route
selected for this packet, the transmission attempts at each relay
node, the end-to-end delay. For the sake of simplicity, in the
simulations:

• the tagged packets of the O-D pair are treated as higher
priority packets at each node. (We should of course
add a queueing delay to account for the competition
with cross traffic, but under natural homogeneous traffic
assumptions, this should amount to adding a delay with
the same law at each node, and should hence not change
the main conclusions of the comparison study.);

• all nodes are assumed to always have packets to transmit,
and they always transmit whenever authorized by the
MAC; these transmissions allow us to take the back-
ground traffic into account through the interference they
create at each time slot, and in turn, determine which
nodes capture the tagged packet transmission.

We repeat a large number of such basic experiments to evaluate
means. We consider both packets sent from O to D for the
same and for different network samples.

E. Routing

This section presents three routing strategies.
1) Shortest Path Routing: By this we understand routing

along the routes with the least number of hops as found
by Dijkstra’s algorithm [11]. For each given network, this
amounts to finding paths of minimal weight between O and
D in a graph with edges between all pairs of nodes and
where the weight of the edge between nodes x and y is 1
if |x − y| ≤ R and ∞ otherwise, where R is the maximum
transmission range and is considered as a parameter of
this routing protocol. This shortest path is used for routing
all packets of this O-D pair. The Aloha MAC is then used
to let the tagged packets progress from O to D along this path.

2) Time-space Opportunistic Radial Routing: The
algorithms should be described together with the MAC.
Consider a tagged packet of the O-D pair flow located at
some current node A.
Until A is the destination do:

1. Until A tosses heads, end-to-end delay++;
2. When A tosses heads do:

2.1. All the nodes which toss heads
(resp. tail) at this time slot are
transmitters (resp. receivers);

2.2. The set of transmitters together
with the fading variables at that
time slot determine the interference
everywhere at this time slot;

2.3. The set of receivers S which satisfy
the SINR capture condition at this
time slot receive the tagged packet
successfully;

2.4. Among the nodes of S ∪ {A}, the
nearest to the destination, say B,
is the next relay;

2.5. The other nodes of S discard the
tagged packet;

2.6. end-to-end delay++;
2.7. if A 6= B then number-of-hops++;

3. A := B.

A more formal description of this routing protocol, as well
as a proof of its convergence, is presented in Section VI.
Three examples of radial paths obtained by simulation are
given in Figure 3 (left). The path that is the closest to the
segment joining the origin to the destination node is obtained
with a shortest path routing algorithm. The second path
moving farther away from this segment corresponds to the
time-space opportunistic radial routing strategy under the M1
model. The third path, which allows one to search for relays
very far away from the transmitter corresponds to time-space
opportunistic radial routing in the presence of fading (here
under the M3 assumptions).

3) Time-space Opportunistic Directional Routing: This is
some routing from a given origin node to a destination at
infinity in a given direction. It consists in a non-terminating
do loop of the same nature as above but with 2.4 replaced by:
2.4’ Among the nodes of S ∪ {A}, the one

with the largest abscissa in the given
direction, say B, is the next relay;

Note that directional routing never delivers a packet to the
destination because this destination is at infinity.5 However,
it is a suitable mathematical model for opportunistic radial
packet forwarding between O-D pairs that are separated by
a great distance. Indeed, when the remaining distance to the
destination is large, then the optimal receiver for the radial path
and that for the directional path (see steps 2.4 and 2.4’)
tend to coincide (cf Figure 3 right).

Since radial routing is the only opportunistic one which
delivers the packet to its destination, in what follows when
commenting on our simulations, if there is no ambiguity, we
will use the term opportunistic routing for radial routing.

5If one wants to consider the directional routing that delivers the packet to a
(finite) destination D, then the “given direction” in step 2.4’ should
be modified at each location of the packet in such a way that it always points
towards D. Such a routing algorithm may however lead to some oscillations
when the packet is close to the destination, and seems to offer no advantages
with respect to the radial algorithm. Thus we prefer to consider it only as a
mathematical model with D at infinity.
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F. Performance Characteristics

For a given tagged packet of the O-D pair and a given
network of nodes we consider:

• the end-to-end delay, defined as the number of time slots
it takes for this packet to go from O to D,

• the number of hops made by this packet from O to D,
• the average local delay (delay per hop) defined as the

ratio end-to-end-delay/number of hops.

G. Averaging and Confidence Intervals

In order to calculate the means of the above performance
characteristics, we average over 80 different networks connect-
ing a given O-D pair and for each network we average over
5 packets for the O-D pair. The results are always presented
with confidence intervals corresponding to a confidence level
of 95%. Note that some of these confidence intervals are small
and can only be seen when zooming in on the corresponding
plots.

IV. SIMULATION RESULTS

A. Mean End to End Delay

For shortest path routing, the maximum transmission range
parameter R (recall from Section III-E1 that this is a parameter
of Dijkstra’s algorithm) has first been optimized in order to
make the comparison fair. The end-to-end delays for various
values of R and of the transmission probability p are presented
in Figure 4. We see that the best delay is obtained with p =
0.003 and with R = 140 m. This value, which is our default
value for shortest path routing in what follows, is actually the
smallest value of the transmission range which connects the
network with high probability in this case.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016  0.018  0.02

D
el

ay

Transmission probability

time-space opportunistic radial routing, model M1
time-space opportunistic radial routing, model M2
time-space opportunistic radial routing, model M3

Fig. 6. Effect of fading on time-space opportunistic radial routing: end-to-end
delay versus transmission probability p.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0.005  0.01  0.015  0.02  0.025  0.03

D
el

ay

Transmission probability

time-space opportunistic routing, model M3 \lambda=0.0005
                                          \lambda=0.001   
                                           \lambda=0.015 
                                          \lambda=0.002  

Fig. 7. Time-space opportunistic radial routing; end-to-end delay versus p

for various values of the node density.

In Figure 5, we compare the shortest path algorithm and
the time-space opportunistic routing. In this figure we give
the mean end-to-end delay versus the transmission probability
p under different channel fading scenarios. Here is the main
observation of the paper.

Observation 4.1: The algorithm based on time-space diver-
sity significantly outperforms the conventional shortest path
routing strategy: the average delay of a packet is at least two
and a half times smaller for this strategy than for Dijkstra’s
algorithm.
We also see that the discrepancy between the conventional
shortest path routing strategy and time-space opportunistic
routing becomes much larger for a large p. Moreover, the
performance of the opportunistic routing is much less sensitive
to a suboptimal choice of the parameter p.

Figure 6, which refines Figure 5 for opportunistic routing
strategies, shows that:

Observation 4.2: Letting time-space opportunistic routing
take advantage of the varying fading (e.g. due to mobility) is
beneficial in terms of mean end-to-end delays.
The analysis of the simulation results shows that opportunistic
routing in presence of fading (M2 and M3) offer performances
roughly four times better in terms of end-to-end delay than
opportunistic routing in absence of fading (M1), see Figure 6.
The opportunistic routing in slow fading (M2) or in fast fading
(M3) offer similar performances. Only very long simulations
not presented here allow one to show that opportunistic routing
in M3 shows slightly better delays than in M2.

Here is the second most important observation of this paper.
Figure 7, which plots the mean end-to-end delay for the M3
time-space opportunistic routing, shows that:

Observation 4.3: There is an optimal value of p that mini-
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mizes the mean end-to-end delay of the time-space opportunis-
tic routing algorithm, and that this optimal value p∗ seems to
be the same for all values of the node density λ.
Similar observations (not presented here) hold for the M1–M2
models described in Section III-B.

In Figure 8 we see that :
Observation 4.4: The mean end-to-end delay of the time-

space opportunistic routing algorithm is of the order of
√
λ

where λ is the node density.
The matching is excellent for opportunistic routing in M3 (and
in M2 although it is not shown in Figure 8), for opportunistic
routing in M1 there is rough matching. The discrepancy seen
for small λ may be caused by side effects.

B. Mean Number of Hops, Mean Local Delays

Figure 9 gives the average number of hops to reach the
destination for the two routing strategies with p varying from
0.001 to 0.02.

Observation 4.5: In the case without fading M1, for small
values of p, the time-space opportunistic path is shorter (has a
smaller mean number of hops) than the Dijkstra shortest path,
whereas it is longer for large values of p. In the presence of
fading, time-space opportunistic routing offers shorter paths
than Dijkstra type routing for p ≤ 0.014 and slightly larger
paths than Dijkstra type routing for p > 0.014.

We also observe that for time-space opportunistic routing,
the mean number of hops to reach the destination increases
with p. This can be easily understood since when p increases,
the time-space diversity decreases and thus the number of hops
to reach the destination tends to increase.
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Figure 10 studies the mean local delay for the same three
scenarios as above.

Observation 4.6: In time-space opportunistic routing, for
each p, the mean delay per hop is much smaller than the
delay per hop for Dijkstra’s algorithm.
This explains why the average delay is smaller for time-space
opportunistic routing than for Dijkstra’s algorithm even if the
number of hops may be larger.

V. MINIMIZING END-TO-END DELAY FOR LONG PATHS

The aim of this section is to explain Observation 4.3, namely
that (and in what sense) there is an optimal value p∗ that min-
imizes the mean end-to-end delay of the opportunistic routing
for all values of the node density λ. In our explanation we will
use the directional routing model introduced in Section III-E3.

A path can be seen as a sequence of progress segments
ξk for the tagged packet, where the k-th segment is that
connecting the location of the packet at the k-th time slot to its
location at the k + 1-st slot. The k-th segment is degenerate
and reduces to a point if the node harboring this packet at
slot k does not transmit at this time slot or transmits without
capture by a node closer to the destination.

Let us define the progress Pk of a given progress segment
ξk as the length of the projections of ξk on the O-D pair
direction. Note that for a given O-D pair and a given network
of nodes O-D distance =

∑end-to-end delay
k=1 Pk. Dividing both

sides of this equality by the end-to-end delay, we obtain

O-D distance
end-to-end delay

=
1

end-to-end delay

end-to-end delay
∑

k=1

Pk .

Suppose now that

1

end-to-end delay

end-to-end delay
∑

k=1

Pk
for long radial paths−→ P , (5.1)

where P is the same constant for all Poisson configurations
of nodes and all paths. Then, for long paths and all Poisson
configurations of nodes O-D distance

end-to-end delay ≈ P , and finding the
probability p∗ that minimizes the end-to-end delay for such
paths is equivalent to maximizing the constant P .

Conjecture (5.1) is clearly related to the ergodicity of the
sequence {ξk} of segments. Note however that for a fixed O-D
pair, the radial routing algorithm delivers the packet to D in
a finite number of time slots so that the sequence of progress
segments ξk becomes degenerate after this time. Even before
this time, when the remaining distance to the destination is



small, the progress segments statistically differ from those
close to the origin. Consequently, for radial routing, there is no
hope of having any stationarity or ergodicity for the sequence
of progress segments.

In contrast, directional paths can be expected to have
progress segments which become stationary and ergodic. Thus,
Observation 4.3 could be explained by the following three
properties.

1) Radial and directional routing coincide far from the
destination: (cf Figure 3 right).

2) Directional routing produces progress segments which
converge to a stationary and ergodic sequence: their
Cesaro averages over long paths converge to the mean
values of the progress in one slot P under the steady
state regime of the path.

3) The maximization of the constant P in p is invariant
with respect to the intensity of the underlying Poisson
point process.

In the next section we will present a mathematical framework,
in which these properties can be studied. In particular, we will
formalize property 1) and prove property 3). The ergodicity
property 2) remains a conjecture at this stage.

VI. MATHEMATICAL ANALYSIS

In this section we will study time-space radial and di-
rectional routing using the formalism of the theory of point
processes.

A. The Model

Let Φ = {Xi}i be a homogeneous Poisson point process,
with points Xi ∈ R

2 representing the locations of nodes
on the Euclidean plane. We denote by λ the intensity of Φ.
We will consider two independent sequences {ei}i, {Fi}i of
independent marks of the points of Φ.

For all i, let ei = {en
i }n be a sequence of independent

and identically distributed (i.i.d.) Bernoulli random variables,
where en

i represents the transmission indicator of node i at
time n, or equivalently the fact that this node tosses heads at
time n. We assume that P{ e = 1 } = 1 − P{ e = 0 } = p,
where e is the generic transmission indicator.

For all i, let Fi = {Fn
i,j}j,n be a family of random vectors,

where Fn
i,j represents the fading between nodes i and j at time

n. We assume that for each n, the variables {Fn
i,j}i,j are i.i.d.

with the same law as a generic variable denoted by F having,
if not otherwise specified, a general non-negative distribution
with mean 1. For different n the variables Fn

i,j need not be
independent. We will consider the following 3 scenarios:

(M1) Fn
i,j ≡ 1 for all i, j, n,

(M2) Fn
i,j = F 0

i,j for all i, j, n,
(M3) Fn

i,j are i.i.d. for all i, j, n.

Let W > 0 be a given random variable representing the
thermal noise which is assumed to be independent of Φ.
Denote by l(r) = (Ar)−β the attenuation at distance r. Let S
denote the (fixed) power used by transmitters.

Let Φn
1 = {Xi : en

i = 1} denote the point process of
transmitters at slot n and Φn

0 = {Xi : en
i = 0} that of

receivers. Suppose that a transmitter is located at Xi ∈ Φn
1 .

Consider a receiver located at Xj ∈ Φn
0 . Transmitter Xi can

establish a successful channel to receiver Xj if and only if

SFn
i,j l(|Xi −Xj |)

W + IΦn
1
\{Xi}(Xj)

≥ T , (6.1)

where IΦn
1
\{Xi} is the shot-noise process of Φn

1 \ {Xi}:

IΦn
1
\{Xi}(Xj) =

∑

Xk∈Φn
1
\{Xi}

SFn
k,j l(|Xk −Xj |).

Let δ(Xi, Xj , n) be the indicator that the event (6.1) holds.
When restricted to a bounded window, with W ≡ 0 and

exponential F in M2 and M3, the above model corresponds
to the simulation scenarios described in Section III.

B. Opportunistic Neighbourhood

Define the set of neighbors of Xi ∈ Φ at time n as {Xi}
plus the set of receivers which capture the packet sent by Xi

at time n provided Xi transmits:

V (Xi, n)

= {Xi} ∪
{

{Φn
0 ∋ Xj : δ(Xi, Xj, n) = 1} ifXi ∈ Φn

1

∅ otherwise.

Remark: The above SINR-based notion of neighborhood is
quite different from this based on the maximum transmission
range (used for the shortest path routing in Section IV). Be-
sides the fact that the neighborhood of a given node is different
in different time slots (even in M1 scenario), using (6.1) one
can prove (cf [19]) that no receiver at a given time slot can be
a neighbour of more than (1+T )/T transmitters. In particular,
if T > 1 then different emitters, no matter how close to each
other they are, have disjoint sets of neighbors.

We will now show that the opportunistic neighbourhood
is always finite (it is important, both form practical and
theoretical point of view) and then calculate the mean number
of nodes in some particular case. Note that the assumptions
of the following result are satisfied for all considered scenario
M1–M3.

Proposition 6.1: Assume that E[F 2/β] <∞ and that either
E[F−2/β] < ∞ or E[W−2/β] < ∞. Than for any of the
models M1–M3 P{#V (Xi, n) = ∞ for some i, n } = 0.

Proof: By the Campbell formula [20, page 119], it is
enough to prove that E

0[#V (0, n)] < ∞ for fixed n, where
the expectation E

0 is taken with respect to the Palm probability
P

0. In the case of our independently marked Poisson point
process it corresponds to the addition of a node at the origin
X0 = 0 endowed with an independent MAC sequence e0 and
fading sequence F0 (see Slivnyak’s theorem, [20, page 41]).
In what follows we consider time n = 0 and omit it in the
notation. Using the Campbell theorem for the second time
and the fact that Φ1 and Φ0 are independent Poisson point
processes with respective intensities λp and λ(1−p), we have

E
0[#V (0)]

= 1 + E
0

[

1I(e0 = 1)
∑

i6=0

1I(Xi ∈ V (0))

]

= 1 + pλ(1 − p)

∫

R2

E
0,x[δ(0, x)|e0 = 1, ex = 0] dx , (6.2)

where the expectation E
0,x is taken with respect to the two-

fold Palm probability P
0,x, which in our case corresponds



to the addition of two nodes, at X0 = 0 and at X = x,
endowed with independent MAC and fading sequences e0, ex,
F0,Fx. Noting that under P

0,x given e0 = 1, ex = 0 the
variable IΦ1\{0}(x) has the same distribution as IΦ1

(0) under
the stationary distribution P, and passing to polar coordinates,
we get from Fubini’s theorem that

∫

R2

E
0,x[δ(0, x)|e0 = 1, ex = 0] dx

= E

[
∫

R2

1I

(

A|x| ≤ T
W + IΦ1

(x)

SF0,x

)−1/β

dx

]

=
2π

A
E

[
∫ ∞

0

r1I

(

r ≤ T
W + IΦ1

(0)

SF

)−1/β

dr

]

,

where F is independent of W and IΦ1
(0). Consequently, we

obtain

E
0[#V (0)] = 1+

p(1 − p)λπ

AT 2/β
E[(SF )2/β ]E[(W+IΦ1

(0))−2/β ] .

Since we assume E[F 2/β ] <∞ thus the right hand side in the
above displayed formula is finite provided E[W−2/β ] < ∞.
If this latter condition does not hold, in particular if W = 0
with some positive probability, we need to prove finiteness of
the same negative moment of the shot-noise. For this one can
proceed as follows:

E[(IΦ1
(0))−2/β ] ≤ E[(SF )−2/β ]E[( max

Xi∈Φ1

l(|Xi|))−2/β ] .

We assume E[F−2/β ] <∞ and for our particular attenuation
function,

E[( max
Xi∈Φ1

l(|Xi|))−2/β ] =

∫ ∞

0

P{ max
Xi∈Φ1

l(|Xi|) ≤ r−β/2 } dr

=

∫ ∞

0

P{ min
Xi∈Φ1

|Xi| ≥
√
r/A } dr

=

∫ ∞

0

e−πλpr/A2

dr =
A2

πλp
<∞ .

which completes the proof.
Remark: For exponential F in models M2–M3, the expected
number of neighbors E

0[#V (0)] can be calculated explicitly.
Indeed, the expectation E

0,x[. . . ] in (6.2) is equal to

E
0,x[δ(0, x)|e0 = 1, ex = 0]

= E

[

exp

(

− TW

Sl(|x|)

)]

E

[

exp

(

−TIΦ1
(x)

Sl(|x|)

)]

= ψW (T/Sl(|x|))ψIΦ1
(T/Sl(|x|)) ,

where ψW , ψIΦ(·) are, respectively, the Laplace transforms of
W and IΦ = IΦ(0). This last function is known in closed
from. In particular, for W ≡ 0 we obtain the following
formula:

E
0[#V (0)] = 1 +

(1 − p)β

4πT 2/βΓ(2/β)Γ(1 − 2/β)
,

where Γ(z) =
∫ ∞
0 tz−1e−t dt is the Gamma function, as is

easily shown by calculations similar to those in [6], Sec-
tion III.

C. Opportunistic Routing

A point map is a mapping which, for a given realization of
the point process Φ, maps each of its points Xi ∈ Φ to some
(possibly the same) point of Φ.

1) Next Relay in Radial Routing: Define the following
family of point maps: for n ≥ 0

An(Xi) = An(Xi,Φ) = arg min{|Xj | : Xj ∈ V (Xi, n)} .
The above point maps are almost surely well defined due to
the well known fact that the probability of finding two or more
points of the homogeneous Poisson point process equidistant
to the origin is equal to 0. They represent the motion of
a packet from Xi at time n to An(Xi) in the time-space
opportunistic radial routing towards the final destination at
the origin 0 of the plane.

In order to describe the route a packet makes form a given
point X ∈ R

2 of the plane to the origin 0 lets add these
points to the stationary configuration of nodes and denote
Φ0,X = Φ ∪ {0, X}. Recall that Φ0,X represents the distribu-
tion of nodes under two-fold Palm distribution P

0,X . Denote
by e0, eX ,F0,FX the MAC and fading marks of nodes at
0 and X under Φ0,X . In the case of independently marked
Poisson point process they are independent of everything else
and have the respective generic distributions.

The radial (time-space opportunistic) path of a packet from
the source node X at time 0 towards the destination node at the
origin 0 of the plane is the sequence of visited nodes {Yn}n

defined by:

Y0 = X, Yn+1 = An(Yn,Φ
X,0) for n ≥ 0 .

2) Convergence of the Radial Routing: We will say that the
time-space opportunistic radial routing algorithm converges if
its path is such that Yn ≡ 0 after some finite n. The following
result says that in the presence of the external noise, the
(varying) fading is beneficial for the convergence.

Proposition 6.2: Assume that either (i) W ≡ 0 or (ii) M3
holds with F having unbounded support (i.e., B(s) = Pr{F >
s} > 0 for all s). Then the time-space opportunistic radial
routing algorithm converges almost surely under P

0,X .
Proof: The convention that Xi ∈ V (Xi, n) implies that

no node of norm larger than |Yn| will ever be selected as the
next relay. Hence, for all n, |Yn+1| ≤ |Yn|. In order to prove
convergence, it is hence enough to show that the probability
that Yn+k = Yn for all k ≥ 1 and for some n is 0 when Yn 6=
0. Assume M3 holds. Denote by G the σ-algebra generated by
Φ. Conditionally on G and on the event Yn = Xi 6= 0 for a
given Xi ∈ Φ ∪ {X}, we have

P
0,X

{

Yn = Yn+1 = . . . = Yn+k

∣

∣

∣
G, Yn = Xi 6= 0

}

=

k−1
∏

i=0

P
0,X{ Yn+i = Yn+i+1 | G, Yn+i = Xi 6= 0 }

=
(

P
0,X{ Yn = Yn+1 | G, Yn = Xi 6= 0 }

)k

so that it is enough to prove that

P
0,X{ Yn+1 = Yn | G, Yn = Xi 6= 0 } < 1

to conclude the proof. But we have

P
0,X{ |Yn+1| < |Yn| | G, Yn = Xi 6= 0 }
≥ P

0,X{An(Xi,Φ) = 0 | G }

= p(1 − p)P0,X

{

SFn
i,0l(|Xi|)

W + IΦn
1
\{Xi}(0)

≥ T

∣

∣

∣
G, en

i = 1, en
0 = 0

}

.



Since Fn
i,0 is independent of IΦn

1
\{Xi}(0) and W , the proba-

bility P
0,X{. . .} in the last formula can be expressed as

E
0,X

[

B

(

T (W + IΦn
1
\{Xi}(0))

Sl(|Xi|)

)

| G, en
i = 1, en

0 = 0

]

and is positive by the assumption B(s) > 0 and the fact that
IΦn

1
\{Xi}(0) <∞ a.s. as a Poisson shot-noise. This concludes

the proof of case (ii).
Consider now the case (i) W ≡ 0. Let H denote the σ-

algebra generated by Φ and the fading variables (under M1 or
M2, these variables do not vary over time). Using the same
argument as before it is enough to prove that

P
0,X{ Yn+1 = Yn |H, Yn = Xi 6= 0 } < 1 .

And we have

P
0,X{ |Yn+1| < |Yn| | H, Yn = Xi 6= 0 }
≥ P

0,X{An(Xi,Φ) = 0 | H }

= P
0,X

{

SFi,0l(|Xi|)
IΦn

1
\{Xi}(0)

≥ T, en
i = 1, en

0 = 0
∣

∣

∣
H

}

= p(1 − p)P0,X

{

IΦn
1
\{Xi}(0) ≤ SFi,0l(|Xi|)

T
∣

∣

∣
H, en

i = 1, en
0 = 0

}

.

The proof then follows from the fact that the H-conditional
law of the Poisson shot-noise process IΦn

1
\{Xi}(0) puts a

positive mass on the interval [0, z] for all positive z.
Remark: Note that result of Proposition 6.2 cannot be
immediately concluded from the fact that at any time and
current location of the packet there is a positive probability
of delivering it directly to the destination. In fact, our routing
protocol is not allowed to wait for such an event. We remark
also, that under M1 and M2 with W > 0, the is a non-negative
probability that the packet is trapped forever at some isolated
node.

3) Directional Path: In order to study the routing on long
OD distances it is customary to introduce another point map.
Denote by 〈x, y〉 the scalar product in R

2 and for a given unit
vector (think of a “direction”) d ∈ R

2, |d| = 1, define

An
d (Xi) = arg max{〈Xj , d〉 : Xj ∈ V (Xi, n)} .

It is well known that the probability of finding two or more
points of a homogeneous Poisson point process on a line with
a given direction is equal to 0. Moreover, under assumptions
of Proposition 6.1 the point maps An

d are well defined.
Consider ΦX = Φ∪{X} and let the node at X be marked by

an independent MAC sequence eX and fading sequence FX .
The d-directional path followed by a packet routed from X
in the direction d by the time-space opportunistic directional
routing algorithm is the sequence {Zn = Zn(X)}n≥0 defined
by

Z0 = X, Zn+1 = An
d (Zn,Φ

X) for n ≥ 0 .

The reason for which we introduce the directional roting
is that the radial paths should converge to these of the
directional one when the distance between the origin and the
destination grows to infinity. This property can be formalized
in the following way: The finite-dimensional distributions of
the sequence {Yn(X) − X}n under P

0,X converge weakly

to those of {Zn(0)} under P
0 when |X | → ∞ such that

−X/|X | = d. Roughly speaking this result is due to the fact
that the optimal choices in “arg min” in A and “arg max”
in Ad coincide with high probability when the packet is far
from the destination. A formal proof that could follow the
lines of [21, Lemma 1,Theorem 1], is omitted due to space
constraints. The directional routing reveals interesting scaling
properties.

D. Scaling Properties of the Directional Paths

In connection with Observation 4.4, we prove the following
result where P

0 = P
0
λ denotes the probability measure under

which the underlying Poisson point process Φ has intensity λ.
Proposition 6.3: Assume that W ≡ 0 and E[F2/β] < ∞,

E[F−2/β] <∞ so as directional path {Zn} to be well defined.
Then for any of the models M1–M3, the law of the sequence
{Zn = Zn(0)}n under P

0
λ is the same as that of {Zn/

√
λ}n

under P
0
1.

Proof: Note that the distribution of the underlying Poisson
point process Φ = {Xi)}i under P

0
λ is the same as the

distribution of Φ(λ) = {(Xi/
√
λ)}i under P

0
1. Moreover,

under our assumptions on l and W = 0, the SINR (in fact
SIR) is invariant with respect to the scaling Φ(λ) of the point
process. Indeed, l(|Xi/

√
λ−Xj/

√
λ|) = λβ/2l(|Xi−Xj|) and

IΦn
1
(λ)\{Xi/

√
λ}(Xj/

√
λ) = λβ/2IΦn

1
\{Xi}(Xj). Moreover,

the dilation (our scaling) is a conformal mapping (preserves
angles). Consequently, the directional point map An

d (Xi/
√
λ)

acting on Φ0(λ) is equal to 1/
√
λAn

d (Xi) acting on Φ0
1. This

completes the proof.
For fixed n, consider now the optimization of the mean

progress of the directional path in n hops with respect to the
transmission probability p:

p∗(n, λ) = arg max
0≤p≤1

E
0
λ[〈Zn, d〉].

The following corollary is a simple consequence of Proposi-
tion 6.3 (cf Observation 4.3).

Corollary 6.4: Under the assumptions of Proposition 6.3
the optimal transmission probability p∗(n, λ) = p∗(n) does
not depend on λ.
Similarly, conjecturing the ergodicity property of the incre-
ments of {Zn} under the assumptions of Proposition 6.3 the
transmission probability p∗ that optimizes the ergodic mean
progress P of the directional routing in one hop does not
depend on λ.

E. Other Point Maps and their Optimal Transmission Proba-
bilities

Several other point maps can be used or were already used
for routing. Rephrased with the terminology of the present
paper, the authors of [6] used the following directional point
map:

Ãd(Xi) = arg max
Xj∈Φ0

{〈Xj −Xi, d〉p|Xj−Xi|} , (6.3)

where p|x| = E
0,x[δ(0, x)|ex = 0, e0 = 1] is the probability

of successful transmission from 0 to x. Note that this point
map is less adaptive (more parametric) than Ad as it does
not take advantage of the actual state of the SINR conditions
at the receivers but only of their distance to the emitter;



the indicator of successful reception is replaced there by the
reception probability at a given location.

The distribution function of the associated progress in one
hop: P̃1 = maxXj∈Φ0

{〈Xj , d〉p|Xj |} was calculated under P
0

under conditions which can be rephrased as:
(M4) Fn

i,j = Fn
i for all i, j, n and Fn

i are i.i.d. exponential
with mean 1.

Under these conditions it was shown that the mean progress
E

0[P1] offered in one time slot by the directional routing Ad

is not smaller than E
0[P̃1] offered by Ãd. Moreover, E

0[P̃1]
was shown to scale like 1/

√
λ and to be maximized by a

value of the transmission probability p̃∗ ≈ 0.05. It was argued
in [6] that such a one-hop optimization of Ãd is sufficient if the
locations of nodes are independently re-sampled in each time
slot. This last scenario is similar in its spirit to the Poisson
Weighted Infinite Tree model of [22], and was argued to be
reasonable if nodes are highly mobile; this model is easier to
analyze as the successive hops of the routing become i.i.d.
(thus ergodicity is granted). In consequence, in this “highly
mobile” scenario the optimization of the mean progress E

0[P̃1]
in one slot minimizes the mean end-to-end delay over a long
multi-hop radial path.

For the setting of Section IV, the optimal transmission
probability is p∗ ≈ 0.014 for M1 and p∗ ≈ 0.018 for M2
and M3. These optimal values slightly differ from the optimal
transmission probability p̃∗ ≈ 0.05 obtained in [6] for M4
with the same parameter setting (β = 3,W = 0, T = 10).
The discrepancy can be explained by the differences alluded
to above: a less adaptive point map Ãd and different radio
channel assumptions.

VII. CONCLUSION

We have used simulations to show that time-space oppor-
tunistic routing schemes significantly improve the performance
of multi-hop networks compared to conventional shortest path
routing algorithms. The gain in terms of average delay incurred
by a packet traveling from a source to a distant destination
node is at least 2.5 depending on the actual network parame-
ters. The performance of the opportunistic routing is much less
sensitive to a suboptimal choice of the parameter p. Moreover,
we argue that an optimal tuning of the MAP p of the Aloha
MAC may be independent of node density.

We have also proposed a new mathematical framework
to prove some of the observations made by simulation. In
particular, this framework allowed us to prove that these
routing algorithms can be optimized so as to minimize the
average end-to-end delay incurred by a packet over long paths
and that the optimum transmission probability does not depend
on the node density in the random homogeneous case. The
potential of this mathematical framework is well illustrated
by the fact that the scaling property of Proposition 6.3 and
the invariance property of Corollary 6.4 remain true for more
general scenarios, e.g. when the routing is defined by more
general classes of point maps.

Various challenging problems remain open. On the practical
side, we would quote in particular the evaluation of the
overhead associated with such schemes. The simulation study
also lead to several conjectures. The ergodicity of the point
maps introduced in connection with these routing algorithms
is probably the most interesting open mathematical problem
of the paper.
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