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Abstract—We take a top-down approach of formulating the
rate control problem, over a collection tree, in a wireless sensor
network as a generic convex optimization problem and propose
a distributed back pressure algorithm using Lyapunov drift
based optimization techniques. Primarily, we show that existing
theoretical results in the field of stochastic network optimization
can be directly applied to a CSMA based wireless sensor network
using our novel receiver capacity model. We back this claim
by implementing our algorithm on the Tmote sky class devices.
Our experimental evaluation on a 5 node testbed shows that the
empirically observed rate allocation on a real sensor network
testbed that uses our back pressure algorithm is close to the
analytically predicted values, justifying our claims.

I. INTRODUCTION

In recent years, the literature on wireless networks has been
enriched by several theoretical results that have developed
new mathematical frameworks for design of optimal cross-
layer protocols [2]. A particularly appealing stochastic network
optimization approach that yields simple distributed algorithms
for dynamic scenarios is based on the use of Lyapunov
drifts [4].

The Lyapunov drift based techniques described in [4]
provide for distributed rate control based purely on local
observations of neighborhood queues. They guarantee the
stability of the system and also provide mechanisms to achieve
optimization with respect to given utility functions. While
attractive on theoretical grounds, to our knowledge these
techniques have yet to be implemented in real wireless net-
works 1. One reason it has not been easy to translate the
Lyapunov drift methodology from theory to practice is that
it has been primarily developed under the assumption of a
time-slotted system, implying a TDMA MAC. TDMA-based
wireless networks are generally harder to implement due to the
challenges associated with time-synchronization, particularly
across multiple-hops.

Our primary contribution in this work is to show that rate
control algorithms based on the Lyapunov drift framework
can be built over asynchronous CSMA-based MAC protocols.
Specifically, for a wireless sensor network, we model the avail-
able bandwidth using the concept of receiver capacity [13].

This work is supported in part by NSF grants numbered 0347621, 0627028,
0430061 and 0325875

1Although we have anecdotal evidence that an implementation of similar
theoretically-derived queue back-pressure algorithms is being attempted in an
ongoing DARPA-funded project, we are not aware of any prior published
implementations of such techniques.

This model introduces virtual queues in the Lyapunov drift
framework that capture the interference constraints existing in
the network.

Our second contribution in this work is the experimental
implementation of this distributed queue-based rate control
algorithm on a real low-power wireless platform (the Tmote
Sky from Moteiv) over a CSMA MAC (the CC2420 commu-
nication stack implemented in TinyOS 2.x). We provide details
on our implementation and present experimental results which
validate our analysis, bringing Lyapunov-based rate control
algorithms for wireless networks a step closer to reality.

II. RELATED WORK

The problem of rate control in wireless sensor net-
works has seen a rich set of proposals from a systems
perspective([3], [5], [9], [10], [11], [12], [18], [19]). Most
of these protocols are designed purely from the perspective
of congestion control and hence focus primarily on network
stability. Many of these protocols implicitly or explicitly aim at
providing some notion of fairness while achieving congestion
control. However, to our knowledge, there is no prior work on
practical rate control mechanisms for wireless sensor networks
that provide the ability to optimize any generic convex utility
function.

Our contribution to the body of work on rate control in
wireless sensor networks is to advocate a top-down approach
for designing rate control algorithms. In this work, we first
formulate the problem of rate control over a collection tree in
wireless sensor networks, as a generic convex utility optimiza-
tion problem. Using the Lyapunov drift framework, we then
present a distributed algorithm and a proof of concept systems
implementation that solves the convex optimization problem.

Tassiulas et al. in [16] and [17] first introduced the design of
backpressure algorithms based on Lyapunov drift techniques to
achieve network stability. The work by Neely et al. ([7], [8]),
and Stolyar et al. ([15]) significantly builds on the original
work by Tassiulaset al. by showing that Lyapunov drift based
back-pressure algorithms can be designed not only to achieve
network stability but also to optimize system wide utility, as
long as the system wide utility function is convex. The frame-
work presented in [7] and [8] allows for the transformation of
the constrained optimization problem to a queueing theoretic
problem by associating a virtual queue with each constraint
in the original optimization problem. Optimizing the drifts of
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Fig. 1. An illustrative example of the receiver capacity model

the physical and and virtual queues then presents a tradeoff
between the stability of the system and utility optimization.

There exists a rich literature on using Lyapunov drift based
approaches for solving problems of optimal power control,
rate control and energy optimization in wired and wireless
networks which has been covered in [4]. Despite this theo-
retically well grounded literature, specifically in the domain
of wireless ad-hoc networks, we are not aware of examples
of real systems employing the strategies designed using the
Lyapunov drift based approach. This is primarily due to the
underlying assumption of a slotted system, implying a TDMA
MAC. Our main contribution in this domain is to present
a technique of implementing a Lyapunov drift based back-
pressure algorithm for a CSMA based system in a wireless
sensor network setting. We are able to achieve this objective
due to the linear constraints presented by our receiver capacity
model, which allows these constraints to be easily modeled as
a set of virtual queues. Thus, the problem of designing back-
pressure algorithms using Lyapunov drifts in a CSMA setting
is tractable.

III. PROBLEM FORMULATION

In wireless sensor networks, the dominant topology is a
collection tree where multiple sources are forwarding data to
a single sink. We consider the following optimization problem
over a collection tree.

max :
∑

∀ i

gi(ri)

s.t. ri ∈ Λ

Where ri is the time average source rate for each source i,
gi(ri) is assumed to be convex and Λ is the capacity region for
the collection tree. To solve the above optimization problem
we need to the know the capacity region Λ which constrains
the optimization problem.

We use the receiver capacity model presented in [13] in
order to define the capacity region for a wireless sensor
network collection tree leveraging a CSMA based MAC. The
core idea is to associate a constant bandwidth capacity with
each receiver in the network. This capacity must be shared by
all transmitters within interference range of that receiver. In
particular, for any node i, the rates allocated to a) all nodes

sending data to that node i, b) all transmitting nodes within
interference range of i, and c) the transmissions made by
node i, must not exceed that node’s receiver capacity. This
model corresponds to a linear approximation of the capacity
region for each receiver. That is, any linear combination of
neighborhood transmission rates is feasible so long as the
net overheard rate does not exceed the receiver bandwidth.
Intuitively, one would expect such a linear rate region ap-
proximation to be reasonable for CSMA (operating on small
packet sizes ∼ 40 bytes) precisely because it minimizes
collisions through carrier sense (yielding similar sum-rates for
different levels of contention between a set of users). We have
previously validated the appropriateness of this approximation
through experiments with real wireless devices [14].

We present an illustrative example using Figure 1 to
highlight the applicability of the receiver capacity model in
defining the constraints of the above optimization problem.

Figure 1 shows a 6 node topology. The solid lines represent
the collection. The dashed lines quantify the interference
existing in the network. For example, when node 2 sends
data to node 1 at some rate, node 2 not only consumes the
corresponding amount of capacity at node 1 but also at node
3. This is indicated by setting equal rates on the links 2 → 1
and 2 → 3.

For Figure 1, based on the constraints generated by the
receiver capacity model [13], the optimization problem can
be rewritten as:

P1 : max
∑

∀ i

gi(ri) i ∈ {2, 3, 4, 5, 6} (1)

r2 + r3 + r6 + 2r4 + 2r5 ≤ B2 (2)

r2 + 2r3 + r4 + r5 + 2r6 ≤ B3 (3)

r2 + 2r4 + r5 ≤ B4 (4)

r2 + r4 + 2r5 + r5 ≤ B5 (5)

r3 + 2r6 ≤ B6 (6)

In Figure 1, r2

tot and r3

tot are given by:

r2

tot = r2 + r4 + r5

r3

tot = r3 + r6

IV. LYAPUNOV OPTIMIZATION FORMULATION

Our objective is to find a distributed algorithm to solve the
optimization problem presented in Section III.

By modeling optimization problem constraints as virtual
queues, prior work in the area of stochastic network opti-
mization ( [6], [8]) presents techniques minimizing the drift
of a linear combination of the physical and virtual queues of
the whole system, thereby ensuring forwarding queue stability
while obeying constraints. The objective function may be
incorporated as a penalty or reward function included in the
drift bound, providing a final solution which trades system
queue size and latency for utility optimality. The modularity
of the algorithms resulting from this approach is one of its
primary attractions.

Prior work such as ( [6], [8]) assumed a detailed knowledge
of the physical layer channel capacity. This was then used by
a possibly centralized channel optimizer in order to ascertain
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optimal transmission rates per the Lyapunov drift minimization
algorithm. The implicit assumption in the allocation is that
the underlying MAC is TDMA. Though there is nothing
in the analysis that limits the methodologies to a TDMA
based approach. The Achilles’ heel of this approach seems
to be that the optimization agent must have knowledge of the
physical layer capacity region. The novelty of the solution
presented here is that, using existing approaches, we show
that the optimization problem can be applied to a CSMA
based network as well. This is achieved by the additional
constraints to the optimization problem which use the receiver
capacity model, and by relaxation of the exact channel capacity
assumption in optimization over Xi(t).

In this section, we present a Lyapunov drift based solution
to the problem P1 presented in Section III.

A. Lyapunov Optimization with Receiver Capacity Virtual
Queues

Definitions of variables used in this Lyapunov formulation
are given in Table I. For our Lyapunov drift formulation we
assume that the system operates on slot boundaries of duration
T seconds. For analytical tractability we assume global syn-
chronization between the nodes. We will relax this assumption
when we describe our protocol implementation. As mentioned
in summary earlier, the strength of our technique lies in
decoupling the physical channel capacity region from the
transmission rate decisions (Xi(t)s). We can therefore abstract
the channel capacity of our Lyapunov optimization as follows:
we assume that all nodes can transmit simultaneously without
interference, and support only two transmission values. In a
given slot t, each Xi(t) is set to one of {0, Bmax}, with Bmax

a constant parameter in the deployment, likely set to a value
marginally greater than the maximum receiver bandwidth of
any node in the network. This way, nodes toggle between on
and off modes of operation independently, with no concern for
neighboring node’s activities. We rely on the receiver capacity
model constraints to enforce stability over the CSMA channel.

Using the Lyapunov drift approach, we first convert each
of the constraints in the problem P1 to a virtual queue. Since
a constraint is associated with each node i (since every node
in the network is a receiver), we associate a virtual queue Zi

with each node.
The queuing dynamics for each of the virtual queues Zi(t)

is given as follows:

Zi(t + 1) = max[Zi(t) − Bi, 0] +
∑

j∈Di

X̂j(t) (7)

Each time slot, the queue is first serviced (perhaps emptied),
then arrivals are received. Each Zi queue therefore receives the
sum of transmissions within the neighborhood of node i, then
is serviced by an amount equal to the receiver capacity of
node i. Therefore, for every timeslot in which neighborhood
transmissions outstrip the receiver capacity of the node, this
virtual queue will grow. In timeslot t, Zi(t) thus represents
the transmission volume by which the receiver capacity has
been exceeded since Zi(t) last emptied. Every node also has
a physical forwarding queue Ui.

The queuing dynamics of the physical queue Ui(t) is similar
to that of the virtual queues and is given by:

Ui(t + 1) = max[Ui(t)−Xi(t), 0] +
∑

j∈Ci

X̂j(t) + Ri(t) (8)

That is, each node i first attempts to transmit Xi(t) units
of data to its parent, then receives X̂j(t) units of data from
each child node j. Note that we differentiate here attempted
transmissions (Xi(t)) and true transmissions (X̂i(t)). The
difference being that while it may be most optimal to transmit
a complete Xi(t) units of data in this timeslot, the queue may
not contain sufficient data to operate optimally, so X̂i(t) ≤
Xi(t).

Combining the objective function
∑

∀ i

gi(ri) with the queue-

ing dynamics presented in equations (7) and (8), we can
perform a Lyapunov drift optimization that will result in an
algorithm that has two components: a control decision and an
admission decision. Each decision will be performed by every
node in the network at each time step. A node performs a
control decision to determine whether it is optimal to forward
packets up the collection tree. The admission decision is
performed in order to determine if a local application layer
packet should be admitted to the forwarding queue. For ease
of exposition, we refer the reader to Appendix A for details of
the Lyapunov drift analysis. We will now proceed to explain
the control and admission decisions in further detail.

1) Control Decision : The control decision for a node i

with a parent k is the following:
[

Ui(t) − Uk(t) − Ẑi(t)
]

≥ 0 (9)

If condition (9) is true, maximize Xi(t) by setting it to Bmax.
As mentioned earlier, the detailed derivation of the condition
presented in equation (9) are presented in Appendix A. A
node transmits data to the parent if and only if the differential
backlog between the node and its parent exceeds the sum of
virtual queues within the local node’s neighborhood.

2) Admission Decision: The local admission decision for
a node i is based on selecting Ri(t) so as to maximize the
following:

[

Vopt

2
· g(Ri(t)) − Ui(t) · Ri(t)

]

(10)

The derivation of this admission decision has also been pre-
sented in Appendix A. Node i then selects a volume of local
admissions in timeslot t equal to Ri(t) such that expression
(10) is maximized.

Note that Vopt, the tuning parameter that determines how
closely we achieve optimal utility, appears only in the admis-
sion decisions. As Vopt grows, so does the acceptable backlog
for which admissions are allowable (Ui(t)).

An intuition for this behavior of Vopt can be obtained by
looking at the feasible solutions of the optimization problem
P1. In the optimal solution of P1, all the constraints in P1

need to be tight. This implies that the system needs to be
at the boundary of the capacity region, which further implies
that system will be unstable (queue sizes will be unbounded).
If we want to keep the system stable, we need to keep the
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Symbol Description
Ui(t) The queue backlog for node i at time slot t
Zi(t) Virtual queue backlog for node i’s collision domain at time slot t
Xi(t) The attempted transmissions up the tree by node i in time slot t
X̂i(t) The actual transmission rate up the tree by node i in time slot t
Ri(t) The admitted exogenous arrivals to node i in time slot t

Bi The receiver capacity of node i
Di The collision domain of node i, includes neighbors and node i
Ci The set of one-hop children for which i is the forwarding agent

Ẑi(t) The sum of all virtual queues within i’s collision domain in time slot t
Ẑi(t) =

P

∀j st i∈Dj
Zj(t)

Vmult The virtual queue multiplier, scales virtual queues for comparison with
forwarding queue backlogs

TABLE I
VARIABLES USED IN THE LYAPUNOV FORMULATION.

Application

Communication Stack

Forwarding Engine

Flow ControllerRate Controller

Routing Engine

Fig. 2. Software architecture for the distributed rate control using Lyapunov
drifts on TinyOS 2.0.2

constraints loose. This requires that the system to achieve a
suboptimal solution with respect to the objective function, but
ensures stability. Thus, Vopt tunes how closely the algorithm
operates to the boundary of the capacity region.

V. SYSTEMS IMPLEMENTATION

A. Hardware / Software Implementation Details

Our target platform was the Tmote sky class of devices.
As mentioned earlier, our receiver capacity model has been
validated empirically for these devices [14]. Tiny OS is the
open source operating system that runs on the Tmote sky and
hence our software architecture was designed specifically to
work with the TinyOS infrastructure.

Figure 2 presents the software architecture of our implemen-
tation. Because the objective was to perform distributed rate
control over a static tree, we use the routing engine provided
by the collection tree protocol in TinyOS-2.0.2 [1]. The routing
engine helps build a tree rooted at a specific node, acting as the
sink. The rate controller block implements the control decision
given by condition (9). Though our analysis, presented in
Section IV, assumes that all events occur on slotted time
boundaries, this is not the case for a real CSMA based MAC.
Hence the rate controller implements a timer that fires every
T seconds. The control decision are thus made at the end of
T seconds. It’s essential to note that these timers are local to
a node, making the decisions asynchronous.

The rate controller block also estimates the node’s current
transmission rate by maintaining an exponential weighted
moving average of the number of packets transmitted by the

forwarding engine, on a per slot basis. In addition to rate
estimation, the rate controller block updates the local virtual
queue using equation ( 7). This requires knowledge of the
local node’s receiver capacity, its current transmission rate
and the transmission rate of all its neighbors who are active
in its broadcast domain. The rate controller establishes its
receiver capacity by setting it to the saturation throughput
corresponding to the number of neighbors within its broadcast
domain [14]. In this paper, we have hard-coded the receiver
capacities to 70 packets per second, a safe lower bound to
the optimal capacity. Techniques could be implemented that
would improve system performance by estimating the number
of active neighborhood transmitters in each time slot. We feel
that for our basic proof of concept, such techniques lie outside
the scope of this paper.

The flow controller block implements the admission deci-
sions. Though the Lyapunov analysis of Section IV makes
no assumptions on the form of the utility function other than
convexity, in order to simplify admission rate computation
we limited our laboratory testing to linear utility functions.
By assuming linear G(Ri(t)) we can simplify our admission
decisions. Let g(Ri(t)) = ui ·Ri(t). Note that this reduces our
admission decision components of the Lyapunov drift bound
to the following:

−Ri(t) ·

[

Vopt

2
· ui − Ui

]

(11)

Under linear utility functions, the admission rate Ri(t)
becomes inconsequential, allowing for the following simple
admission criterion: for node i, if

[

Vopt

2
· ui − Ui(t)

]

> 0 then
admit the application-layer send request.

The forwarding engine maintains the forwarding FIFO
queue. This queue receives packets both from local admissions
and from children in the tree structure. The communication
stack consists of the default TinyOS CSMA stack for the
CC2420 radios which is the 802.15.4 radio present on the
Tmote sky platforms. Note that in order to carry out the control
decision based on condition ( 9), knowledge is needed of
the number of transmissions (Xi(t)) and virtual queue sizes
(Zi(t)) of all neighbors during the prior time slot. Therefore,
once every time slot, each node attaches their transmission rate
and virtual queue size to the next transmitted MAC header
and broadcasts the data packet instead of unicasting it. This
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allows all neighboring nodes to overhear this information and
retrieve it from the headers. As mentioned in Section IV-A,
control decisions are carried out independently, without inter-
communication between nodes. Our implementation therefore
allocates transmission tokens to the forwarding Engine in an
all-or-none manner. Each node based on its control decision
will either allocate Bmax or zeros forwarding tokens for the
next time slot. This is where the virtual queues become critical,
as they ensure that our time average receiver bandwidth con-
straints are not violated, even while individual nodes attempt
to transmit at maximum rate during their active time slots.

B. Virtual Queue Multipliers

Note that the discrete time queueing dynamics we have
supplied for Zi(t + 1) in equation (7) first service the queue,
then incorporate arrivals. This implies that even in an ex-
tremely stable system, where the queue empties every timeslot
prior to arrivals, the virtual queue will hold a continuous
backlog equal to the transmissions overheard within the node
i’s neighborhood. Even in relatively small neighborhoods, this
could be large enough to overwhelm our real queues in the
control decisions dictated by condition (9). The result would be
on-off behavior, where any transmissions in timeslot t would
result in large virtual queues and silencing of transmissions in
timeslot t + 1, only to have the virtual queues then emptied
and transmissions allowed in timeslot t + 1. This oscillatory
behavior is clearly non-optimal, and is an artifact of placing
too much relative weight on the virtual queues, representing
time average receiver capacity violation.

There are two solutions to this problem. One is to in-
crease the value of Vopt. This directly leads to larger queue
backlogs, and therefore mitigates the effects of (relatively)
smaller virtual queues, allowing for greater system throughput.
In wireless sensor networks, however, queue capacities are
quite limited. Storing more than fifty packets can become
a challenge. We therefore introduce a second optimization
parameter, the virtual queue multiplier Vmult. The control
decision of condition (9) then becomes:

Xi(t) ·
[

Ui(t) − Uk(t) − Vmult · Ẑi(t)
]

(12)

C. An Illustrative Example

We now provide a simple illustrative example to give some
intuition on the admission and forwarding control decisions.
Consider a five node linear forwarding topology as in topology
1 of Figure 4. All nodes are considered to be traffic sources
(omitting the sink, node 1). All nodes are assumed to be within
range of one another, implying that interference links exist
between all nodes. Assume a linear g(Ri(t)) = ui ·Ri(t). Let
[u5, u4, u3, u2, u1] = [3, 6, 2.5, 1, 0], Vopt = 20, Vmult = 1,
and Bmax = 1. For this example, we assume that we have
infinite sink-destined data at each of the sources.

With the linear topology and linear utilities defined here,
one can quickly determine the optimal rate allocation scheme.
Node 5 provides three utility while requiring four transmis-
sions per unit of data that reaches the sink. This gives it an
efficiency of 3

4
. Repeating this computation yields efficiencies

[e5, e4, e3, e2, e1] = [3
4
, 2, 1.25, 1, 0]. Therefore, per unit of

data transmitted, node 4 provides the highest system utility,
and should receive the entire system achievable rate allocation.

In Figure 3 we depict convergence towards optimality.
Figure 3(a) depicts sub-optimal operation in the startup phase,
a result of sub-optimal virtual queue sizes. In this phase, traffic
sources at nodes 4, 3 and 2 are able to forward data to the sink.
In Figure 3(b), the virtual queues grow, creating back-pressure
which obstructs node 2’s local admissions. In this phase, the
back-pressure caused by neighborhood virtual queues is still
insufficient to halt local admissions by node 3. Therefore,
traffic continues to flow from sources at nodes 4 and 3. Finally,
in Figure 3(c), the virtual queues grow to their equilibrium
levels. At this point, the per-hop back-pressure is sufficient
to halt localized admissions by both of nodes 2 and 3. Only
node 4 has a sufficient forwarding queue backlog necessary to
overcome the back-pressure. We describe the three phases in
greater detail below.

Recall from equation (11) that if the queue backlog is
greater than Vopt

2
·ui, we reject the application layer admission

request. This implies that local admissions will halt above pre-
determined queue backlog thresholds, equal to ⌊

Vopt

2
·ui⌋. For

the current topology, queue thresholds for [U5, U4, U3, U2] are
therefore [30, 60, 25, 10].

Figure 3(a) depicts the early startup phase. In this phase,
the virtual queues are small because the nodes have only
recently been in violation of the time average receiver capacity
constraint. Because the virtual queues are small, condition ( 9)
dictates that in order for nodes to transmit, the forwarding
queues need not exceed the local admission thresholds. As the
admission threshold is not being exceeded, we will see traffic
from sources at nodes 3 and 2 entering the system. This is a
suboptimal behavior.

Figure 3(b) depicts the system as it moves towards equi-
librium. As transmission rates continue to violate receiver
capacity, the virtual queues grow. This backpressure causes
the forwarding queues to sequentially grow above their local
admission thresholds. In this figure, for example, the value
of Ẑ2(t) has grown to 12. A forwarding queue backlog of
at least 12 packets is therefore required in order to transmit
to the sink. This exceeds node 2’s admission threshold of 10
packets. Therefore all future local admission request will be
rejected by node 2.

Finally, Figure 3(c) depicts the system at equilibrium. Here,
a special condition holds. The sum of Ẑi(t) between node 4
and the sink is exactly equal to node 4’s admission threshold
of 60 packets. No other node in the network is allowed to
admit local traffic, as the virtual queues have grown too large
for any non-optimal source.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

In order to verify proper operation of our proposed al-
gorithm, we performed experiments using the Tmote sky
class devices running TinyOS-2.0.2. We considered three test
scenarios. Two five node topologies were selected, as high-
lighted in Figure 4. Table II indicates the utility parameters
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Fig. 3. An illustrative example of algorithm convergence to optimal admission and transmission policies on a linear, fully connected network with linear utility
functions g(Ri(t)). From startup, the system progresses from (a) to (b), then on to (c) in equilibrium.

Fig. 4. Two test topologies utilized in experimentation.

and topology for each of the four test scenarios. Table III
documents the parameters common to all scenarios.

These configurations were loaded onto five Tmote sky
devices. In experimentation, each scenario was allowed to
run for 25 minutes. Each node recorded the forwarding and
virtual queue backlogs, while the root node recorded goodputs
received from nodes in the system. In all tests, the networks
were fully connected. We would like to extend the test
environment to a larger system in future work.

Using the receiver capacity model, as shown in Section III,
based on the utilizes and topologies we can pre-compute the
optimal rate allocation for each of the scenarios. Optimal per-
node transmission rates for all scenarios are given in Table
IV.

B. Experimental Results

For each of the scenarios, the results of the four 25-minute
experiments are plotted in Figures 5, 6 and 7. Time average
goodputs have been recorded in Table V.

Scenario u5 u4 u3 u2 Topology Rcv Cap
0 2 5 1 1 1 70
1 2 4 3 1 1 70
2 5 1 1 1 2 70

TABLE II
UTILITIES AND TOPOLOGIES FOR EACH OF THE THREE TEST SCENARIOS.

Parameter Value
Beacon Interval 300 milliseconds
Token Allocation 25 per Active Timeslot
Vopt 20
Virtual Queue Multiplier 0.01
Per-node Receiver Capacity 70

TABLE III
COMMON PARAMETERS FOR ALL TEST SCENARIOS.

1) Optimality Gap: Comparison with the optimal solutions
recorded in Table IV indicates that there is a consistent
gap between achieved experimental results and LP optimal
transmission rates.

Two possible explanations for this gap are as follows. First,
there is some overhead required in our system implementation.
As the root node never generates or forwards traffic, there
would be no opportunity to broadcast virtual queue backlogs.
We therefore require a broadcast packet be sent by the root
node every second. This packet is then accounted for by the
system and cuts into the receiver capacities of all nodes within

Scenario node5 PPS node4 PPS node3 PPS node2 PPS
0 0 23.3 0 0
1 0 0 35 0
2 35 0 0 0

TABLE IV
OPTIMAL PACKET RATE ALLOCATIONS SUBJECT TO RECEIVER

BANDWIDTH CONSTRAINTS FOR SCENARIOS 0 THROUGH 2.
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Fig. 5. Plots of results for scenario 0.
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Fig. 6. Plots of results for scenario 1.
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Fig. 7. Plots of results for scenario 2.

the roots neighborhood. In our test environment, all nodes
overhear the root, so all nodes incur costs within their virtual
queues as a result of this mandatory broadcast. Additionally,
consider that leaf nodes often are not optimal, and that nodes
sitting behind the optimal traffic generator are very unlikely to
ever forward or generate packets once equilibrium is reached.
The effect of this, however, is that their broadcast updates
containting real and virtual queue backlogs will halt, resulting
in stale system state information. We therefore also require
that all nodes not admitting or forwarding any traffic must still
generate a minimum of one packet per second. The optimality
gap is therefore variable and depends upon the number of
inactive nodes.

Second, there is a true optimality gap between LP optimal
and Lyapunov formulations and it is a function of Vopt and
Vmult [4]. The derivation of this bound is part of our future
work. This suboptimal behavior is clearly visible in scenario
1. Note that in Figure 6(a) node 2 receives 4.28 packets
per second, though node 2 is not in the optimal solution.
The optimal source node for this scenario is node 3 with
u3 = 3. Based on the control decision in equation(11), with a

Vopt = 20, node 3 therefore admits packets up to a forwarding
queue size of 30 packets. At equilibrium, as node 3 is two hops
from the sink, this leads to a scaled neighborhood virtual queue
backlog for node 3 equals 15, which is evident in Figure 6(c).
Since the forwarding queue backlog at node 2 is no more then
15 and given our rather large per timeslot token allocations
relative to these queue sizes, occasionally the queue of node 2
empties below 10. This is the admission threshold for node
2 and hence when forwarding queue size goes below this
threshold, source traffic from node 2 is admitted. This leads to
the suboptimal behavior observed in Figure 6(a). To make the
rate allocation closer to optimal, we would need to enlarge
our value of Vopt such that the differential in forwarding
queues between node 2 and node 3 would be sufficiently
large. Increasing Vopt was not an option in our setup, as the
queues had already reached maximum sustainable values on
our Tmote Sky device ( 50 packets).

2) Virtual Queue Behavior: From a theoretical standpoint,
in a fully connected topology, all local virtual queues should
have identical backlogs. However, in our experiments, note
that all local virtual queues exhibit slow drifts away from their
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Scenario node5 PPS node4 PPS node3 PPS node2 PPS
0 1.1 19.3 0.0 1.8
1 1.1 0.8 26.5 4.3
2 30.0 1.1 0.7 1.2

TABLE V
ACHIEVED PACKET RATE ALLOCATIONS FOR EXPERIMENTAL SCENARIOS

0 THROUGH 2.

theoretical values. The drift results from inaccurate updates
of local virtual queues using stale neighbor transmission rate
information. The stale neighbor transmission rate information
occurs due to the asynchronous nature of the system. Despite
the existence of this drift, the system performance is not
affected because the performance does not depend on the
individual virtual queue sizes but the sum of the virtual queues
in the neighborhood. As the graphs reflect the sum of the
virtual queues remains constant, thus no adverse effect on rate
allocation is observed. Verifying proper behavior under virtual
queue drift for systems with dynamic traffic flows is a topic
for future investigation.

VII. CONCLUSION AND FUTURE WORK

The primary goal of this work was to present a proof
of concept which uses Lyapunov drift based techniques in
a wireless sensor network setting. We have formulated the
collection tree rate control problem as a constrained convex
optimization using the receiver capacity model [13] for a
CSMA based wireless sensor network . As a solution, we
propose a back pressure algorithm designed using a Lya-
punov drift based optimization framework. The back pressure
algorithm provides near optimal utility while maintaining
network stability. We have shown the efficacy of our proposed
back pressure algorithm by implementing it on TinyOS-2.0.2
operating system for the Tmote sky class of devices. In our
experimental evaluation over a 5 node testbed, we observe that
the empirical behavior matches our analysis. This validates our
claims.

In this work we have not characterized the effects of Vopt on
queue sizes and optimality. We plan on presenting theoretical
bounds on the time average queue back logs, and bounds on
achievable system utility. These bounds are dependent on the
parameter Vopt. Theoretically, larger values of Vopt result in
utility that approaches optimality. This comes at the cost of
larger queue sizes leading to larger end-to-end packet delays.
It would therefore be worthwhile investigating the trade off,
in terms of queue sizes and optimality, with smaller values of
Vopt.

Extending this work further, an interesting future direction
would be to investigate dynamic routing. In a CSMA setting,
this work proves the applicability of existing stochastic op-
timization results that use Lyapunov drift based techniques.
The literature in stochastic network optimization is rich with
examples where, using the Lyapunov drift framework, back
pressure algorithms can be designed that present a node in the
network with not only control and admission decisions, but
also routing decisions [8]. The primary advantage of such an
algorithm is that it might result in higher throughput and would

adapt to network dynamics. To our knowledge, there are no
existing cross layer rate control protocols, involving dynamic
routing, that perform utility optimization over a wireless sensor
network.
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APPENDIX A
LYAPUNOV OPTIMIZATION

Refer to Table I for definitions of variables used in the
following work. Let the discrete time queueing equations for
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forwarding queues (Ui(t)) and virtual queues (Zi(t)) be those
defined by update equations (8) and (7) respectively. We define
the Lyapunov function as follows:

L(~U(t), ~Z(t)) =
∑

U2

i (t) +
∑

Z2

i (t)

Let the Lyapunov drift be represented by ∆(~U(t), ~Z(t)).

∆(~U(t), ~Z(t)) = E[L(~U(t + 1), ~Z(t + 1))−

L(~U(t), ~Z(t))|~U(t), ~Z(t)]

The Lyapunov drift can be computed as follows.
Squaring the forwarding queue discrete time queueing equa-

tion yields the following:

U2

i (t + t) −U2

i (t) ≤

−2 ·

[

Ui(t) · {Xi(t) −
∑

j∈Ci

Xj(t) − Ri(t)}

]

+ [Xi(t)]
2

+

[

∑

j∈Ci

Xj(t) + Ri(t)

]2

(13)
Note that in typical systems, there exists a bound to the

maximum values Xi(t) and Ri(t) can take on. Our problem
formulation in Section III limited Xi(t) to at most Bmax. Let
the bound on admissions per timeslot be Rmax

i for node i.
We’ll define constant Gi as follows:

Gi ≡ [Bmax]2 +
[

∑

j∈Cn
Bmax + Rmax

i

]2

≥ [Xi(t)]
2

+

[

∑

j∈Ci

Xj(t) + Ri(t)

]2

Similar manipulation can be carried out for the virtual
queues.

Z2

i (t + t) −Z2

i (t) ≤

−2 ·

[

Zi(t) · {Bi −
∑

j∈Di

Xj(t)}

]

+B2

i +

[

∑

j∈Di

Xj(t)

]2

(14)

Define constant Ki in a manner similar to Gi:

Ki ≡ B2

i +

[

∑

j∈Di

Bmax(t)

]2

≥ B2

i +

[

∑

j∈Di

Xj(t)

]2

Substitution of Gi and Ki into equations (13) and (14), then
summing over all nodes i, and finally taking the expectation
with respect to (Ui(t), Zi(t)), yields the following Lyapunov
drift bound:

∆(~U(t), ~Z(t)) ≤ Γ (15)

Where

Γ =
∑

i

Ki +
∑

i

Gi

−2 ·
∑

i

[

Zi(t)E{Bi −
∑

j∈Di

Xj(t) |Zi(t)}

]

−2 ·
∑

i

[

Ui(t) · E{Xi(t) −
∑

j∈Ci

Xj(t) − Ri(t)|Ui(t)}

]

Prior work in the field of Lyapunov optimization( [6], [8])
has shown that minimizing Lyapunov drift provides guaranteed
stability over system inputs lying within the capacity region.
Additionally, any algorithm which minimizes the Lyapunov
bound of (15) has been proven to result in system queues that
are at worst a constant multiple of the optimal.

As was demonstrated in [6], we can now incorporate a utility
function into the drift bound. Let Y (t) =

∑

i

Gi(Ri(t)) be the

system utility, as defined in the problem formulation of Section
III. We subtract Vopt ·E{Y (t)|~U(t), ~Z(t)} from both sides of
(15), yielding:

∆(·) − Vopt · E{Y (t)|~U(t), ~Z(t)} ≤ δ (16)

Where

δ =
∑

i

Ki +
∑

i

Gi

−2 ·
∑

i

[

Zi(t)E{Bi −
∑

j∈Di

Xj(t) |Zi(t)}

]

−2 ·
∑

i

[

Ui(t) · E{Xi(t) −
∑

j∈Ci

Xj(t) − Ri(t)|Ui(t)}

]

−Vopt · E{Y (t)|~U(t), ~Z(t)}

In order to minimize the right hand side of (16) in ex-
pectation, it is sufficient to ensure we minimize the right
hand side for every system state (~U(t),~Z(t)). We can neglect
constant terms involving Ki and Gi. The remaining terms can
be separated into coefficients multiplying Xi(t) and Ri(t).
The goal of our algorithm is then to minimize these terms
through intelligent selection of per-timeslot decision variables
Xi(t) and Ri(t). As was the case in prior Lyapunov drift
work, the resulting algorithm can be broken into two pieces:
a transmission control decision and an admission control
decision. The control and admission decision are the same as
the condition (9) and expression (10) presented in section IV.

1) Control Decision : Consider node i with parent node
k. The coefficient associated with transmission variable Xi(t)
is:

−
[

Ui(t) − Ẑi(t) − Uk(t)
]

(17)

Therefore, if transmission rates Xi(t) and Xj(t) are inde-
pendent ∀i, j, then in order to minimize the right hand side of
(16) we maximize Xi(t) ∀i such that (17) is negative. A node
therefore transmits data to the parent whenever the differential
backlog between the node and its parent exceeds the sum of
virtual queues within the local node’s neighborhood.
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2) Admission Decision: Consider node i. The coefficient
associated with admission variable Ri(t) is:

−

[

Vopt

2
· g(Ri(t)) − Ui · Ri(t)

]

(18)

Therefore, in order to minimize the right hand side of (16) we
maximize Ri(t) ∀i such that (18) is negative. This equates to
a simple admission control scheme. If the forwarding queue
size scaled by admission rate exceeds Vopt

2
times the utility

for all admission rates, then the admission request is rejected.
Otherwise, a rate is chosen which maximizes g(Ri(t))−Ri(t).




