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Abstract—Environmental energy is becoming a feasible
alternative for many low-power systems, such as wire-
less sensor nodes. Designing an environmentally powered
device faces several challenges: choosing the exact type
of the energy harvester, the energy storage elements
and determining the duty cycle of the application. With
harvesting, the design process becomes even more difficult
because it also has to take into account the unpredictability
of the energy source.

The contribution of this paper is a methodology that
facilitates the analysis of energy harvesting nodes. The
existing modeling strategies for battery powered systems
are not suitable because they do not capture the uncer-
tainty of the power source. Also, the metrics of interest
for battery powered devices are different, as opposed to
the harvesting powered ones: in the former case we search
to maximize the system lifetime, while in the latter case a
more expressive goal is to increase the system availability.

Keywords: Energy harvesting, Wireless Sensor
Nodes, Discrete Time Markov Chains, stochastic mod-
eling, system metrics

I. INTRODUCTION

Energy harvesting has grown in the last decade as a
viable technology for powering wireless sensor nodes
and mobile electronics [21], [15], [10], [26], [7].

Nevertheless, environmental energy comes at a price.
Even if harvesters can ensure a theoretically unlimited
amount of energy over time, the power they provide is
unpredictable. For this we use power storage elements,
such as rechargeable batteries or supercapacitors, in
order to have energy available for later use. However, the
buffers are finite, and therefore they cannot completely
hide the unreliability of the energy source, for example,
when the harvester is not generating energy for a long
period of time.

This work is partially supported by the Swiss FNS Research Grant
20021-109450/1.

WIOPT 2008, 1st— 3rd Apr 2008, Berlin, Germany.
Copyright © 2011- 2012 ICST ISBN 978-963-9799-18-9
DOI 10.4108/ICST.WIOPT2008.3179

These intrinsic characteristics of ambient energy intro-
duce several challenges. The nodes have to be able to re-
cover from blackout periods caused by the unavailability
of energy, from both the energy harvester and the energy
buffer. Also, the design of the system becomes more
complex than for battery powered systems. Besides this,
the focus of the analysis and the optimization criteria
for environmentally powered systems is different from
the one of battery powered devices: while in the latter
case we search to maximize the lifetime of the system,
in the former case a good design objective is to increase
the availability of the device for a given long period of
time.

Because of all of the aforementioned reasons, hard-
ware and software designers can benefit from a charac-
terization of the system behavior under environmental
power conditions with the following goals: i) the selec-
tion of components such as the harvester, energy storage
elements, DC/DC converter, microcontroller, radio, sen-
sors; ii) the tuning of the runtime policies for power
management.

Designers can have as an optimization goal the maxi-
mization of the operation duty cycle (the duty cycle is the
ratio between the length of the time the device spends in
active mode and the duration of the entire period), which
increases the data rate provided by the network, but also
decreases the lifetime. As such, a suitable trade-off has to
be found. For example, [12], [11] determines a maximum
duty cycle (in order to maximize the quality of service,
QoS), which ensures an unlimited lifetime, or, as it is
called, an energy neutral operation point. Similarily, [16]
proposes a design method for a controller that maximizes
the duty cycle, while respecting, for example, the amount
of available energy. We argue that using our methodol-
ogy we can explore and quantify the effectiveness of the
various policies introduced in these papers. In fact, we
have already performed the performance evaluation of
dynamic policies implemented on a video sensor node
in [5].
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Fig. 1. Block diagram of the proposed methodology.

The remainder of this paper is organized as follows.
In Section II we present the foundations used in our
modeling approach and the differences with state-of-the-
art models for sensor nodes. In Section IV and V we
describe how we use this approach to model a real-life
wireless sensor node application and we describe the
results obtained during our design space exploration (see
Figure 1 for an overview).

II. MODELING BACKGROUND

In this work we propose a behavioral black-box mod-
eling technique similar to the one introduced in [3].
Such modeling contains no information on the internal
structure of the electronic components, but just tries
to mimic the I/O characteristics (see Figure 3). The
system can be described at various levels of behavioral
abstraction (determined essentially by the length of the
time step and by the energy discretization step), allowing
us to trade accuracy for the effort of computation.

The block diagram we introduce in Section IV can
be considered a power-flow model. It is represented by
a set of blocks that provide, store and consume power.
The harvester device produces energy, which is stored
in an energy buffer. The sensor node acts as a power
sink, which takes the energy from the buffer and uses
this energy to execute an application.

In general, other levels of abstractions can be used
to analyze systems [3]. Transistor-level models con-
tain the complete switch-level structure of the elec-
tronic components. Such models (for example, defined
in HSpice) are too complex to be analyzed for long
periods in reasonable time. Another abstraction level, the
behavioral white-box model, employs simplified behav-
ioral component models. Even the simulation of simple
white-box behavioral models (using behavioral SystemC,
VHDL, Matlab, etc.) requires excessive time, because
the switching period of typical electronic components is
of a few microseconds, and thus it is several orders of

magnitude smaller than the required time, of the order
of months, for the analysis of downtime (i.e., the sum
of all the blackout periods over a given time interval)
or lifetime (i.e., the time until the system runs out of
power). We therefore trade the accuracy for the sake of
a tractable analysis.

An accurate model of the energetic sources is es-
sential for evaluating the system’s average productiv-
ity (e.g., availability), and, in principle, to ensure the
system’s command and management. Simulation will
provide results only for the period over which weather
data is available. Since the results are different if we
use other series with the same statistical properties,
we are interested to know the range of these results.
Therefore, finding a representative model able to capture
the uncertainty of the energy source requires attentive
thinking. For example, the performance of solar energetic
systems is dependent on the variable levels of solar
radiation, which are neither completely random, nor
fully deterministic [23]. For the stochastic energy model,
no classical probability law could be suitably fitted to
solar radiation empirical probabilities. On the other hand,
the literature on climatology and renewable energy is
already well established, using historical data, descriptive
Markov chain models for various forms of environmental
energy, such as solar radiation [9], [18], [23], wind
speed [17] and ambient temperature, or autoregressive
process models [22]. More exactly, [23] proposes a first-
order stationary discrete time Markov chain model for
each month of the year, due to the big monthly variations,
built from traces taken over a period of 20 years.

Similarly, in this paper we build a first-order Discrete
Time Markov Chain (DTMC) model of a solar energy
harvester using current-voltage traces obtained from the
SensorScope project [2] from EPFL. The stochastic
source feeds the deterministic Finite State Machine
(FSM) component of the energy storage element and,
indirectly, the wireless sensor node used for weather
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Fig. 2. Trace of the intensity of the generated current of a 5.5x15
em? solar panel, starting from Nov 14th, 2005 at 18:28, for 24 hours.

application. The goal of our methodology is to study
the feasibility of the usage of the environmental power
for the given target application.

We use the defined stochastic model to perform the
design exploration of harvesting sensor nodes in order to
achieve the previously mentioned goals. For this we use
a stochastic analysis tool, namely the probabilistic model
checking tool PRISM [13], to explore the impact of the
design parameters and the environmental conditions such
as battery size, activity duty cycle and power profile
of the ambient energy, on the various metrics of the
model. The reason we use a tool to perform the analysis
is that the system model has a very big number of
states. Also, the nature of the model makes it hard to
analyze it manually. An argument is that the runtime
policies can adapt, for example, the duty cycle, when
various parameters change such as the energy level in the
battery, network requests or sensor events. This makes
analytical methods for calculating properties such as the
average lifetime for the stochastic system intractable. For
a similar reason, [4] mentions the fact that properties for
complex Markov systems are difficult to evaluate ana-
lytically, and therefore propose automating the process
using the tool NANOPRISM, a spin-off of PRISM.

Models with similar abstraction levels are given
in [12], [10]. Yet, they use a different, less descriptive
modeling technique, which allows the development of
specific analytical methods, such that they can reason,
for example, about the energy neutral operation point.

As anticipated, the stochastic analysis we perform
allows us to establish various properties such as the
expected system downtime or lifetime by automated
analytical means, without performing expensive simula-
tions. These properties are relevant for the hardware and

software designers for selecting the components, such
as the energy buffer elements and the harvester, as well
as designing the software application. For instance, the
average lifetime can help in tuning the checkpointing
interval, when using backward recovery in order to cope
with power blackouts [8].

In Section IV we describe how we use this approach
to model our target application. We present in Figure 1
a schema of the methodology of the paper, which is
detailed in Sections IV and V.

The PRISM tool is able to infer many properties
of the stochastic model through exhaustive exploration,
many of them being non-trivial and amenable only
by computer analysis. PRISM has been successfully
employed to investigate the performance of stochastic
power management policies [28], [20]. There, the service
requester and the service provider are modeled in a prob-
abilistic way, and also, the power manager implements a
stochastic policy. This is in contrast with our system, in
which we model only the power source as a stochastic
process, while the other components are deterministic.
For that system, properties such as the expected power
consumption, expected number of requests in the queue
or the probability that the system is able to serve requests
by a given time are studied. Also, in [5] we use PRISM
to model an energy harvesting wireless sensor node, on
which we run a dynamic reconfiguration policy based on
the inputs of the system.

In [19] a stochastic model for a solar powered wire-
less sensor node is used to analyze the following QoS
measures for several stochastic policies proposed: the
average queue length, the average battery capacity, the
sleeping probability, the average delay, etc. However,
their modeling technique is different than ours: they
construct analytically a Markov chain model for solar
radiation, by considering the wind speed, the cloud size,
and the probability of having a cloudy period.

III. ENERGY HARVESTING SENSOR NODE

The target system we consider is the TinyNode [7]
wireless sensor node used for weather monitoring, in
the context of the SensorScope project [2]. The weather
station can measure key environmental data such as air
temperature and humidity, surface temperature, incoming
solar radiation, wind speed and direction, precipitation,
and soil moisture and pressure. The nodes communicate
the acquired data via the radio directly to a base station
(which implies the sensor network has a star topology),
using the Berkeley Medium Access Control (BMAC)
protocol [24]. For simplicity, in this paper we consider
only the soil-water content sensor.
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We consider that the base station is not energy con-
strained, since it is connected to the electric grid.

A. Energy Harvester

The harvester device we consider is a solar panel. We
use traces of the intensity value of the current generated
by a real solar cell, over a given period of time [2], [6].
In Figure 2 we present an example of the type of trace
that can be obtained during one complete day.

The voltage of the harvester is almost constant at a
value of 5 V. The behavior of the harvester is periodic
with respect to the day cycle, with variations caused by
clouds, terrain obstacles from the sun and, in the longer
term, caused by seasonal changes. We use the time series
corresponding to Figure 2 to build the statistical model
of the harvester, as explained in Section IV.

We mention that the system does not use a maxi-
mum power point tracker (MPPT) module, which helps
attaining an optimal electrical load for a solar panel,
because the MPPT device is not meant for low power
devices [25], such as sensor nodes.

B. Energy Storage Element

We consider as energy buffer two supercapacitors of
11F or 22F and 2.5 V put in series in order to attain
a maximum voltage of 5V, which implies a maximum
energy capacity of 68,750 or 137,500 mJ, respectively
(since Eeqp = CTW). We opt to use supercapacitors
since they have a bigger maximum number of recharge
cycles than batteries, making them more suitable for
environmentally powered devices. However, they have
higher leakage current and smaller energy density than
batteries [3]. Also, supercapacitors are easier to model
than electrochemical batteries [3], [29].

C. Wireless Sensor Node

The components of the node that we consider due to
their big contribution for the power consumption are the
DC/DC converter, the microcontroller, the radio interface
and the soil-moisture sensor.

The microcontroller is a TI MSP430 featuring low
active power (0.6 nJ/instruction), low standby power

(2 pW), fast wakeup from standby to active mode (6
wus) and on-chip 12-bit analog-to-digital converter.

The TinyNode uses the XE1205 radio transceiver from
Semtech (31 nJ/bit) [27].

Also, the node uses the ECH20 ECS5 soil-water con-
tent sensor, which needs 10 ms to perform one measure-
ment and consumes 10 mA at 3.3 V' during this time.

The DC/DC converter, in our case the LT1615 pulse-
width modulation converter [30], is used as a step-
down converter, i.e. it can generate an output DC volt-
age smaller than its input DC voltage. This voltage
regulation is required since the SensorScope platform
presents a variable voltage in the energy buffer, while
the electronics requires a constant voltage of 3.3V. To
determine the efficiency of the converter for the various
points of operation of the load, the sensor node, while
sleeping, sensing, receiving and transmitting we consult
the datasheet of the LT1615.

The node acts in a simple deterministic way: every
30 seconds it senses, it processes the acquired data
and it sends the results to the base station. Every node
communicates only with the base station. As already
stated, sensing the soil humidity takes 10 ms. Sending
the data through radio takes 70 ms. The radio listens
for 2.25 seconds - the BMAC protocol requires this in
order to allow the various nodes in the sensor network
to synchronize. (Depending on the number of nodes
we want to allow to synchronize, the length of the
radio listening task can be adjusted proportionally to this
number.) After this, the microcontroller and the radio are
put in a low power state for 27.67 seconds, which makes
the duty cycle of the application be 2.33 / 30 = 7.76%.

IV. STOCHASTIC BEHAVIORAL MODEL OF THE
SYSTEM

The behavioral model employed in this paper focuses
on the energy generation and consumption.

We are interested in assessing the properties of a single
node and not of the whole network running the weather
application, and therefore we model only the individual
sensor node. We consider negligible the overhead the
nodes spend in avoiding and recovering from collisions.
Since the network uses a star topology, there is no
multi-hop routing overhead. Because of these last two
arguments, each node consumes a deterministic amount
of energy for network communication. This allows de-
coupling the analysis of each node from the behavior of
the other nodes in the network.

The target system previously described is modeled as
the parallel composition of the following modules: i) the
harvesting device (SolarHarvester); ii) an energy storage
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Fig. 4. Discrete Time Markov Chain with 10 states (the number
of states affects the accuracy and the processing time) for the
SolarHarvester model, built from the trace in Figure 2.

element (be it a supercapacitor or a rechargeable battery),
called EnergyBuffer; iii) the node (WSNode), which acts
as the power sink of the system, which incorporates the
radio transceiver, the microcontroller and the sensor. The
structure of the resulting system, a complex finite state
system, can be seen in Figure 3.

Each module has a certain number of states, among
which transitions are defined. Transitions can be either
probabilistic or deterministic. They are specified through
the use of arithmetic expressions with the standard
arithmetic operators, with the exception of divisions, due
to the fact the variables of the modules are restricted to
be integers.

Choosing the physical length of the execution time
step affects the accuracy and the time spent to perform
the analysis. To increase the speed of the analysis of
the model checker, we use the time scaling technique
described in [14]. We choose a time step of 10 seconds,
according also to the solar panel sampling resolution
of the traces we used.This allows us to perform, for
example, availability analysis for a given period in the
order of months.

The behavior of the model is the following. Initially
the energy buffer is full. In every time step we add
to the buffer energy level (variable bufferLevel) the
contribution from the harvester, taking into consideration
also the efficiency of the energy transfer, and subtract
the energy consumed by the node. We consider the
power consumption and generation to be constant over
an execution step, which allows a simpler analysis when
the system is running out of power in a time step.

When the energy buffer is full, the system uses directly
the energy from the harvester. If that energy is not
enough for the given time step, it consumes energy
from the energy buffer as well. If the energy from
the harvester is bigger than what the platform requires,
then the surplus is wasted. If the system experiences a
blackout it constantly attempts to restart the application
once every time step.

Each module is described as a state diagram, where

transitions can be either deterministic (for FSM) or
probabilistic (for DTMC), as explained in Section II. For
the rest of this section, we give a description of each
module.

SolarHarvester. Using a solar panel trace, such as
the one in Figure 2, we build a DTMC model. For
this we need to discretize the energy generated by
the harvester. We accomplish this by equally dividing
the interval of possible energy quantities generated in
the (predefined) time step of 10 seconds and associate
each of the 10 subintervals, in our case, to one of the
states of the Markov chain. We build the transitional
frequency matrix and the transitional probability matrix
the standard way, as in [23], by using a simple home
built script that analyzes the collected time series, as
depicted in Figure 1. More exactly, to assign probabilities
on the transitions originating in a state of the DTMC,
we go over the solar panel current trace and count
the occurrences of each transition from that state (by
transition in the trace we understand the jump from one
energy level to the next, 10 seconds later). Then, we
normalize these frequencies in order to have the sum of
probabilities on the transitions from that state equal to
1.

The choice of the number of states of the DTMC is a
tradeoff between the accuracy of the module abstraction
with respect to the real harvester and the exploration
speed determined by the number of states of the entire
system. The statistical model can be considered repre-
sentative for the days of the month of November in the
geographic region of the experiments. Using the same
technique, statistical models for different periods of the
year can be generated. We advocate the creation of a
library of different models associated, for example, with
each month, from which the designer can choose, as
in [23]. Therefore, the model in Figure 4 is a possible
item from the library.

In Figure 4 we show an example of DTMC model,
built from the trace in Figure 2. This figure shows that
the cascade nature of the DTMC: the transitions in the
Markov chain are only allowed between consecutive
states. This comes from the fact the energy generated in
a time step by a solar panel follows an almost continuous
trend: jumping from a lower energy level to a much
higher one is very improbable.

EnergyBuffer. The energy buffer is modeled as an
FSM, where the states represent the energy levels of the
buffer. The deterministic transitions are triggered only by
the state of consumption of energy by the WSNode and
by the contribution with energy by the SolarHarvester.

The model of the energy buffer is very simplistic and
does not take into consideration the aging or leakage. We
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Fig. 5. Variation of the probability that the system runs out of power
with respect to the time interval for various energy storage capacities.

consider the energy storage element to have a constant
voltage, no matter what energy charge it has. Therefore,
for different levels of charge of the buffer, if the current
load is the same then the same amount of energy will
be taken from the buffer.

WSNode. The node is modeled as an FSM using three
states corresponding to every 10 seconds of the period
of 30 seconds of operation, as described in Section III.
In the first step of the three time-steps long cycle, all
the important activity happens: sensing, processing, radio
transmitting and synchronization, which take together
about 2.33 seconds; the rest of the time, the node sleeps.
The following two time-steps, the node continues to be in
standby mode, until the 30 seconds long cycle concludes.
We model the node at a higher level of abstraction, i.e.,
the radio, processor and sensor components are collapsed
in one module, which is reasonable since in our model
we focus on the power supply chain, with emphasis on
the uncertainty of the solar panel.

We characterize the energy consumption of the
WSNode module in the three states. For this we consider
the most power consuming components of the TinyNode
platform: the DC/DC converter, the radio interface, the
microcontroller and the sensors.

In the WSNode module we also take into considera-
tion the energy lost due to the sub unitary efficiency of
the conversion, for the various current loads that the node
exercises. In order to calculate the energy consumption
of the wireless sensor node we take into consideration the
power consumption of the radio transceiver in transmit
and receive modes. Also, for the CPU, we consider the
power consumption in stand-by and active mode. We
obtain an energy consumption of the node for the 30
seconds period of 159.18 mlJ, out of which 158.30 mJ

—e—Energy capacity = 137,500 mJ
—— Energy capacity = 308,300 mJ
—&— Energy capacity = 756,250 mJ

Average downtime [days]

0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

Harvester maximum power scaling factor

Fig. 6. Variation of the average downtime in a given time interval of
30 days with respect to the maximum power scaling of the harvester,
for three different energy storage capacities.

are consumed in the 2.33 seconds of activity and the
rest of 0.88 mJ in the other 27.67 seconds. These energy
consumption values are obtained for an operation duty
cycle of 7.76%.

Since the model can handle only integer values, we
need to discretize the contributions of the consumed
and the generated energy. For this we choose as energy
unit 10 mJ. Choosing an energy step of 1 mlJ, for
example, would result in a more accurate, yet in a longer
computation time with PRISM, due to the fact that the
state space becomes one hundred times bigger, since
both the variable that expresses the maximum capacity
of the energy buffer element and the number of states
of the harvester gets affected by this discretization. One
execution step of the model corresponds to 10 seconds
of the physical time length.

V. DESIGN SPACE EXPLORATION
A. Definition

Using our modeling framework we are able to infer
two types of properties: probabilities of certain events,
such as the probability of running out of power, and
reward-based properties, to use the PRISM terminology,
where we get expected values of various quantities, such
as the average downtime.

The parameters a designer can tune are:

1) the capacity of the energy buffer element.

ii) the harvester maximum power scaling factor (or
simply called, the harvester scaling factor) with
respect to the baseline harvester with an area of
5.5x15 c¢m? from Figure 2, which generates at most
90 mW. For example, a panel with a scaling factor



of two, has a maximum attainable power twice

bigger than the baseline. A scaling factor of zero

means there is no panel mounted on the system.

Once the designer determines the maximum power

of the panel, he can decide what should be the

dimensions of the solar harvester. It is important
to note that since the solar panel can be considered

a current source [1], the voltage of the panel, and

thus the power, is proportional to the area of the

harvester, assuming the solar panel is composed of
identical photovoltaic cells, and the light conditions
are homogeneous.

the initial state of the harvester, initHarvesterState,

at the beginning of the operation of the system.

This parameter is an integer number between 0

(for 0 mJ) and 9 (for 90 mJ). For example, the

energy level generated in a time step by a panel

with initHarvesterState set to 4 corresponds to 40

mJ, which can be the level obtained at 11AM during

the day.

iv) the operation duty cycle, represents the fraction of
time the node is in active state over the total period
(which is by default, 30 seconds). As already stated,
the duty cycle impacts on the power consumption of
the node. To adjust the duty cycle in our modeling
framework, we change the duration of the task in
which the radio listens to perform synchronization.

1i1)

The properties we explore with PRISM are:

i) the probability that the system runs out of power;
ii) the downtime of the node for a given interval of
time;
iii) the lifetime of the system.

Unless otherwise specified, the parameters of the
model have the following values: the energy buffer has a
capacity of 137,500 mJ (which corresponds to two 22F,
2.5V super-capacitors put in series), the operation duty
cycle is 7.76% (corresponding to a 2.25 long seconds
radio listening task), the harvester we use is the baseline
panel (harvester scaling factor = 1) and initHarvester-
State=4 (i.e., the harvester generates initially 40 mJ, in
a time step).

B. Exploration Results

We determine some of the aforementioned properties
for several system models with different parameters.

In Figure 5 we show the variation of the probability
of running out of power at least once for various given
periods of time. We do this for three different storage
capacities and we can observe the larger the energy
capacity the smaller the probability of running out of
power for a fixed time interval. For small time intervals
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Fig. 7. Variation of the average downtime for a 30 days interval
with respect to the operation duty cycle, for several maximum power
scalings of the harvester.

(3 to 11 hours, depending on the capacity of the buffer)
we obtain a zero probability of running out of power,
because, even if we assume the worst case scenario
(experiencing night during the whole time interval, thus
leading to zero energy produced by the solar panel),
there is enough energy in the storage element to sustain
the uninterrupted operation of the node. After that, the
probability tends asymptotically to 1, and we can see
that for a period of 83.3 hours it has very similar values
of 0.998, 0.99 or 0.974, for energy storage capacities
of 68,750, 137,500 and 206,250 ml], respectively. The
designer can use this graph in order to determine which
capacity to choose for the energy storage. For example,
if we want to attain 10 hours of uninterrupted operation
with a probability of at least 99%, then, according to the
graph, we can choose a capacity of 206,250 mJ (which
corresponds to three 22F, 2.5V super-capacitors put in
series).

When considering an energy harvesting node, design-
ers are interested in the downtime (from which we can
directly compute the availability) of the node, depending
on the environmental conditions. That is why we explore
in Figure 6 the expected downtime of the node for
a given time period of 30 days as a function of the
harvester scaling. We can see that when the harvester
scaling factor is zero (the node acts like a simple
battery-powered system), the node is down for more than
29 days. Adding the baseline harvester to the system
produces a significant decrease (46%, 60% and 80%
for the storage capacities of 137,500 mJ, 308,300 mJ
and 75625 mlJ, respectively) in the downtime. After this,
the downtime reduces singificantly less when increasing
the scaling factor. For example, for an energy buffer
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capacity of 308,300 mJ, we reduce the downtime by 62%
when we put a panel three times more powerful than
the baseline. From there on, the decrease in downtime
is smaller, about 1% with respect to the downtime of
the baseline, for each increment in the scaling factor.
Therefore, the designer should consider to use a solar
panel at most three times bigger than the baseline, since
further increase in the size is not improving significantly
the availability of the system. The reason the curves tend
asymptotically to a non-zero value is that the system
can always experience blackout, due to the fact we have
a finite energy storage capacity and there is always a
non-null probability to have a long night period that
can completely discharge the energy buffer (for this
experiment, with the exception of the night, the energy
consumed is smaller than the energy produced per time
step, for a solar harvester equal or bigger than the
baseline). The designer can use this graph in a straight
form: for example, if he seeks to attain, on average, an
autonomy of at least 85% within 30 days, for example,
(meaning that the downtime is at most 4.6 days out of
the 30 days), while minimizing the cost for the solar
panel, with a node with a buffer capacity of 756,250
mJ, then he can find that the smallest required panel is
twice bigger than the baseline, i.e., it has an area of 165

ch .

Another exploration of the average downtime is with
respect to the duty cycle, for various maximum power
scalings of the harvester, presented in the Figure 7. Note
that the curve for a harvester scaling factor of 0.1 starts
saturating from a duty cycle of 4.33% onwards, because
the average downtime tends asymptotically to 30 days,
since it is calculated for a 30 days period, which means
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Fig. 9. Variation of the average downtime for a 30 days interval

with respect to the energy buffer capacity, for three different duty
cycles.

it cannot be bigger than this value. Otherwise, we can
observe the non-linear, hyperbolic-like evolution of the
downtime. This dependency is related to the fact that
each blackout period of a downtime (and, thus, for the
whole downtime) is getting smaller with a larger buffer
capacity, and is inversely proportional to the duty cycle
(we omit the detailed arguments, due to the lack of
space).

Figure 8 presents another graph with downtime with
respect to the duty-cycle, for various energy storage
capacities. Note that as the duty cycle gets bigger, from
25% onwards, the shape of the curves is no longer
hyperbolic, as it was in the previous graph, and the
downtime increases more abruptly, since now the energy
buffer can get depleted also during the day (below a duty
cycle of 14.77% during the day, the energy consumed is
smaller than the energy produced per time step, for a
solar harvester equal or bigger than the baseline, which
basically means that we can have a blackout only during
the night; for a duty cycle bigger than 14.77%, we
can actually have blackout also during the day). These
tendencies of the curves are not intuitive, and, thus,
makes our methodology indispensable for computing the
expected values for the downtime.

In Figure 9 we present the variation of the downtime
with respect to the increase of the energy buffer capacity.
We can see the downtime decreases more rapidly with
respect to the energy buffer capacity, for smaller duty
cycles. This is due to the dependency already introduced
two paragraphs above, which states the downtime is
getting smaller with a larger buffer capacity, and is
inversely proportional to the duty cycle.

Using the Figures 7, 8 and 9, the designer can choose
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a specific maximum duty cycle or minimum energy
storage capacity in order to reach a desired downtime.
For example, in order to have an availability of at least
94%, by looking at Figure 9, we conclude that we need
to choose a buffer with a capacity of at least 756,250 mJ
and an operation duty cycle of 4.33%.

As already stated, we can use the proposed method-
ology to compare various runtime policies, which can
adapt at the observed parameters. To give an example,
we propose three different policies for evaluation:

e P1 - the normal, constant duty cycle policy

e P2 - a policy that changes the duty cycle depending
if it is night (i.e., no energy generated by the solar
panel) or day

e P3 - a policy that adapts the duty cycle based on
the state of charge of the storage element.

In Figure 10 we compare these three policies using
the downtime metric. We can observe that policy P3
improves the availability of the system with respect to
policy P1 (e.g., for a duty cycle of 7.33% we have
a decrease in downtime of 11%), and P2 outperforms
policy P3 (e.g., for a duty cycle of 7.33% we have
a decrease in downtime of 52%), since it lowers the
duty cycle during the whole night, which is better than
lowering it only for the last 10,000 mJ of stored energy.

We emphasize again the advantage of our stochastic
model by comparing it, for example, with a simple
analytical method, which considers the weighted average
energy generated per time step by the solar panel (if
the weight coefficients are the steady state distribution
of the Markov chain associated to the panel with the
baseline size, then the average energy is 27.93 mJ), and
the average energy consumed per time step (which, for

the normal duty cycle is 5.33 mJ). This means that at
any point in time the node consumes less energy than
it receives, which means the system will never run out
of power. This analytic method is not accurate, since
in reality we can encounter periods of night when the
buffer has little energy stored, and the node can actually
run out of power, for the same environmental conditions
that are being modeled.

VI. CONCLUSIONS

Thanks to the harvesting technologies, designing au-
tonomous sensor nodes and consumer embedded elec-
tronics that exploit the energy coming from the environ-
ment is becoming a feasible option. However, the design
of such devices requires the careful selection of the
components, such as the energy storage elements and the
harvester device, according to the working environment
and the features of the application (e.g., duty cycle or
bandwidth) run on the system.

In this paper we presented a stochastic characterization
framework for energy harvesting wireless sensor nodes.
This allows designers to assess statistical properties of
the system, such as the probability of achieving a given
operation time, or the expected downtime or lifetime for
various system configurations. In our experimental re-
sults we have shown how to use the proposed framework
to tune various system parameters (e.g., energy buffer
capacity and harvester size, operation duty cycle) of a
solar powered wireless sensor node running a weather
monitoring application, according to the concrete power
characteristics of the node and of the solar harvester
device.
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