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Abstract—This paper focuses on the design of medium access
control protocols for cognitive radio networks. The scenario in
which a single cognitive user wishes to opportunistically exploit
the availability of empty frequency bands within parts of the
radio spectrum having multiple bands is first considered. In this
scenario, the availability probability of each channel is unknown
a priori to the cognitive user. Hence efficient medium access
strategies must strike a balance between exploring (learning)
the availability probability of the channels and exploiting the
knowledge of the availability probability identified thus far. For
this scenario, an optimal medium access strategy is derived and
its underlying recursive structure is illustrated via examples. To
avoid the prohibitive computational complexity of this optimal
strategy, a low complexity asymptotically optimal strategy is
developed. Next, the multi-cognitive user scenario is considered
and low complexity medium access protocols, which strike an
optimal balance between exploration and exploitation in such
competitive environments, are developed.

I. INTRODUCTION

Recently, the opportunistic spectrum access problem has
been the focus of significant research activities [1]. The idea
is to allow unlicensed users (i.e., cognitive users) to access
the available spectrum when the licensed users (i.e., primary
users) are not active, thus to increase the spectral efficiency of
the existing wireless networks. The presence of high priority
primary users and the requirement that the cognitive users
should not interfere with them define a new medium access
paradigm that we refer to as cognitive medium access. The
goal of the current work is to develop a unified framework for
the design of efficient, and low complexity, cognitive medium
access protocols.

The spectral opportunities available to cognitive users are
by their nature time-varying on different time-scales. For
example, on a small scale, multimedia data traffic of the
primary users will tend to be bursty [2]. On a large scale, one
would expect the activities of each user to vary throughout the
day. Therefore, to avoid interfering with the primary network,
cognitive users must first probe to determine whether there are
primary activities before transmission. Under the assumption
that each cognitive user cannot access all of the available

L. Lai and H. V. Poor ({llai,poor}@princeton.edu) are with the De-
partment of Electrical Engineering at Princeton University. H. El Gamal
(helgamal@ece.osu.edu) is with the Department of Electrical and Computer
Engineering at the Ohio State University and is currently visiting Nile
University, Cairo, Egypt. H. Jiang (hai.jiang@ece.ualberta.ca) is with the
Department of Electrical and Computer Engineering at the University of
Alberta. This research was supported by the National Science Foundation
under Grants ANI-03-38807 and CNS-06-25637.

channels simultaneously [3]–[6], the main task of the medium
access protocol is to distributively choose which channels each
cognitive user should attempt to use in different time slots, in
order to fully (or maximally) utilize the spectral opportunities.
The statistical information about the primary users’ traffic
will be useful for this decision process. For example, with
a single cognitive user capable of accessing (sensing) only
one channel at each time slot, the problem becomes trivial if
the probability that each channel is free is known a priori. In
this case, the optimal rule is for the cognitive user to access
the channel with the highest probability of being free in all
time slots. However, such time-varying traffic information is
typically not available to the cognitive users a priori. The
need to learn this information on-line creates a fundamental
tradeoff between exploitation and exploration. Exploitation
refers to the short-term gain resulting from accessing the
channel with the estimated highest probability of being free
(based on the results of previous sensing results) whereas
exploration is the process by which a cognitive user learns the
statistical behavior of the primary traffic (by choosing possibly
different channels to probe across time slots). In the presence
of multiple cognitive users, the medium access algorithm must
also account for the competition between different users over
the same channel.

In this paper, we develop a unified framework for the
design and analysis of cognitive medium access protocols.
This framework allows for the construction of strategies that
strike an optimal balance among exploration, exploitation
and competition. Tools from reinforcement machine learning
are exploited to develop optimal cognitive medium access
protocols for the cognitive radio networks. More specifically,
we consider the following scenarios in this paper. In the
first scenario, we assume the existence of a single cognitive
user capable of accessing only a single channel in each time
slot. In this setting, we derive an optimal sensing rule that
maximizes the expected throughput obtained by the cognitive
user. Compared with a genie-aided scheme, in which the
cognitive user knows a priori the primary network traffic
information, there is a throughput loss suffered by any medium
access strategy. We obtain a lower bound on this loss and
further construct a linear complexity single index protocol that
achieves this lower bound asymptotically (when the primary
traffic behavior changes very slowly). In the second scenario,
we design distributed sensing rules for the scenario in which
there are multiple cognitive users. The cognitive users must
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also take the competition from other cognitive users into
consideration when making sensing decisions. With different
assumptions on prior information available at the cognitive
users, we develop optimal distributed sensing strategies and
characterize the performance loss of these strategies compared
with the optimal centralized scheme.

The rest of this paper is organized as follows. Our network
model is detailed in Section II. Section III analyzes the
scenario in which there is only a single cognitive user. The
extension to the multi-user case is reported in Section IV.
Finally, Section V summarizes our conclusions and points out
several possible future directions. Due to space limitation, we
omit the proofs of the results presented in this paper. Interested
readers can refer to [7] for details.

II. NETWORK MODEL

Figure 1 shows the channel model under study. We consider
a primary network consisting of N non-overlapping channels,
N = {1, · · · , N}, each with bandwidth Bw. The users in the
primary network are operated in a synchronous time-slotted
fashion. We assume that at each time slot, channel i is free
with probability θi. Let Zi(j) be a random variable that equals
1 if channel i is free at time slot j and equals 0 otherwise.
Hence, given θi, Zi(j) is a Bernoulli random variable with
probability density function (pdf)

hθi
(zi(j)) = θiδ(1) + (1 − θi)δ(0),

where δ(·) is a delta function. Furthermore, for a given θ =
(θ1, · · · , θN ), Zi(j)s are independent for each i and j. We
consider a block varying model in which the value of θ is
fixed for a block of T time slots and then randomly changes
at the beginning of the next block according to a joint pdf
f(θ).

Channel 1
Channel 2

Channel N

t=1 t=T

Occupied by the primary users

Spectrum opportunities

Fig. 1. Channel model.

In our model, the cognitive users attempt to exploit the
availability of free channels in the primary network by sensing
the activity at the beginning of each time slot. Our work seeks
to characterize efficient strategies for choosing which channels
to sense (access). The challenge here stems from the fact that
the cognitive users are assumed to be unaware of the exact
value of θ a priori. We consider two cases in which a cognitive
user either has or does not have prior information about the pdf
of θ, i.e., f(θ). To further illustrate the point, let us consider
our first scenario in which a single cognitive user is capable

of sensing only one channel at each time slot. At time slot j,
the cognitive user selects one channel S(j) ∈ N to sense.
If the sensing result shows that channel S(j) is free, i.e.,
ZS(j)(j) = 1, the cognitive user can send B bits over this
channel; otherwise, the cognitive user will wait until the next
time slot and select a possibly different channel to sense. The
number of bits that a cognitive user is able to send over a
block with T slots is

W =

T
∑

j=1

BZS(j)(j).

W is a random variable that depends on the traffic in the
primary network and, more importantly for us, on the medium
access protocols employed by the cognitive user. Therefore,
the overarching goal of Section III is to construct low
complexity medium access protocols that maximize E{W}.
Intuitively, the cognitive user would like to select the channel
having the highest probability of being free in order to obtain
more transmission opportunities. If θ is known then this
problem is trivial: the cognitive user should choose the channel
i∗ = arg max

i∈N
θi to sense. The uncertainty in θ imposes a

fundamental tradeoff between exploration, in order to learn
θ, and exploitation, by accessing the channel with the highest
estimated availability probability based on current information
gathered through sensing, as detailed in the following sections.

III. SINGLE USER SCENARIO

We start by developing an optimal solution to the single
user cognitive user scenario. We can model our single user
cognitive medium access problem as a bandit problem, a class
of problems studied in reinforcement machine learning. In a
typical setting, a decision maker must sequentially choose
one process to observe from N ≥ 2 stochastic processes,
which have parameters that are unknown to the decision maker.
Associated with each observation is a utility function. The
objective of the decision maker is to maximize the sum or
discounted sum of the utilities via a strategy that specifies
which process to observe for every possible history of selec-
tions and observations. A comprehensive treatment covering
different variants of bandit problems can be found in [8]–[11].

A. Optimal Solution for the General Case

The cognitive user employs a medium access strategy Γ,
which will select channel S(j) ∈ N to sense at time slot j
for any possible causal information pattern obtained through
the previous j − 1 observations:

Ψ(j) = {s(1), zs(1)(1), · · · , s(j − 1), zs(j−1)(j − 1)}, j ≥ 2,

i.e. s(j) = Γ(f, Ψ(j)). Notice that zs(j)(j) is the sensing
outcome of the jth time slot, in which s(j) is the channel
being accessed. If j = 1, there is no accumulated information,
and thus Ψ(1) = φ and s(1) = Γ(f). We denote the expected
value of the payoff obtained by a cognitive user who uses
strategy Γ as WΓ = Ef{W}, where W is defined in Section II.



We further denote

V ∗(f, T ) = sup
Γ

WΓ,

which is the largest throughput that the cognitive user could
obtain when the spectral opportunities are governed by f(θ)
and the exact value of each realization of θ is not known
by the user a priori. Each medium access decision made by
the cognitive user has two effects. The first one is the short
term gain, i.e., an immediate transmission opportunity if the
chosen channel is found free. The second one is the long
term gain, i.e., the updated statistical information about f(θ).
This information will help the cognitive user in making better
decisions in future stages. There is an interesting tradeoff
between the short and long term gains. If we only want to
maximize the short term gain, we can pick the one with
the highest estimated free probability to sense, based on the
current information. This myopic strategy maximally exploits
the existing information. On the other hand, by picking other
channels to sense, we gain valuable statistical information
about f(θ) that can effectively guide future decisions. This
process is typically referred to as exploration, as noted previ-
ously.

More specifically, let f j(θ) be the updated pdf after making
j − 1 observations. We begin with f 1(θ) = f(θ). After
observing zs(j)(j), we update the pdf using the following
Bayesian formula.

If zs(j)(j) = 1,

f j+1(θ) =
θs(j)f

j(θ)
∫

θs(j)f j(θ)dθ
, (1)

if zs(j)(j) = 0,

f j+1(θ) =

(

1 − θs(j)

)

f j(θ)
∫ (

1 − θs(j)

)

f j(θ)dθ
. (2)

The following result characterizes the optimal medium
access control protocols.

Lemma 1: For any prior pdf f , the following condition
specifies V ∗ and the optimal strategy Γ∗:

V ∗(f, T ) = max
s(1)∈N

Ef

{

BZs(1) + V ∗
(

fZs(1)
, T − 1

)}

, (3)

where fZs(1)
is the conditional pdf updated using the Bayesian

formula, as if the cognitive user chooses s(1) and observes
Zs(1). Also, V ∗

(

fZs(1)
, T − 1

)

is the value of a bandit
problem with prior information fZs(1)

and T − 1 sequential
observations. 2

In principle, Lemma 1 provides the solution that maximizes
WΓ. Effectively, it decouples the calculation at each stage,
and hence, allows the use of dynamic programming to solve
the problem. The idea is to solve the channel selection
problem with a smaller dimension first and then use backward
deduction to obtain the optimal solution for a problem with a
larger dimension. Starting with T = 1, the second term inside
the expectation in (3) is 0, since T−1 = 0. Hence, the optimal

solution is to choose the channel i having largest Ef{BZi},
which can be calculated as

Ef{BZi} = B

∫

θif(θ)dθ.

And V ∗(f, 1) = max
i∈N

Ef{BZi}.
With the solution for T = 1 at hand, we can now solve the

T = 2 case using (3). At first, for every possible choice of
s(1) and possible observation zs(1), we calculate the updated
pdf fzs(1)

using the Bayesian formula. Next, we calculate
V ∗(fzs(1)

, 1) (which is a T = 1 problem with updated pdf
fzs(1)

). Finally, applying (3), we have the following equation
for the channel selection problem with T = 2:

V ∗(f, 2) = max
i∈N

∫

[Bθi + θiV
∗(fzi=1, 1)

+(1− θi)V
∗(fzi=0, 1)] f(θ)dθ.

Correspondingly, the optimal solution is Γ∗(f) =
argmax

i∈N
V ∗(f, 2), i.e., in the first step, the cognitive

user should choose i∗(1) = argmax
i∈N

V ∗(f, 2) to sense. After

observing zi∗(1), the cognitive user has Ψ(1) = {i∗(1), zi∗(1)},
and it should choose i∗(2) = argmax

i∈N
V ∗(fzi∗(1)

, 1) implying

that Γ∗(f, Ψ(1)) = arg max
i∈N

V ∗(fzi∗(1)
, 1).

Similarly, after solving the T = 2 problem, one can proceed
to solve the T = 3 case. Using this procedure recursively, we
can solve the problem with T − 1 observations. Finally, our
original problem with T observations is solved as follows.

V ∗(f, T ) = max
i∈N

∫

[Bθi + θiV
∗(fzi=1, T − 1)

+(1 − θi)V
∗(fzi=0, T − 1)] f(θ)dθ.

The optimal solution presented above can be simplified
when f(θ) has a certain structure, as illustrated by the
following examples.

Example 1: (One Known Channel) We have N = 2 chan-
nels with independent primary traffic distributions. Moreover,
θ2 is known. The traffic pattern of channel 1 is unknown, and
the probability density function of θ1 is given by f1(θ1). Since
channel 2 is known and is independent of channel 1, sensing
channel 2 will not provide the cognitive user with any new
information. Hence, once the cognitive user starts accessing
channel 2 (meaning that at a certain stage, sensing channel 2
is optimal), there would be no reason to return to channel 1
in the optimal strategy. A generalized version of this assertion
was first proved in Lemma 4.1 of [12]. Restating the strategy
in our channel selection setup, we have the following lemma.

Lemma 2: In the optimal medium access strategy, once the
cognitive user starts accessing channel 2, it should keep pick-
ing the same channel in the remaining time slots, regardless
of the outcome of the sensing process. 2

This lemma essentially converts the channel selection prob-
lem to an optimal stopping problem [13], where we only need
to focus on the strategies that decide at which time-slot we



should stop sensing channel 1, if it is ever accessed. The
following lemma derives the optimal stopping rule.

Lemma 3: For any f1(θ1) and any T , if θ2 ≥ Λ(f1, T ),
then we should sense channel 2. Here

Λ(f1, T ) = max
Γ(f1)=1

Ef1

{

∑M
j=1 Z1(j)

}

Ef1{M}
, (4)

where Γ are the set of strategies that start with channel 1 and
never switch back to channel 1 after selecting channel 2; and
M is a random number that represents the last time slot in
which channel 1 is sensed, when the cognitive user follows a
strategy in Γ.
One can now combine Lemma 2 and Lemma 3 to obtain the
following optimal strategy.

1) At any time slot j, if channel 2 was sensed at time slot
j − 1, keep sensing channel 2.

2) If channel 1 was sensed at time slot j − 1, update the
pdf f j using (1) and (2) and compute Λ(f j

1 , T − j + 1)
using (4). If Λ(f j

1 , T − j + 1) ≤ θ2, switch to channel
2; otherwise, keep sensing channel 1. 2

Example 2: (Independent Channels)

We have N independent channels with f(θ) =
N
∏

i=1

fi(θi).

This case has a simple form of solution in the asymptotic
scenario T → ∞ assuming the following discounted form for
the utility function

W = Ef







∞
∑

j=1

αjBZS(j)(j)







,

where 0 < α < 1 is a discount factor. This particular scenario
has been considered in [3], and the optimal strategy for this
scenario is the following.

1) If channel l was selected at time slot j − 1, then we get
the updated pdf f j

l using equations (1) and (2), based
on the sensing result zl(j − 1). For other channels, we
let f j

i = f j−1
i , ∀i 6= l, i ∈ N . That is we only update

the pdf of the channel which was just accessed (due to
the independence assumption).

2) For each channel, we calculate an index using the
following equation

Λi(f
j
i ) = max

Γ(fj
i
)=i

Efj
i

{

∑M
j=1 αjZ1(j)

}

Efj

i
{
∑M

j=1 αj}
,

where Γ is the set of strategies for the equivalent
One-Known-Channel selection problem (with channel i
having the unknown parameter) and M is a random
number corresponding to the last time slot in which
channel i will be selected in the equivalent One-Known-
Channel case. Λi is typically referred to as the Gittins
Index [14].

3) Choose the channel with the largest Gittins Index to
sense at time slot j.

The optimality of this strategy is a direct application of
the elegant result of Gittins and Jones [14]. Computational
methods for evaluating the Gittins Index Λ could be found
in [15] and references therein.

B. Non-parametric Asymptotic Analysis and Asymptotically
Optimal Strategies

The optimal solution developed in Lemma 1 suffers from a
prohibitive computational complexity. In particular, the dimen-
sionality of our search dimension grows exponentially with the
block length T . Moreover, one can envision many practical
scenarios in which it would be difficult for the cognitive user
to obtain the prior information f(θ). In the remaining of
this section, we analyze non-parametric schemes that do not
explicitly use f(θ), and thus the rules Γ considered in the
following depend only on Ψ(j) explicitly. We aim to develop
schemes that have low complexity but still maintain certain
optimality.

For a given strategy Γ, the expected number of bits the
cognitive user is able to transmit through a block with given
parameters θ is

E {W} =
T
∑

j=1

B
N
∑

i=1

θiPr {Γ(Ψ(j)) = i} .

Recall that Γ(Ψ(j)) = i means that, following strategy Γ, the
cognitive user should choose channel i in time slot j, based
on the available information Ψ(j). Here Pr {Γ(Ψ(j)) = i} is
the probability that the cognitive user will choose channel i at
time slot j, following the strategy Γ.

Compared with the idealistic case where the exact value of θ

is known, in which the optimal strategy for the cognitive user
is to always choose the channel with the largest availability
probability, the loss incurred by Γ is given by

L(θ; Γ) =

T
∑

j=1

Bθi∗ −
T
∑

j=1

B

N
∑

i=1

θiPr {Γ(Ψ(j)) = i} ,

where θi∗ = max{θ1, · · · , θN}. We say that a strategy Γ is
consistent if, for any θ ∈ [0, 1]N , there exists β < 1 such that
L(θ; Γ) scales as1 O(T β). The following lemma characterizes
the fundamental limits of any consistent scheme.

Lemma 4: For any θ and any consistent strategy Γ, we have

lim inf
T→∞

L(θ; Γ)

ln T
≥ B

∑

i∈N\{i∗}

θi∗ − θi

D(θi||θ∗i )
, (5)

where D(θi||θl) is the Kullback-Leibler divergence be-
tween the two Bernoulli random variables with parameters
θi and θl respectively: D(θi||θl) = θi ln (θi/θl) + (1 −
θi) ln ((1 − θi)/(1 − θl)) . 2

1In this paper, we use Knuth’s asymptotic notation: 1) g1(N) = o(g2(N))
means that ∀c > 0, ∃N0, such that ∀N > N0, g1(N) < cg2(N);
2) g1(N) = ω(g2(N)) means that ∀c > 0,∃N0, such that ∀N >

N0, g2(N) < cg1(N); 3) g1(n) = O(g2(N)) means that ∃c2 ≥ c1 >

0,N0, such that ∀N > N0, c1g2(N) ≤ g1(N) ≤ c2g2(N).



Lemma 4 shows that the loss of any consistent strategy
scales at least as ω(ln T ). An intuitive explanation of this
loss is that we need to spend at least O(ln T ) time slots on
sampling each of the channels with smaller θi, in order to
get a reasonably accurate estimate of θ, and hence use it to
determine the channel having the largest θi to sense. We say
that a strategy Γ is order optimal if L(θ; Γ) ∼ O(ln T ).

Now, the first question that arises is whether there exist
order optimal strategies. As shown later in this section, we can
design suboptimal strategies that have loss of order O(ln T ).
Thus the answer to this question is affirmative. Before pro-
ceeding to the proposed low complexity order-optimal strategy,
we first analyze the loss order of some heuristic strategies that
may appear to be reasonable in certain applications.

The first simple rule is the random strategy Γr where, at
each time slot, the cognitive user randomly chooses a channel
from the available N channels. The fraction of time slots
the cognitive user spends on each channel is therefore 1/N ,
leading to the loss

L(θ; Γr) =

B
N
∑

i=1

(θi∗ − θi)

N
T ∼ O(T ).

The second one is the myopic rule Γg in which the cognitive
user keeps updating f j(θ), and chooses the channel with the
largest value of

θ̂i =

∫

θif
j(θ)dθ

at each stage. Since there are no convergence guarantees for
the myopic rule, that is θ̂ may never converge to θ due to the
lack of sufficiently many samples for each channel [16], the
loss of this myopic strategy is O(T ).

The third protocol we consider is staying with the winner
and switching from the loser rule ΓSW where the cognitive
user randomly chooses a channel in the first time slot. In the
succeeding time-slots 1) if the accessed channel was found to
be free, it will choose the same channel to sense; 2) otherwise,
it will choose one of the remaining channels based on a certain
switching rule.

Lemma 5: No matter what the switching rule is,
L(θ; ΓSW ) ∼ O(T ). 2

Now, we present a linear complexity order optimal strategy.
Rule 1: (Order optimal single index strategy) The cognitive

user maintains two vectors X and Y, where each Xi records
the number of time slots in which the cognitive user has sensed
channel i to be free, and each Yi records the number of time
slots in which the cognitive user has chosen channel i to sense.

1) Initialization: at the beginning of each block, each
channel is sensed once.

2) After the initialization period, the cognitive user obtains
an estimate θ̂ at the beginning of time slot j, given by θ̂i(j) =
Xi(j)/Yi(j), and assigns an index

Λi(j) = θ̂i(j) +
√

2 ln j/Yi(j)

to the ith channel. The cognitive user chooses the channel
with the largest value of Λi(j) to sense at time slot j. After
each sensing, the cognitive user updates X and Y. 2

Lemma 6: The strategy specified in Rule 1 is order optimal.
2

The intuition behind this strategy is that as long as Yi grows
as fast as O(ln T ), Λi converges to the true value of θi in
probability, and the cognitive user will choose the channel with
the largest θi eventually. The loss of O(ln T ) comes from the
time spent on sampling the inferior channels in order to learn
the value of θ. This price, however, is inevitable as established
in the lower bound of Lemma 4.

IV. MULTIPLE COGNITIVE USERS SCENARIO

The presence of multiple cognitive users adds an element
of competition to the problem. In order for a cognitive user to
get hold of a channel now, it must be free from the primary
traffic and other competing cognitive users. More rigorously,
we assume the presence of a set K = {1, · · · , K} of cognitive
users and consider the distributed medium access decision
processes at the multiple users with no coordination. We
denote Ki(j) ⊆ K as the random set of users who choose
to sense channel i at time slot j. We assume that the users
follow a generalized version of the Carrier Sense Multiple
Access/Collision Avoidance (CSMA-CA) protocol to access
the channel after sensing the main channel to be free, i.e., if
channel i is free, each user k in the set Ki(j) will generate
a random number tk(j) according to a certain probability
density function g, and wait the time specified by the generated
random number. At the end of the waiting period, user k senses
the channel again, and if it is found free, the packet from user k
will be transmitted. The probability that user k in the set Ki(j)
gains access to the channel is the same as the probability that
tk(j) is the smallest random number generated by the users in
the set Ki(j). Thus, the throughput user k achieves in a block
is

Wk =
T
∑

j=1

BZSk(j)(j)I

{

k = arg min
q∈KSk(j)(j)

tq(j)

}

,

in which Sk(j) is the channel selected by the kth user at time
slot j, and I(·) is an indicator function.

Therefore, user k should devise sensing rule Γk that max-
imizes E{Wk}. Clearly, even if θ is known, it is not optimal
anymore for all the users to always choose the channel with
the largest θi to sense. In particular, if all the users choose
the channel with the largest θi, the probability that a given
user gains control of the channel decreases, while potential
opportunities in other channels in the primary network are
wasted.

A. Known θ Case

To enable a succinct presentation, we first consider the case
in which the values of θ are known to all the cognitive users.
The users distributively choose channels to sense and compete
for access if the channels are free.



1) The Optimal Symmetric Strategy: Without loss of gen-
erality, we consider a mixed strategy where user k will
choose channel i with probability pk,i. Furthermore, we let
pk = [pk,1, · · · , pk,N ] and consider the symmetric solution
in which p = p1 = · · · = pK . The symmetry assumption
implies that all the users in the network distributively follow
the same rule to access the spectral opportunities present in
the primary network, in order to maximize the same average
throughput each user can obtain. The following result derives
the optimal solution in this situation.

Lemma 7: For a cognitive network with K > 1 cognitive
users and N channels with probability θ of being free, the
optimal p∗ is given by

p∗i =







{

1 −
(

λ∗

Kθi

)1/(K−1)
}+

, for θi > 0,

0, for θi = 0,

where λ∗ is a constant such that
∑

p∗i = 1. Here {x}+ =
max{0, x}. 2

The total throughput of the K cognitive users can be
represented as

KW = BKT
∑

θi/K
{

1 − (1 − p∗i )
K
}

= BT
∑

θi

{

1 − (1 − p∗i )
K
}

.

On the other hand, the average total spectral opportunities of
the primary network are BT

∑

θi. This upper bound can be
achieved by a centralized channel allocation strategy when
K > N (simply by assigning one cognitive user to each
channel). Therefore, the loss of the distributed protocol as
compared with the centralized scheduling is

L = BT
∑

θi(1 − p∗i )
K ,

If the number of available channels in the network N is
fixed and the number of cognitive users K in the network
increases, we have the following asymptotic characterization.

Lemma 8: Let 2 ≤ Q ≤ N be the number of channels for
which θi > 0. We have p∗i → 1/Q, and L → 0 exponentially
as K increases, i.e., L ∼ O(e−c1K), where

c1 = ln(Q/(Q− 1)).

The reason for the exponential decrease in the loss is that,
as the number of cognitive users increases, the probability
that there is no user sensing any particular channel decreases
exponentially. If Q = 1, there is no loss of performance,
since all users will always sense the channel with non-zero
availability probability.

2) The Game Theoretic Model: The optimality of the
distributed protocol proposed above hinges on the assumption
that all the users will follow the symmetric rule. However,
it is straightforward to see that if a single cognitive user
deviates from the rule specified in Lemma 7, it will be able to
transmit more bits. If this selfish behavior propagates through
the network, it may lead to a significant reduction in the overall

throughput. This observation motivates our next step in which
the channel selection problem is modeled as a non-cooperative
game, where the cognitive users are the players, the Γks are
the strategies and the average throughput of each user is the
payoff. The following result derives a sufficient condition for
the Nash equilibrium in the asymptotic scenario K → ∞.

Lemma 9: (Γ1, · · · , ΓK) is a Nash-equilibrium, if K is
large and at each time slot, there are τiK users sensing channel
i, where τi satisfies τi = θi/

∑

θi. At this equilibrium, each
user has probability

∑

θi/K of transmitting at each time slot.
2

With this equilibrium result, the cognitive users can use
the following stochastic sensing strategy to approximately
work on the equilibrium point for a large but finite K. Let
sk(j) be the channel chosen by user k at time slot j. At
each time slot, each user independently selects channel i with
probability τi = θi/

∑

θi, i.e., Pr{sk(j) = i} = τi. Then at
each time slot, the number of users sensing channel i will be
K
∑

k=1

I{sk(j) = i}, where the I{sk(j) = i}s are i.i.d Bernoulli

random variables. Hence, the total number of users sensing
channel i is a binomial random number, and the fraction of
users sensing channel i converges to τi in probability as K
increases, i.e.

τ
′

=

K
∑

k=1

I{sk(j) = i}

K
→ τi

in probability. Hence, as K increases, the operating point will
converge to the Nash equilibrium in probability.

For any K, the probability that there is no user choosing
channel i to sense is (1 − τi)

K . Hence the performance loss
compared with the centralized scheme is

L = BT
∑

θi(1 − τi)
K = BT

N
∑

i=1

θi

(

∑N
l=1 θl − θi
∑N

l=1 θl

)K

.

It is easy to check that

lim
K→∞

L

exp−c2K
= BTθl∗ ,

where θl∗ = min{θi : θi > 0}, and

c2 = ln

∑

θi
∑N

l=1 θl − θl∗
.

It is now clear that the loss of the game theoretic scheme
goes to zero exponentially, though the decay rate is smaller
than that of the scheme specified in Lemma 7. On the other
hand, compared with the scheme in Lemma 7, the game
theoretic scheme has the advantage that the cognitive users
do not need to know the total number of cognitive users K in
the network and, more importantly, they have no incentive to
deviate unilaterally.



B. Unknown θ Case

Now, we consider the more practical scenario in which θ is
unknown to the cognitive users a priori. Hence, the cognitive
users also need to estimate θ. Combining the results from
single user case and multiple user with known θ case, we
design the following low complexity asymptotically optimal
strategy.

Rule 2: 1) Initialization: Each user k maintains the follow-
ing two vectors: Xk, which records the number of time slots
in which user k has sensed each channel to be free; and Yk,
which records the number of time slots in which user k has
sensed each channel. At the beginning of each block, user k
senses each channel once and transmits through this channel
if the channel is free and it wins the competition. Also, set
Xk,i = 1, regardless of the sensing result of this stage.

2) At the beginning of time slot j, user k estimates θ̂i as

θ̂i(j) = Xk,i(j)/Yk,i(j),

and chooses each channel i ∈ N with probability

θ̂i(j)/
∑

θ̂i(j).

After each sensing, Xk and Yk are updated. 2

Lemma 10: If K is large, the scheme in Rule 2 converges
to the Nash equilibrium specified in Lemma 9 in probability,
as T increases. 2

The intuition behind this scheme is that, each user will
sample each channel at least O(T ) times, and hence as
T increases, the estimate θ̂ converges to θ in probability
implying that the unknown θ case will eventually reduce to
the case in which θ is known to all the users. Hence, if K
is sufficiently large, the operating point converges to the Nash
equilibrium in probability.

If one can assume that the users will follow the pre-specified
rule, then we can design the following strategy that converges
to the optimal operating point in probability for any K, as T
increases.

Rule 3: 1) Initialization: Same as Rule 2.
2) At the beginning of time slot j ≤ ln T , user k estimates

θ̂i as
θ̂i(j) = Xk,i(j)/Yk,i(j),

and chooses each channel i ∈ N with probability

θ̂i(j)/
∑

θ̂i(j).

For j ≥ ln T , the ith channel is sensed with probability

p̂∗i =

{

1 −
(

λ∗/θ̂i

)1/(K−1)
}+

. (6)

After each sensing, Xk and Yk are updated. 2

Lemma 11: The proposed scheme converges in probability
to the optimal operating point specified in Lemma 7, as T
increases. 2

V. CONCLUSIONS

This work has developed a unified framework for the design
and analysis of cognitive medium access protocols. In the
single user scenario, the optimal sensing strategy that balances
the tradeoff between exploration and exploitation has been
developed. A linear complexity cognitive medium access algo-
rithm, which is asymptotically optimal as the number of time
slots increases, has been proposed. The multi-user setting has
also been formulated as a competitive bandit problem enabling
the design of efficient and game theoretically fair medium
access protocols. Our results motivate several interesting di-
rections for future research, for example, developing optimal
medium access strategies with consideration of sensing errors
and other practical issues. Applying other powerful tools from
sequential analysis to design and analyze wireless networks is
a promising research direction.
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