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Abstract— Consider a wireless system where a sender can
transmit data to various users with independent and varying
channel conditions. To maximize its long-term transmission rate,
the sender should always transmit to the user with the best
channel. To discover which user has the best channel, it has
to spend time to probe channels, and this reduces the time
available for effective transmission. This paper aims at identifying
optimal joint probing and scheduling strategies. These strategies
realize the best trade-off between the channel state acquisition
and effective transmission. We first provide general structural
properties of optimal strategies, and then exactly characterize
these strategies in particular but relevant cases. Finally we
propose extensions of this problem, e.g., to impose fairness among
the users, we investigate how to maximize system utility rather
than throughput.

I. INTRODUCTION

A. Probing and Transmission Problems in Wireless Systems

In rate adaptive wireless systems, the sender can adapt the
transmission rate to the receiver depending on the channel
conditions between them. When the sender can transmit either
to different users or to a single receiver but on various
channels, it has to decide to which user it should transmit or
which channel it should use. Before transmitting, it can spend
some time to discover the conditions of the various users or
channels. To maximize its transmission throughput, the sender
should adopt an efficient probing/scheduling strategy. Probing
many users/channels reduces the time remaining for effective
transmission but can increase the rate during transmission,
whereas probing very few users/channels reduces the probing
procedure duration, but decreases the information available to
the sender and thereby reduces the rate of transmission. We
illustrate this probing/scheduling problem in two examples of
wireless systems.

a) Problem 1. A broadcast channel with CSI acquisition:
Consider a wireless network with a single sender and several
receivers. The sender can transmit to one receiver at a time,
and hence, has to decide which receiver to schedule at each
time slot. The objective of the sender could be to maximize the
system long-term throughput or when accounting for fairness
issues, a certain utility of the system. Unlike 3G cellular
systems where a dedicated channel per receiver is open to
convey the channel state information (CSI), we consider a
scenario where the CSI and the data are transmitted on the
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same channel. At the beginning of each time slot, the sender
broadcasts a pilot signal used by each receiver i to estimate
its channel state ci. The sender may decide to acquire the
channel state of receiver i, and to this aim, it sends a query to
this receiver. For each receiver, this acquisition procedure takes
a proportion β of the slot. The sender should then carefully
design its probing and scheduling strategy.

b) Problem 2. Opportunistic spectrum access in multi-
channel wireless networks: In future wireless systems, a
user will be able to access a large number of channels. To
maximize its throughput, a user should use a channel with
good conditions. Here again, a user has to probe channels to
look for the best possible and this has a cost, as it reduces
the remaining time for effective transmission. The problem is
clearly identical to problem 1.

B. System Model and Problem Formulation

For illustrative purposes, we choose to use a terminology
related to Problem 1 (even though the formalism for Problem
2 is identical). We consider a system of N users whose
channel conditions vary over time. Time is slotted and the
channel conditions of the various users are assumed to remain
constant for the duration of one slot, i.e., the coherence time
of the channels is larger than one slot; these conditions may
change at the slot boundaries. In other words, we consider
the block fading model. Denote by ci(t) the channel state of
user i during slot t. Now the transmission rate at which a user
whose channel is in state c ∈ R

+ can receive is denoted by
R(c) where R is an increasing function. For example, R can

represent Shannon limit: R(c) = W log2

(

1 + Pc
N0

)

, where W

is the channel bandwidth and P, N0 are the transmission and
the noise powers, respectively. Here the channel state c repre-
sents the fraction of transmission power received by the user
considered. We assume that the channel states are independent
across users, but the distributions of the channel state of each
user may be different. For a given user, the channel states are
independent and identically distributed (i.i.d.) across time slots
with c.d.f. Fi(·) (Fi(a) = Pr[ci(t) ≤ a]). In the following,
we denote by Ci a generic r.v. with c.d.f. Fi. We assume that
Fi, for every user i, is known at the transmitter.

At the beginning of each time slot, the sender can decide to
probe some channels, to transmit to one of the probed users,
or to transmit to a user that has not been probed1. We assume

1Note here that transmitting to an un-probed user requires advanced
adaptive coding schemes, and often, it is not possible. That is why the case
where the sender has to probe a channel before using it is quite relevant.
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that probing the channel state of a user takes a proportion β of
the slot duration. Hence, in a given slot, when the transmitter
decides to transmit to a user whose channel state is c, where
c can be either known or unknown, the throughput during this
slot is:

T = (1 − β|P|)R(c),

where P denotes the set of probed users in that slot, and |P| is
the cardinality of this set. We denote by P the set {1, . . . , N}\
P .

The problem is to design a joint probing and transmission
strategy that maximizes the long-term average system through-
put2. Such a strategy is called optimal. Since the system is i.i.d.
across time slots, maximizing the long-term system throughput
is equivalent to maximizing the average throughput in each
slot. For notational simplicity, we consider any given slot and
drop time t from the notation.

Assume that the channels of users in set P has been already
probed, and that the state of the best of the probed channels is
u (we say that the system is in state (P , u)). Then a strategy
π decides one of the following possible actions:

(i) transmit to the user with the best probed channel,
(ii) transmit to a user that has not been probed,

(iii) probe one more user from the set P .

In cases (i) and (ii), we say that we retire. In cases (ii) and
(iii), the strategy has also to define to which user to transmit
and which user to probe, respectively. We denote by T π(P , u)
the average throughput achieved by strategy π, starting from
system state (P , u). Also denote by T ⋆(P , u) the average
throughput of an optimal strategy starting from system state
(P , u). We are looking for an optimal strategy π⋆ in the sense
that T π⋆

(∅, 0) = T ⋆(∅, 0).
Now, using examples, we demonstrate the challenges in-

volved in designing the optimal policy π∗.
Example 1: Consider a broadcast channel with two re-

ceivers experiencing i.i.d. fading. Specifically, let the maxi-
mum rate of transmission in any slot be 1 with probability 1/2
and 2 w.p. 1/2 independently for each of the receivers given
that CSI is known to both, the transmitter and the receiver.
Also, let β denote the fraction of slot duration required to
probe a receiver and acquire its CSI. In these settings, we
compare two probing and transmission strategies π1 and π2.
Under π1, the transmitter probes both the receivers, and then
transmits to one with a higher rate. Ties are broken arbitrarily.
Under π2, the transmitter probes one receiver at random, and
transmits to it at the maximum rate possible. Thus, policy π1

spends 2β units of time per slot to acquire CSI, and transmits
at the expected rate of 7/4 in the remainder of the slot; while
π2 spends only β units of time per slot to acquire CSI, but
transmits at a smaller expected rate of 3/2 in the remainder of
the slot. Thus, the expected rate of transmission (throughput)
under π1 is 7(1 − 2β)/4, while that under π2 is 3(1 − β)/2.
Note that if β ≤ 1/8, then π1 has a higher throughput than

2As explained in Section V, we could also aim at maximizing system utility,
where the choice of a utility function depends our fairness objective.

that under π2. But, when β > 1/8, the throughput under π2

is higher than that under π1.
The above example demonstrates that the probing and trans-

mission strategy should be designed by taking into account the
cost for probing, which is time here. Since, the channel state
changes after coherence time, the CSI obtained can only be
used in the same coherence time duration. Thus, if the time
required for probing a receiver consumes a significant portion
of the coherence time, then probing only a small number of
receivers may provide the optimal throughput. On the other
hand, if the time required for probing is a small fraction of
the coherence time, then probing a larger number of receivers
may be optimal as it allows us to discover receivers with high
channel gains and thereby achieve high throughput. Moreover,
in Example 1, policy π1 can be easily modified to provide
better throughput in the following way. If at the first probe,
π1 finds a receiver to which transmission at rate 2 is possible,
then it does not probe the second receiver as no further
improvement in the transmission rate is possible. Note that
with this modification, π1 achieves throughput of 7

4

(

1 − 10
7 β

)

instead of 7
4 (1 − 2β). This shows that the decision to probe

further should depend on the channel states observed in the
previous probes.

Another challenge in designing an optimal probing and
transmission strategy is that of deciding the sequence in which
receivers should be probed. In Example 1, we have consider
i.i.d. channel states, and hence probing sequence does not
matter. But, in the following example we demonstrate that
when the channel states are independent across receivers, but
do not have the same distribution, then the sequence in which
receivers are probed has a significant bearing of the achievable
throughput.

Example 2: Consider the same settings as in Example 1,
except that the channel gains are not i.i.d. across receivers.
Specifically, in each slot, let the maximum rate to receiver R1

be 2 w.p. (k− 1)/k and k w.p. 1/k, and for receiver R2 let it
be 1 w.p. (2k − 1)/2k and 2k w.p. 1/2k. Now, the expected
transmission rates to R1 and R2 are 2(k−1)

k
+1 and 2k−1

2k
+1,

respectively. Thus, for k > 3/2, the expected rate to R1 is
strictly greater than that to R2. Fix k > 3/2. In these settings,
one would intuitively expect that probing R1 first should be
optimal as it provides a higher expected rate, but we show
that if β < 2k2

8k2−7k+2 , then probing R2 first provides optimal
throughput. Specifically, we show that the optimal policy π⋆

is, in every slot, to probe R2 first. If the achievable rate is
2k then transmit to R2, otherwise probe R1 and transmit to
it at the appropriate rate. The expected throughput of π∗ is
(1 − β) + (1 − 2β)6k2−7k+2

2k2 . To show that π⋆ achieves the
highest throughput, it suffices to compare it with policy π1 that
probes R1 and transmits at appropriate rate, and with policy
π2 that probes R1 first. If the achievable rate is k, then π2

transmits to R1, otherwise probes R2 and transmits to it if
the achievable rate is 2k, else transmits to R1 at rate 2. Note
that the throughput of π1 is (1 − β)

[

2(k−1)
k

+ 1
]

, while that

of π2 is (1 − β) + (1 − 2β)3k2−4k+1
k2 . It is easy to verify



that throughput of π2 is always smaller than that of π⋆, while
the throughput of π1 is smaller than that of π⋆ when β <

2k2

8k2−7k+2 . Thus, sampling R2 provides the optimal throughput

for β < 2k2

8k2−7k+2 .
The above example demonstrates that the system throughput

depends on the sequence in which the receivers are probed.
The example also demonstrates that heuristics like probing
receivers in the order of their expected rates may not be
optimal.

C. Related Work and Our Contributions

The problem of identifying optimal joint probing and trans-
mission strategies has been addressed in the literature only
recently [9], [11], [5], [6], [3]. It falls into the broad class of
stochastic control problems [2]. However, as explained in [7],
it does not correspond to any of the existing classical control
problems such as multi-armed bandits, optimal sampling order,
or optimal stopping problems. In the various versions of the
multi-armed bandit problems [10], [12], acquiring the state
of an arm (or of a channel here) before using it is not
allowed. Optimal sampling order of random variables have
been investigated in many contexts, see e.g. [1], [8]; however,
in all existing work, these variables can take 2 values only
(On or Off channels here), and exploiting a variable that has
not been probed is not allowed. Finally, in usual stopping time
problems [4], one has to select between two possible actions,
proceed further or stop; this can be applied to our problem
only when all channels are equivalent [11], i.e., when they
have the same statistical distribution. The latter assumption is
never valid in practical scenarios. In any case, stopping time
problems are very challenging and most of them are open [2].

In this paper, we provide the detailed analysis of the stochas-
tic control problem: we first give general structural properties
of the optimal strategy. We then exactly characterize this
strategy in specific but relevant cases where the distributions of
the various channels are ordered (in a sense that will be defined
later). We illustrate our findings with numerical results and fi-
nally propose several interesting generalizations of the model;
for example, to introduce some fairness constraints among
the various receivers, we propose a strategy maximizing the
system utility rather than its total throughput. The detailed
analysis of the latter strategy is left for future work.

II. STRUCTURAL PROPERTIES OF THE OPTIMAL

STRATEGY

In this section, we state some structural properties that
an optimal probing and transmission strategy should have.
Specifically, when the system is in some state (P , u), we will
give conditions under which an optimal strategy should either
transmit to one of the probed users, or transmit to an un-probed
user, or probe another user. These conditions do not fully
characterize an optimal strategy, as it remains to define which
user to probe next if the strategy decides to probe further. The
latter question is a much more challenging issue than deriving
the basic structural properties of an optimal strategy, and it
will be addressed in the next section.

A. Results

Assume that the system state is (Pk, u), where the subscript
k indicates that |Pk| = k (k users have been probed already).

(i) If we decide to transmit to a probed user, we should
transmit to the user with the best channel state, i.e., u.
In that case, the throughput would be: Ttr(Pk, u) = (1−
kβ)R(u).

(ii) If we decide to transmit to an un-probed user i ∈ Pk,
then the throughput would be3: Tg(i)(Pk, u) = (1 −
kβ)E[R(Ci)]. Of course, it is optimal to transmit to
the user with the highest expected channel state, in
which case the throughput becomes: Tg(Pk, u) = (1 −
kβ)maxi∈Pk

E[R(Ci)].

(iii) Finally, if we decide to probe another user i ∈ Pk, then
the optimal expected throughput we can achieve, given
that we make this choice and that the channel state of the
newly probed channel is ci, would be4: T ⋆(Pk ∪{i}, u∨
ci).

Now it can be easily seen that the maximal expected through-
put T ⋆(Pk, u) satisfies the following recursion equation (for
all k, Pk and u):

T ⋆(Pk, u)

= max

{

Ttr(Pk, u), Tg(Pk, u),

max
i∈Pk

{Ei [T ⋆(Pk ∪ {i}, u∨ Ci)]}

}

, (1)

where Ei[·] is the expectation taken with respect to Fi.
Thus, in each state (Pk, u), π⋆ chooses the control decision
corresponding to the term that achieves the maximum in (1),
e.g., if Ttr(Pk, u) achieves the maximum then the optimal
decision is to transmit.

Note that when the possible channel states is finite for
each user, it is indeed possible to solve (1), and thereby
obtain an optimal strategy. But, the brute force computation
has exponential (in terms of number of users) complexity as
the quantity T ⋆(Pk, u) has to be evaluated for every subset
Pk. So, deriving properties of optimal strategies is crucial,
either to exactly characterize these strategies or to reduce their
computational complexity.

Define: Tpr(i),tr(Pk, u) = (1− (k + 1)β)Ei[R(u∨Ci)], for
i ∈ Pk, and Tpr,tr(Pk, u) = (1−(k+1)β)maxi∈Pk

Ei[R(u∨
Ci)]. Tpr(i),tr(Pk, u) is the expected throughput that can be
achieved, starting from state (Pk, u), when we probe just
one additional user i ∈ Pk and then transmit to the best
probed user. We will show that in a large number of states, it
suffices to consider Tpr,tr(Pk, u), rather than T ⋆(Pk, u) in (1).
Since unlike T ⋆(Pk, u), Tpr,tr(Pk, u) can be computed with
complexity O(N), this considerably reduces the complexity
of computing an optimal strategy.

3Subscript g indicates ”guess”.
4We use the notation a ∨ b = max(a, b).



Theorem 1: Let (Pk, u) be the system state.
(a) Assume that Tpr,tr(Pk, u) ≥ max{Ttr(Pk, u), Tg(Pk, u)}.
The optimal decision is to probe an additional user from
Pk. Moreover, if Ttr(Pk, u) ≥ Tg(Pk, u), then after prob-
ing, we also have in the new system state, say (Pk+1, u

′),
Ttr(Pk+1, u

′) ≥ Tg(Pk+1, u
′). In words, in this case, an

optimal strategy will never transmit to an un-probed channel.
(b) Assume that Ttr(Pk, u) ≥ max{Tg(Pk, u), Tpr,tr(Pk, u)}.
The optimal decision is to transmit to the user i in Pk such
that ci = u.
(c) Assume that Tg(Pk, u) > Ttr(Pk, u) ≥ Tpr,tr(Pk, u).
The optimal decision is to transmit to the un-probed user
maximizing Tg(i)(Pk, u).

The above theorem shows that the optimal control decision
can be obtained using only the one-step-look-ahead throughput
Tpr,tr(Pk, u) in most of the states (Pk, u). Indeed, one of
the consequences of the theorem is that when guessing is not
allowed, i.e., the sender can transmit to one of the probed
users only, then the optimal control decision is characterized
by using the one-step-look-ahead throughput in all the states.
Thus, Theorem 1 plays an important role in reducing the
computational complexity of determining the optimal policy.

When guessing is allowed, Theorem 1 does not charac-
terize the optimal control decision is states (Pk, u) only
when Tg(Pk, u) > Tpr,tr(Pk, u) > Ttr(Pk, u). Using the
following example, we demonstrate that in these states the
optimal decision can not be characterized using one-step-look-
ahead throughput alone. Specifically, we show that to guess
and transmit may not be the optimal decision even when
Tg(Pk, u) > max{Tpr,tr(Pk, u), Ttr(Pk, u).

Example 3: Let us consider a broadcast channel with three
users. For simplicity, let the system state (P , u) denote the
set of probed users P and the rate u to the probed user with
the best channel. Note that here u denotes the transmission
rate and not the channel gain as assumed before. This change
can be made without loss of generality as R(·) is monotone
increasing. Let the system state be ({1}, 0) and let the distri-
butions for the remaining two users be as follows: C2 = 2k
w.p. 1/k and 0 otherwise; C3 = k w.p. 1/k and 0 otherwise,
for some constant k > 1. Now, note that Ttr({1}, 0) = 0,
Tg({1}, 0) = 2(1 − β) (achieved by transmitting to user 2),
and Tpr,tr({1}, 0) = 2(1 − 2β) (achieved by probing user 2).
Now, we show that guessing and transmitting to user 2 is not
the optimal decision in the state ({1}, 0). To see this consider
a policy π1 that probes user 3, and if the system state becomes
({1, 3}, k) then transmits to user 3, else guesses and transmits
to user 2 in system state ({1, 3}, 0). Note that the expected
throughput of this policy is (1 − 2β)

[

1 + 2
(

1 − 1
k

)]

. Thus,
when k

2 > 1−2β

1−4β
, π1 achieves higher expected throughput

than the policy which guesses and transmits to user 2 in state
({1}, 0). Specifically, when β = 1/20, k has to be greater
than 3 for π1 to achieve the higher expected throughput.

Next, we present the proof of Theorem 1.

B. Proof of Theorem 1

To prove Theorem 1, we use the following two lemmas,
whose proofs are given in Appendices I and II.

Fix the set Pk and let us define Dk as follows:

Dk = {u : Ttr(Pk, u) ≥ Tpr,tr(Pk, u)}. (2)

Lemma 1: There exists umax(Pk) such that Dk = {u : u ≥
umax(Pk)}.

Lemma 2: Fix any sequence of sets of probed users such
that Pk+1 = Pk∪{i} for some i ∈ Pk for k ∈ {0, . . . , N−1}.
We have: for all k, Dk ⊆ Dk+1, or equivalently umax(Pk) ≥
umax(Pk+1).

Now, let us prove Theorem 1. The first statement in (a)
holds since:

Tpr,tr(Pk, u) ≤ max
i∈Pk

{Ei [T ⋆(Pk ∪ {i}, u ∨ Ci)]} ,

and in view of (1). For the second statement of (a): without
loss of generality, let j denote the new probed user, and cj

the observed channel. Note that by assumption, we have:

R(u) ≥ max
i∈Pk

E[R(Ci)],

which implies that:

R(u ∨ cj) ≥ max
i∈Pk

E[R(Ci)] ≥ max
i∈Pk,i6=j

E[R(Ci)].

The last inequality is equivalent to the desired result.
Now to prove (b) and (c), we assume that Ttr(Pk, u) ≥
Tpr,tr(Pk, u), and show that the optimal decision is to retire.
More precisely, if Tg(Pk, u) > Ttr(Pk, u), the optimal deci-
sion is to transmit to the best un-probed user, otherwise the
optimal decision is to transmit to the best probed user.

An important remark is that starting from state (Pk, u), if
the optimal strategy does not immediately transmit to an un-
probed user, then it won’t transmit to an un-probed user later
(since when one probes, the set of un-probed users and the
time remaining for transmission reduce). As a consequence,
when computing for T ⋆(Pk ∪P , u′) for any non-empty set P
and any u′ ≥ u, we do not need to account for any of the
terms Tg in the recursion (1).

Fix any arbitrary PN−1 ⊃ Pk, and let us assume that the
users in PN−1 are probed. Then, the resulting system state
is (PN−1,∨i∈PN−1

ci). Note that ∨i∈PN−1
ci ≥ u as u =

∨i∈Pk
ci and Pk ⊂ PN−1. Thus, by Lemma 1, ∨i∈PN−1

ci ∈
Dk, and by Lemma 2, ∨i∈PN−1

ci ∈ DN−1. Thus, by (2),

Ttr(PN−1,∨i∈PN−1
ci)

≥ Tpr,tr(PN−1,∨i∈PN−1
ci)

= max
i∈PN−1

{

E[Ttr(PN−1 ∪ {i},∨i∈PN−1
ci ∨ Ci)

}

= max
i∈PN−1

{

E[T ⋆(PN−1 ∪ {i},∨i∈PN−1
ci ∨ Ci)

}

.

The last relation follows because after probing the last user,
the optimal decision is to transmit as it is the only decision.
Now, from (1), it follows that if N − 1 > k:

T ⋆(PN−1,∨i∈PN−1
ci) = Ttr(PN−1,∨i∈PN−1

ci). (3)



Note that (3) holds for any PN−1 ⊃ Pk and for any values of
the ci’s for i ∈ PN−1 \ Pk.

Next consider any state (PN−2,∨i∈PN−2
ci) that can appear

after probing N − 2 users starting from (Pk, u). As argued
before, here also we can conclude that ∨i∈PN−2

ci ∈ DN−2.
Thus,

Ttr(PN−2,∨i∈PN−2
ci)

≥ Tpr,tr(PN−2,∨i∈PN−2
ci)

= max
i∈PN−2

{

E[Ttr(PN−2 ∪ {i},∨i∈PN−2
ci ∨ Ci)]

}

= max
i∈PN−2

{

E[T ⋆(PN−2 ∪ {i},∨i∈PN−2
ci ∨ Ci)]

}

.

Then if N − 2 > k, Ttr(PN−2,∨i∈PN−2
ci) =

T ⋆(PN−2,∨i∈PN−2
ci). By induction down to k + 1, we

show that Ttr(Pk+1,∨i∈Pk+1
ci) = T ⋆(Pk+1,∨i∈Pk+1

ci), and
finally deduce that:

T ⋆(Pk, u) = max{Ttr(Pk, u), Tg(Pk, u), Tpr,tr(Pk, u)}.

This completes the proof.

III. OPTIMAL PROBING SEQUENCE

Theorem 1 provides useful guidelines to decide when to
transmit to a probed or un-probed user, or when to probe
a new user. This decision depends on the one-step-look-
ahead expected throughput. Nevertheless, it is in general very
difficult to know which user to probe next when probing is
optimal. We provide an answer to this issue in practically
relevant cases.

A. Stochastically Ordered Channels

We first introduce the notion of stochastically ordered
channels.

Definition 1: The channels of the N users are stochastically
ordered if there exists a permutation σ of {1, . . . , N} such that
for all σ(i) ≤ σ(j), Cσ(j) ≤st Cσ(i), where ≤st denotes the
usual strong stochastic ordering5.

Without loss of generality, when the channels are stochasti-
cally ordered, we assume that the permutation σ is σ(i) = i for
all i. Note also that having a stochastic order on the channels
is equivalent to having a similar order for the corresponding
rates (i.e., Cj ≤st Ci iff R(Cj) ≤st R(Ci)). An example of
ordered channels is when one can write Ci = E[Ci]Yi where
the random variables Yi’s are i.i.d. copies of a positive random
variable Y , i.e., when the channels have similar distributions
but different means. This is a quite usual fading model in
wireless networks.

B. Optimal Probing Strategy

When the channels are stochastically ordered, i.e. C1 ≥st

. . . ≥st CN , we can prove that we should always probe the
stochastically largest un-probed channel. So we should probe
the users in increasing order. The result is formalized in the
following theorem.

5X ≤st Y if and only if for all increasing function f such that E[f(Y )] <
+∞, E[f(X)] ≤ E[f(Y )].

Theorem 2: If the channels are stochastically ordered, then
when Tpr,tr(Pk, u) ≥ Ttr(Pk, u) ≥ Tg(Pk, u), then the
optimal decision is to probe user i ∈ Pk such that for all
j ∈ Pk, Cj ≤st Ci.

Before proving this result, note that it provides a full
description of the optimal probing and transmission strategy
when transmitting to an un-probed user is not possible. We
summarize this policy in the following corollary.

Corollary 1: When transmitting to an un-probed channel is
not possible and when the channels are stochastically ordered,
the one-step-look-ahead strategy is optimal, when the system
is in state (Pk, u):
(i) If Tpr,tr(Pk, u) ≥ Ttr(Pk, u), then we should probe the

stochastically largest un-probed user,
(ii) otherwise, we should transmit to user i ∈ Pk such that

ci = u.
Note that the stochastic ordering of the channels play an

important role in determining the optimal probing sequence.
When the channels are not stochastically ordered then prob-
ing user that achieves Tpr,tr(Pk, u) may not be optimal as
demonstrated in Example 2.

C. Proof of Theorem 2

The result of Theorem 2 seems quite intuitive. However, as
often in stochastic control problems, its proof is far from being
straightforward. In the simpler case of linear probing cost, the
authors of [5] could not come up with a simple proof of similar
results. Here with non-linear cost, it is more complicated.

We prove the result by induction on the number of un-
probed users. When this number is equal to 1, the result
holds since we can only probe this user. Now assume the
result holds when the number of un-probed users is strictly
smaller than N −k. Denote by (Pk, u) the system state. Since
Tpr,tr(Pk, u) ≥ Ttr(Pk, u), we have u ≤ umax(Pk). Define
for all i, j: αi = umax(Pk ∪ {i}), αj = umax(Pk ∪ {j}), and
α = umax(Pk ∪{i, j}). Note that αi ≥ αj . Finally we denote
by j the stochastically greatest user in Pk, and let i ∈ Pk with
i 6= j. If u ≥ αi, then after probing i or j, we should transmit.
It is then optimal to probe j. From now on we assume that
u ≤ αi.

We compare the expected throughput obtained starting from
state (Pk, u) (a) when first probing i and then j, and (b) when
first probing j and then i.

• In scenario (a), probing i results in a channel state xi. By
induction, we know that the next user to probe should be
j. Then if xi ≥ αi, we should not probe j and transmit.
If xi < αi, we should probe j. Denote by xj the state
of channel j. If u ∨ xi ∨ xj ≥ α, we should transmit;
otherwise we should probe further.

• In scenario (b), we first probe j. If xj ≥ αj , we should
transmit. Otherwise, we probe i. Then if u∨xi ∨xj ≥ α,
we transmit; otherwise we probe further.

We just need to compare the expected throughput in scenarios
(a) and (b) in cases where we transmit after probing i and/or j.
This is simply due to the fact that if we have to probe further
after i and j, the systems (a) and (b) are identical. Denote by



T (a)(u) and T (b)(u) the expected throughputs in scenarios (a)
and (b) when we do not probe more users than i and j:

T (a)(u)

= ak+1

∫ ∞

αi

dFi(x)R(x)

+ak+2

∫ αi

0

dFi(x)

∫ ∞

0

dFj(y)1u∨x∨y≥αR(u ∨ x ∨ y),

T (b)(u)

= ak+1

∫ ∞

αj

dFi(x)R(x ∨ u)

+ak+2

∫ αj

0

dFj(x)

∫ ∞

0

dFi(y)1u∨x∨y≥αR(u ∨ x ∨ y),

where ak = (1−kβ). We want to prove that G(u) = T (b)(u)−
T (a)(u) ≥ 0.

Lemma 3: For all u ≤ αj , we have G(u) = G(0).
Proof: First note that when u ≤ α, then T (a) and T (b)

are independent of u, and so is G(u). Now assume that α ≤
u ≤ αj . The first terms in T (a) and T (b) do not depend on u.
Furthermore their second terms are respectively equal to:

ak+2

∫ αi

0

dFi(x)

∫ ∞

0

dFj(y)1x∨y≥αR(x ∨ y)

−

∫ ∫

Γ(α,u)

dFi(x)dFj(y) (R(x ∨ y) − R(u)) , and

ak+2

∫ αj

0

dFj(x)

∫ ∞

0

dFi(y)1x∨y≥αR(x ∨ y)

−

∫ ∫

Γ(α,u)

dFi(x)dFj(y) (R(x ∨ y) − R(u)) ,

where Γ(α, u) = {(x, y) : α ≤ x, y ≤ u}. We deduce that
indeed G(u) is independent of u when u ≤ αj .

We now state the key lemma to conclude the proof.
Lemma 4: For all u such that αj ≤ u ≤ αi, G(u) ≥ 0.

Proof: We prove the result in the discrete setting6 using
a perturbation approach. Without loss of generality, let N be
the channel state space. Denote by pi(l) the probability that
the channel of user i is in state l. Observe that when Fi = Fj ,
the result holds. Now we assume the result is true for Fj and
show that increasing stochastically Fj does not change this
conclusion. We use F+

j defined by: for ǫ > 0, for a particular
l0 ∈ N in the support of Fj , p+

j (l0) = pj(l0)−ǫ, p+
j (l0 +1) =

pj(l0 + 1) + ǫ and for all l 6= l0, l0 + 1, p+
j (l) = pj(l). If

C+
j ∼ F+

j , then Cj ≤st C+
j . ǫ is meant to be chosen as small

as we wish. Note that using this kind of perturbations, we
can start from Fi and modify it to obtain Fj (it can be easily
proved by coupling arguments). Now it can be shown that the
function G+(u) obtained with F+

j instead of Fj is such that:

G+(u)

≥ G(u) + o(ǫ)

+ǫ×1l0≥u(R(l0+1)−R(l0))(ak+1−ak+2Fi(αi ∨ l0)).(4)

6Proof for the continuous setting is similar.

Note that the difference between G(u) and G+(u) may come
from the variation of Fj , which may imply a modification of
αi. The latter modification holds only in the very specific cases
where ak+2E[R(αi ∨Cj)] = ak+1R(αi), which simplifies the
analysis.

From (4), we conclude that G+(u) ≥ 0.

IV. NUMERICAL RESULTS

In this section, we give some numerical experiments illus-
trating the theoretical findings of the previous sections. We
compare the following probing and transmission strategies:
(a) the optimal strategy when guessing is allowed, whose
computation is based on the results of the previous section;
(b) the optimal strategy when guessing is not allowed; (c) the
strategy where all channels are probed before transmission;
(d) the strategy where no channel is probed, i.e., where the
transmission is made on the channel with the highest average
state.

We consider an asymmetric fading scenario: the channel
states of the various users are exponentially distributed but
with different means. We further assume that these averages
are ordered, i.e., the channels are stochastically ordered. The
averages are linearly decreasing with the channel index i. For
a given channel state, the corresponding rate follows Shannon
formula (P = 40dBm, N0 = −100dBm, W = 1). With a path
loss exponent equal to -3.5, the user with the worst average
channel is located roughly 2 times further from the transmitter
than the user with the best channel.

In Figure 1, we present the average throughputs of strategies
(a)-(d) when the number of users grows and for different
values of β, the proportion of slot required to probe a channel.
Note that the optimal strategies with or without guessing have
very similar performance except when the probing cost β
is very large. In fact, in this example, it turns out that the
optimal strategy transmits to a un-probed user very rarely,
and only when a lot of users have been probed already and
when the observed channel state is still low. This observation
is confirmed in Figure 2: here we consider the case where
β = 0.05 and N = 20 users. The curve T(probe,transmit)
represents the value of the maximum channel state for which
it is better to further probe than transmit to an already probed
user. T(guess) shows the maximum channel state for which it
is optimal to guess and transmit to a user that has not been
probed.

V. EXTENSIONS: IMPOSING FAIRNESS AMONG RECEIVERS

So far, we have proposed a strategy maximizing the long-
term system throughput. To impose fairness among users, we
may aim at maximizing utility instead. Let U be a concave
non-decreasing function, and denote by tπi (t) the throughput
received by user i under strategy π in time slot t. The long-
term throughput of user i is then φπ

i = limM
t=1

1
M

tπi (t). Now
the objective is to maximize

∑N

i=1 U(φπ
i ). Denote by T π

i (t)
the expected (with respect to the channel state distributions)
throughput received by user i. We propose the following
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Fig. 1. Average throughput of the various strategies as the number of users
N increases - Exponential channels with different means - β = 0.1 (upper
figure), 0.05 (middle figure), 0.02 (lower figure).

gradient algorithm: each time slot t, do

max
π

N
∑

i=1

T π
i (t) × U ′(ti(t)), (5)

ti(t + 1) = (1 − η)ti(t) + ηti(t). (6)

Note that solving (5) is equivalent to maximizing a weighted
sum of expected throughputs each time slot. This can be done
as in Sections II, III. We let the analysis of the proposed algo-
rithm, and in particular its convergence towards the optimum
when η tends to 0, for future work. Note that the optimization
problem considered is convex (to ensure the convexity, we can
make use of strategies with probabilistic decisions).
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Fig. 2. Decision thresholds as a function of the set of already probed users
- β = 0.05, N = 20 users.

APPENDIX I
PROOF OF LEMMA 1

Proof: Let u ∈ Dk and consider any u′ > u. Note that
the condition

(1 − kβ)R(u) ≥ (1 − (k + 1)β) max
i∈Pk

{Ei [R(u ∨ Ci)]}

implies that

(1 − kβ)R(u)

≥ (1 − (k + 1)β)Ei [R(u ∨ Ci)] ∀ i ∈ Pk,

= (1 − (k + 1)β)

[

R(u)Fi(u) +

∫ ∞

u

R(x)dFi(x)

]

≥ (1 − (k + 1)β)

[

R(u)Fi(u
′) +

∫ ∞

u′

R(x)dFi(x)

]

.

Thus, (1 − kβ)R(u)[1 − Fi(u
′)]

≥ (1 − kβ)

∫ ∞

u′

R(x)dFi(x) − βEi [R(u ∨ Ci)] , .

From the above inequality we can conclude the following.

(1 − kβ)R(u′)[1 − Fi(u
′)]

≥ (1 − kβ)

∫ ∞

u′

R(x)dFi(x) − βEi [R(u′ ∨ Ci)] . (7)

Relation (7) holds for every i ∈ Ak, and the lemma is proved.
Note that to obtain (7), we used the fact that R(·) and Fi(·)
are monotonically non-decreasing in u.

APPENDIX II
PROOF OF LEMMA 2

Proof: The proof is by contradiction. Assume that there
exist u such that u ∈ Dk, but u 6∈ Dk+1. Thus,

(1 − (k + 1)β)R(u)

< (1 − (k + 2)β) max
i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ (1 − kβ)R(u) − βR(u)

< (1 − (k + 1)β) max
i∈Pk+1

{Ei [R(u ∨ Ci)]}

−β max
i∈Pk+1

{Ei [R(u ∨ Ci)]} ,



⇒ Ttr(Pk, u) − βR(u)

< (1 − (k + 1)β) max
i∈Pk

{Ei [R(u ∨ Ci)]}

−β max
i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ Ttr(Pk, u) − βR(u)

< Tpr,tr(Pk, u) − β max
i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ Ttr(Pk, u) − Tpr,tr(Pk, u)

< βR(u) − β max
i∈Pk+1

{Ei [R(u ∨ Ci)]}

⇒ 0 <

[

R(u) − max
i∈Pk+1

{Ei [R(u ∨ Ci)]}

]

.

Note that the last relation above provides the required contra-
diction as u ≤ (u ∨ Ci).
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