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Abstract— Misbehaviour due to back-off distribution
manipulation has been one of the significant problems
faced in IEEE 802.11 wireless ad hoc networks which
has been explored recently by the research community.
In addition, collusion between misbehaving nodes adds
another dimension to this security problem. We examine
this problem in a three-node network scenario wherein two
nodes are assumed to be malicious colluding adversaries
causing unfair channel access to the other legitimate node.
The misbehaving nodes, through back-off manipulation,
will try to minimize the channel access share got by the le-
gitimate node and at the same time maximize the detection
delay to detect such an attack. We explore this problem
and its solution, analytically, in a non-saturated setting,
by modelling a single IEEE 802.11 node as a Discrete
Time Markov Chain (DTMC) and suggest a measure for
evaluating fairness in the network. We then propose an
attacker-detector non-linear optimization model through
which the joint optimal attacker distribution is evaluated
by applying results from the area of variational calculus.
We finally use the Sequential Probability Ratio Test (SPRT)
for estimating the average number of samples for detecting
colluding adversaries in the network. We validate all the
models using MATLAB and verify the model results by
sampling values from the evaluated optimal attacker distri-
bution using a robust statistical library called UNU.RAN.

I. INTRODUCTION

As we enter the age of ubiquitous wireless networks,
the issue of security in such networks is growingly
becoming a pervasive problem. New vulnerabilities in
these networks have emerged in these networks and
thus, solutions related to these security issues in wireless
networks has been explored by the research community
of late. Security issues in wireless ad hoc networks pose
significant challenges due to the unpredictable nature of
the wireless medium and independent behaviour of the
nodes in the network. These challenges make security
a very interesting area of research. There have been
significant progress towards addressing issues related to
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this area. The broad area of security in wireless net-
works encompass issues like privacy protection, naming
and addressing, secure neighbour discovery and secure
routing. Also, there are issues regards to trust evaluation,
secure localisation, behaviour enforcement, selfishness in
packet forwarding, and selfish behaviour at MAC layer.

This paper is related to the issue of security at the
Medium Access Control (MAC) layer and in particular,
the problem of thwarting misbehaviour by malicious
IEEE 802.11 nodes whose objective is to cause un-
fair channel access to legitimate nodes in its transmis-
sion range. We model the problem from an analytical
perspective and try to understand the various aspects of
the problem and use mathematical analysis i.e., Markov
chain modelling, variational calculus based non-linear
optimization theory, and statistical estimations to get
insights into detecting misbehaviour of the monitored
nodes. The main contributions of this paper can be put
forth as follows.

• The problem of back-off manipulation has been
addressed in a non-saturated scenario where each of
the nodes in the network have different data arrival
rates following the Poisson distribution.

• A detailed model of a single IEEE 802.11
non-saturated node based on Discrete Time Markov
Chain (DTMC) is proposed and steady state
probabilities are evaluated.

• The global system state of the three-node network is
then modelled probabilistically and a new fairness
measure is proposed for the nodes in the network.

• The problem of collusion of two nodes is taken
and a non-linear optimization model is developed
to depict the colluding attackers-detector scenario.

• By using principles from the area of variational cal-
culus, the optimal joint probability density function
of the colluding attackers is found and the average
sample size for detecting such an optimal attack is
evaluated using a statistical approach namely the
Sequential Probability Ratio Test (SPRT).

peri
Typewriter
WIOPT 2008, 1st–3rd Apr 2008, Berlin, Germany.

Copyright © 2011–2012 ICST ISBN 978-963-9799-18-9 

DOI 10.4108/ICST.WIOPT2008.3178

peri
Typewriter

peri
Typewriter



The rest of the paper is organised as follows. Section II
discusses related work in the area of security in IEEE
802.11 MAC layer. Section III explains the problem
setting and formulates the problem addressed in this
paper. Section IV gives an overview of the approach
followed and then, explains, in detail, the modelling
aspects of the various aspects of this problem. Section V
validates the models by plotting results from MATLAB.
Section VI discusses the conclusions and future work.

II. RELATED WORK AND MOTIVATION

The ad hoc network community has tried to under-
stand and address issues related to attack resistance at
MAC layer in recent times. In [1], the authors study
simple DoS attacks at the MAC layer, show their de-
pendence on attacker traffic patterns, and deduce that
the use of MAC layer fairness can mitigate the effect
of such attacks. In [2], the focus is also on DoS attacks
against the IEEE 802.11 MAC protocol. They describe
vulnerabilities of IEEE 802.11 and show ways of exploit-
ing them by tampering with normal operation of device
firmware.

There has been some significant work on detecting
MAC layer misbehaviour in Wireless LANs [3]. A mod-
ification to the IEEE 802.11 MAC protocol is proposed
to facilitate the detection of selfish and misbehaving
nodes. The approach assumes a trustworthy receiver,
since the receiver assigns to the sender the back-off
value to be used. The receiver can detect misbehaviour
of the sender and accordingly penalize it by providing
less favourable access conditions through higher back-
off values for future transmissions. A decision about
protocol deviation is reached if the observed number of
idle slots of the sender is smaller than a pre-specified
fraction of the allocated back-off. The sender is labelled
as misbehaving if it turns out to deviate continuously
based on a cumulative metric over a sliding window.
This work also presents techniques for handling potential
false positives due to the hidden terminal problem and
the different channel quality perceived by the sender and
the receiver. However, our work differs from [3] and [4],
as we consider an ad hoc environment wherein no trusted
centralized Access Point (AP) can be assumed.

Also, there have been recent approaches like [4],[5],
and [6], that have addressed the problem of back-off
manipulation at MAC layer. The authors in [4], focus on
MAC layer misbehaviour in wireless hot-spot communi-
ties. They propose a sequence of conditions on some
available observations for testing the extent to which
MAC protocol parameters have been manipulated. The
advantage of the scheme is its simplicity and easiness of
implementation, although in some cases the method can

be deceived by cheating peers, as the authors point out.
Greedy behaviour by the nodes is considered in [4] and
not malicious behaviour by nodes as considered in this
paper.

Detecting MAC layer back-off timer violations in ad
hoc networks have been studied in [5]. They exchange
the state of the random number generator of each of the
neighbours by modifying the IEEE 802.11 protocol and
then, using Wilcoxon rank sum test, which uses fixed
sample size, compare difference between analytically
computed samples with observed samples and detect
misbehaviour exists or not. However it does not handle
collusion between nodes. Also, they have an approach
wherein the number of samples required for detection
is fixed. Our work uses an optimal statistical method,
SPRT [7], for adaptive estimation of number of samples
for misbehaviour detection.

The problem of determining the attacker distribution
in the saturated case (i.e., all nodes have data to send
in every time slot) has been addressed in [6]. The
work considers the case of colluding attackers, but in
a network where all nodes have always data to send
i.e., they are saturated. In real IEEE 802.11 networks,
data and multimedia traffic (for eg., traffic due to e-
mail, Internet, audio and video) is inherently bursty [8]
in nature. The demanded transmission rate for most real
traffic varies with significant idle periods and hence,
nodes are usually far from being saturated. So, we study
the effect of back-off manipulation at the MAC layer in
a network where nodes may have different data rates.
In addition, we explore this misbehaviour when there
is co-operation between misbehaving nodes to jointly
cause unfairness to the legitimate nodes. This collusion
between adversarial nodes makes the detection of such
an attack harder and hence, in order to aid the detection
mechanism, there is a need to evaluate the worst case
attack that can be caused by this collusion. We consider
this problem of back-off attack when there are colluding
nodes and the network is non-saturated.

III. PROBLEM SETTING AND FORMULATION

This paper addresses a vulnerability in the IEEE
802.11 Distributed Co-ordination Function (DCF)
Medium Access Control (MAC) protocol [9] namely the
back-off attack. In a back-off attack, nodes will not fol-
low the uniform distribution for choosing a waiting time
(back-off) after successful packet transmission. They
will choose smaller waiting times from a different non-
uniform distribution resulting in unfairness in channel
access. Consider a three-node (referred to as Node 1,
Node 2, and Node 3) ad hoc wireless network where each
node is in the wireless range of the other. The primary



objective of the adversarial nodes is to cause unfairness,
with respect to channel access, to the legitimate node.
Consider two nodes (Node 2 and Node 3) in the network
as colluding malicious nodes whose aim is to disrupt the
channel access of the other legitimate node (Node 1).
The objective, from the colluding attackers’ point of
view, is to determine their back-off values in such a way
that it causes maximum unfairness in the network. In
other words, the attackers will not follow the uniform
distribution for selecting the back-off values between
packet transmissions as specified by the IEEE 802.11
DCF protocol and thus, try to deny fair access to the
channel by the legitimate node. The legitimate node,
on the other hand, will be sampling the back-off values
used by each of its neighbours by some mechanism like
the statistical monitoring mechanism proposed in [5]
and will test these samples to check if the neighbours
are misbehaving or not. To perform this function, the
legitimate node needs to fix the number of samples
that needs to be collected after which it is enough to
decide if the neighbours are misbehaving or not. Hence,
a mechanism for estimating the average sample size
required for detection is needed.

Assumptions:

• Each node is supposed to follow the IEEE 802.11
DCF protocol as the MAC layer protocol.

• The nodes are static or moving with a velocity such
that they continue to be in the transmission range
of each other.

• Each node has some data to be sent to any of the
other nodes and the arrival process in Poisson. All
the nodes are aware of the traffic loads at the other
nodes in its vicinity.

• The higher layers of the network stack generates the
data traffic. The delay occurring between the time
the packets are generated to the time when they
arrive at the MAC layer for transmission, which
may be due to delay at the higher layers like TCP
is not considered in this work.

• Each node has small buffers (as small as possible
to avoid the effect of queueing dynamics) to hold
the incoming packets from higher layers.

• The nodes are able to sense the channel at any time
(using promiscuous mode) and hence detect if the
medium is busy or idle. If busy, it can sniff the
packets to know information about the headers in
the packet like destination, duration of the transfer,
sequence number, etc.

• Once a packet encounters a collision, it is dropped
and no retransmissions are attempted. This is to
simplify analysis as the main focus of this paper

is to explore the collusion problem between two
nodes under non-saturated conditions and not the
way packet collision is handled.

IV. PROPOSED SOLUTION

A. A Broad Overview

The problem under consideration can be approached
in the following way:

• Develop a detailed mathematical model for under-
standing the behaviour of a single node following
the IEEE 802.11 DCF mechanism considering the
assumptions mentioned in Section III.

• Develop a model for the system as a whole and the
various states that the system may be in. This will
provide a global outlook of the system which will
be useful to understand the Quality of Service (QoS)
aspects, like fairness, of the three-node network .

• Formulate an optimization scenario, wherein, un-
der the evaluated fairness conditions, the colluding
attackers try to maximize the unfairness of the
network, while at the same time, try to avoid
detection by the legitimate node to the maximum
extent possible.

• Estimate the optimal attacker back-off distribution
from the optimization problem thus formulated and
then derive the value for the expected sample size
required to detect such an optimal attack. Due
to the optimality of the attacker distribution, any
other attack caused by the colluding nodes will be
suboptimal and the sample size thus calculated for
the optimal case will be enough to identify these
suboptimal attacks, on an average.

B. A Single Node Model

( ( (1-p)q / W ) + 
(pq / W) ) = q/W  

...................

qq q

( ( (1-p)(1-q) / W) +
 ( p(1-q) / W) ) = (1-q)/W 
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Fig. 1: Discrete Time Markov Chain Model of IEEE
802.11 DCF protocol

1) Preliminaries: Non-saturation in IEEE 802.11 net-
works was considered in [10]. They model a node based
on the well known Bianchi [11] model of IEEE 802.11



DCF node. In this model, an IEEE 802.11 DCF node
is modelled as a Discrete Time Markov Chain (DTMC)
with each state being denoted by a pair of integers (s, k)
where s is the back-off stage and k is the back-off
counter value at that stage as shown in Fig. 1. We use
this model as the basis of our work, but as mentioned
earlier, add a restriction that the collision of a packet is
handled by dropping the packet thereby not considering
it for retransmission i.e., the node is always in back-off
stage 0.

2) Analytical evaluation of the model: As in [10],
due to the non-saturation assumption, idle states can be
present wherein there is no data for transmission and
they are represented by the states (0, k)e (known as
the post-back-off states). Hence the DTMC will either
be in any of the (0, k) states if there is packet to be
transmitted or in any of the (0, k)e states if the node
is idle. Transmission of a packet is attempted either in
b(0, 0) state after the back-off counter (which is selected
uniformly from [0,W0 − 1] where W0 is the maximum
contention window size at stage 0) reaches zero or when
a packet arrival occurs in the b(0, 0)e state. Note that
W0 is shown as W in Fig. 1. This DTMC is solved for
steady state probabilities (represented by the stationary
distribution b) analytically by first formulating the one-
step state transition probabilities (as shown in Fig. 1)
and then finding the expressions for the steady state
probability of each state. The notations followed are:

• p - probability of collision given the node is at-
tempting transmission.

• (1 − q) - probability that the node’s buffer has no
packets awaiting transmission at the start of each
counter decrement.

• b(0, k)e - steady state probability of being in state
(0, k)e of the DTMC where k ∈ [0,W0 − 1].

• b(0, k) - steady state probability of being in state
(0, k) of the DTMC where k ∈ [0,W0 − 1].

• Pidle (shown as pid in Fig. 1) - probability that the
medium is sensed idle during a typical slot.

Determining one-step state transition probabilities:
If the node is in (0, 0) state, two things can happen. It
might get a packet to send or not. In case of packet
arrival (with probability q), the node will choose a back-
off uniformly and transition into any one of the (0, k)
states. If no data arrives, the node will choose a uniform
back-off in the range [0,W0 − 1] and move into any one
of the (0, k)e states. To put it in terms of state transitions,

P ((0, k)|(0, 0)) = q/W0

P ((0, k)e|(0, 0)) = (1 − q)/W0

If the MAC is in (0, 0)e state, three things can occur.
(i) A packet may arrive in which case, the medium is

sensed and if it is idle, the packet is transmitted. Due to
our assumption, after the packet is transmitted, the MAC
enters back to the (0, k)e chain irrespective of whether
the packet collided or not as the case of retransmission
of the packet (in case of collision) is not handled in this
work.

P ((0, 0)e|(0, 0)e) = (1 − q) + qPidle/W0

(ii) If the medium is busy, then the MAC enters stage-0
back-off by choosing a uniformly distributed back-off in
the range [0,W0].

P ((0, k)|(0, 0)e) = q(1 − Pidle)/W0

(iii) If no packet arrives in the considered slot, then the
MAC will loop in the (0, 0)e state.

k > 0, P ((0, k)e|(0, 0)e) = qPidle/W0

By similar reasoning, the other one step transition prob-
abilities can be described as below.

P ((0, k − 1)|(0, k)) = 1

P ((0, k − 1)e|(0, k)e) = 1 − q

P ((0, k − 1)|(0, k)e) = q

In order to evaluate the steady state probabilities in the
setup described above, we make the following observa-
tions. With b(i, k) and b(0, k)e denoting the steady state
probabilities of being in states (i, k) and (0, k)e, we have

W0−1
∑

k=0

b(0, k) +

W0−1
∑

k=0

b(0, k)e = 1 (1)

Eqn. (1) is a very important equation for our simplifica-
tion. The objective of the following simplification is to
reduce the two sums in Eqn. (1) in terms of a common
term, b(0, 0)e, and evaluate the rest of the steady state
probabilities in terms of this value. We proceed as given
below to achieve this simplification.
We know that

b(0,W0 − 1)e =
b(0, 0)eq(1 − p)Pidle

W0
+

(1 − q)b(0, 0)

W0

For, (W0 − 1) > k > 0,

b(0, k)e = (1 − q)b(0, k + 1)e + b(0,W0 − 1)e

Simplifying recursively,

b(0, k)e =
qb(0, 0)e − b(0,W0 − 1)e

(

1−(1−q)k

q

)

(1 − q)k

Using the above expressions and following some basic
simplification, we can evaluate

b(0, 0)e
b(0, 0)

=
1 − q

q

(

1 − (1 − q)W0

qW0 − (1 − p)Pidle(1 − (1 − q)W0)

)



We then derive the following,

W0−1
∑

k=0

b(0, k)e =
b(0, 0)e

(1 − (1 − q)W0)
(qW0) (2)

To evaluate
W0−1
∑

k=0

b(0, k), we know that

b(0, k) = b(0, 0) − q

k
∑

i=1

b(0, i)e − kb(0,W0 − 1)

By using the above equation, b(0, i)e can be simplified
to

b(0, i)e = ((q2b(0, 0)e − b(0,W0 − 1)e) ×

(1/(1 − q)k − 1) + qi b(0,W0 − 1)e)/(q
2)

To sum it up, we start by splitting the terms as following.

W0−1
∑

k=0

b(0, k) = b(0, 0)+ b(0,W0 −1)+

W0−2
∑

k=1

b(0, k)

(3)

Further, b(0, k) can be written as below.

b(0, k) = b(0, 0) − result1 − result2 (4)

where result1 and result2 are got by further simplifi-
cation as below.

result1 = k

(

b(0, 0)eq

W0
(1 − pPidle) +

b(0, 0)

W0
(1 − pq)

)

result2 =

(

1

q

(

1

(1 − q)k
− 1

))

×

(

1

q

(

q2b(0, 0)e − b(0,W0 − 1)e
)

)

Since we need to get an expression for
W0−1
∑

k=0

b(0, k),

we use Eqn. (3) and Eqn. (4) and get the following
expression.

W0−1
∑

k=0

b(0, k) = b(0, 0) + b(0,W0 − 1) +

W0−2
∑

k=1

b(0, 0)

−
W0−2
∑

k=1

result1 −
W0−2
∑

k=1

result2

Simplifying, the following equation results

W0−1
∑

k=0

b(0, k) = result3 − result4 +

b(0, 0) + b(0,W0 − 1)

(5)

where result3 and result4 are as follows:

result3 =

[

(

(

(

(W0 − 2)/(2W0)
)

b(0, 0)
)

×

(

2W0 −
(

(W0 − 1)(1 − pq)
)

)

)

−

(

(

(

b(0, 0)e/W0

)

q(1 − pPidle)
)

×

(

(W0 − 2)(W0 − 1)/2
)

)

]

result4 =

[

(

(

(

b(0, 0)eq
)(

(1/γ) − 1
)

)

)

δ

]

δ =

(

(

(1/q) ×
(

1/((1 − q)W0−2) − 1
)

)

−
(

W0 − 2
)

)

γ =
(

1 −
(

(1 − q)W0

)

)

As we can clearly observe from the Eqn. (2) and
Eqn. (5), we have got the values of the two sums in
terms of b(0, 0)e and hence the normalisation equation of
Eqn. (1) can now be used to determine b(0, 0)e in terms
of q,W0 and Pidle. From this value, we can now evaluate

values of b(0, 0),
W0−1
∑

k=0

b(0, k), and
W0−1
∑

k=0

b(0, k)e. These

values are used in the next section to determine the state
of the system as a whole and define fairness condition
for the network.

C. A Global System Model

1) Details of the Model: Using the single node model
proposed in Section IV-B, we define the following:

ai = Probability that the node i is choosing a back-off
value in a time slot. We can say that a node will start to
choose a random back-off value in the current time slot
in the following two scenarios.

• The node is in b(0, 0) state and a new packet awaits
transmission at the end of the packet transmission.

• The node is in any of the b(0, k)e states and a new
packet arrives for transmission in the current time
slot.

Hence, from Fig. 1, we can deduce

ai =

(

qi ×

(

b(0, 0) +
W0−1
∑

k=0

b(0, k)e

)

)

(6)

where qi is the probability that Node i has at least one
packet to be sent at the start of each time slot.

bi = Probability that the Node i is not choosing a
back-off value in the considered time slot (bi = 1− ai).

Now, in the current three-node network under con-
sideration, in a time slot, there may be 0, 1, 2 or 3



nodes which are independently choosing a back-off. It
should be noted here that we do not assume that all nodes
choose their back-off timers at the same time. Each node
can choose back-off timers independently and thus, a
global system state needs to be defined, to determine the
nodes which are choosing a back-off value in a particular
slot.
We put forth the following definitions to capture the state
of the system at the beginning of any time slot. Let Xi

denote that Node i is choosing a back-off value in a
time slot. Correspondingly, let Yi denote that Node i
is not choosing a back-off value in a time slot. Then
the three-node network can be identified by any one of
the eight states given in Table I. Correspondingly, their
steady state probabilities are also evaluated in the table.

TABLE I: Global system model of the three node net-
work

State ID State Representation Steady State probability
p1 (Y1 Y2 Y3) (b1 × b2 × b3)
p2 (X1 Y2 Y3) (a1 × b2 × b3)
p3 (Y1 X2 Y3) (b1 × a2 × b3)
p4 (X1 X2 Y3) (a1 × a2 × b3)
p5 (Y1 Y2 X3) (b1 × b2 × a3)
p6 (X1 Y2 X3) (a1 × b2 × a3)
p7 (Y1 X2 X3) (b1 × a2 × a3)
p8 (X1 X2 X3) (a1 × a2 × a3)

2) A Measure of Fairness: We know that, based on
the problem definition given in Section III, Node 1 is the
legitimate node. Also we know that Node 2 and Node 3
are potential misbehaving adversaries to Node 1. Before
we go any further, we need to understand the meaning
of misbehaviour in this context. Let us suppose that in a
particular time slot, two nodes choose a back-off value.
In the ideal case, if they obey the IEEE 802.11 DCF
protocol, they should choose back-off uniformly from
the range [0,W0] where W0 is the maximum contention
window size at back-off stage 0 (assuming both the nodes
are in back-off stage 0). In this case, the node which
gets access to the channel is the node which chooses the
smaller back-off of the two nodes. So, the probability
of a node’s back-off being less than the other’s node’s
back-off is 1/2 as they are obeying the protocol. We
claim that this probability value is an indicator of the
fairness in the network and it is, at this point, that
misbehaviour can occur which can lead to unfair channel
access to the legitimate node. If one of the two nodes
is misbehaving and not following the IEEE 802.11
protocol, then the probability of that node’s back-off
being smaller than that of the other node will definitely
not be 1/2. As the misbehaving node’s objective is to
reduce channel access to the other node, the probability
that its (misbehaving node) back-off will be less than

the other (legitimate) node will be more than 1/2 and
misbehaviour will reach maximum when the probability
value becomes 1. So the misbehaving node will choose
a random back-off value from such a distribution which
will ensure that the probability of its back-off value being
smaller than the legitimate node’s back-off becomes 1.
Such a distribution is known as the optimal attacker’s
distribution. Mathematically, in the three-node network
considered in this problem, let rik represent the reward
of Node i in state pk where k ∈ [1 . . . 8]. The reward rik

is nothing but the probability that Node i has smaller
back-off than other competing nodes in state pk. Based
on this, the combined channel access share of Node 2 and
Node 3 (the potential colluding nodes) can be evaluated
in generalised terms as

Combined Share of Node 2 and Node 3 =
8
∑

k=1

[

pk ×

(

3
∑

i=2

rik

)]

(7)

If there is no misbehaviour by any of the nodes, then we
use the following equation for calculating fair combined
channel access share (denoted by ρ) of Node 2 and
Node 3.

rik =















1/n if Node i is among the n nodes
choosing back-off in state pk

0 if Node i is not choosing a back-off
in state pk

Similarly, if Node 2 and Node 3 are misbehaving, in all
the states in which any of them (or both) are choosing
back-off, namely the states in [p3, p4, p5, p6, p7, p8], they
will try to get maximum reward (i.e., 1) together in that
state. So, we use the following equation in Eqn. (7)
for calculating the maximum unfair combined channel
access share (denoted by σ) of Node 2 and Node 3 (from
a back-off selection point of view).

3
∑

i=2

rik =































1 if either Node 2 or Node 3 (or both)
is(are) choosing a back-off value
in state pk

0 if neither Node 2 nor Node 3 is
choosing a back-off value
in state pk

The colluding attackers can misbehave with different
degrees and the share that they get by their misbehaviour
can vary between the above two bounds given by ρ
and σ. So, putting this together and applying some
mathematical simplification, we formulate the colluding
attackers’ constraint. The colluding attackers’ constraint
can be formulated by using the reasoning described
above as given below.
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∑

k=1

[pk × Pr(min(X2,X3) < X1)] ≤ (ρ + η) (8)

η = δ ∗ (σ − ρ) where δ ∈ [0, 1]

where η represents the amount of misbehaviour and
δ represents the misbehavior coefficient. Based on the
global system model described earlier, we can setup the
following conditions to evaluate Eqn. (8) for the state
pk.

Pr(min(X2,X3) < X1) =






















Pr(X2 < X1) if k = 4
Pr(X3 < X1) if k = 6
1 if k = 3, 5, 7
0 if k = 1, 2
Pr(min(X2,X3) < X1) if k = 8

By applying probability rules (See Appendix), we can
derive the following equation where Y1 is an random
variable with an unknown probability density function
(pdf) and Y2 is a uniform random variable.

Pr(Y1 < Y2) = (1 − E(Y1)/W0)

where E(Y1) is the expected value of random variable
Y1. Applying the above formula in Eqn. (8), we get

8
∑

k=3

pk − p4 ∗ E(X2)/W0 − p6 ∗ E(X3)/W0−

p8 ∗ E(min(X2,X3))/W0 ≤ (ρ + η)

⇒ (−p4)E(X2)/W0 + (−p6)E(X3)/W0+

(−p8)E(min(X2,X3)/W0)

≤ ((ρ + η) − (1 − (p1 + p2)))

Setting α = (−p4);β = (−p6); γ = (−p8), we get

∫ W0

0

∫ W0

0
(αx2 + βx3 + γmin(x2, x3))×

f23(x2, x3) dx2 dx3

≤ W0 ((ρ + η) − (1 − (p1 + p2))) (9)

Here, f23(x2, x3) is the joint attacker density function of
Node 2 and Node 3, δ is the misbehaviour coefficient, η
is the amount of misbehaviour and W0 is the maximum
contention window size as given in Section IV-B.

D. A Statistical Approach for Detecting Colluding Ad-
versaries

We will use the Sequential Probability Ratio Test
(SPRT) for determining if the Node 2 and Node 3
are colluding nodes or not. This test is a method of
statistical inference whose characteristic feature is that
the number of observations required by the procedure

is not determined in advance of the experiment. The
decision to terminate the experiment depends, at each
stage, on the results of the observations previously made.
Thus, the number of observations required by SPRT is
not predetermined, but is a random variable. It has been
shown in the literature that of all statistical tests with the
same power, the SPRT requires fewest observations on
the average [7]. In the context of our problem, we define
two simple hypotheses H0 and H1 as follows:
H0 −→ Node 2 and Node 3 are legitimate nodes obeying
the IEEE 802.11 DCF protocol for selecting back-off
values i.e., the nodes follow f0(x2) and f0(x3) as
their back-off distribution and f0 represents the uniform
distribution.
H1 −→ Node 2 and Node 3 are colluding adversaries
following an optimal joint probability density function
(pdf) f23(x2, x3) for selecting their back-off values.

From the mathematical point of view, it is important
here to mention that, throughout this paper, we shall be
considering only random variables which either admit
a probability density function or have a discrete distri-
bution. By the probability distribution, or more briefly
distribution, f(t), of a random variable X, we shall
always mean the probability density function of X, if
it exists. If X is a discrete random variable, f(t) will
denote the probability that X = t. We have assumed
f23(x2, x3) as a continuous density function for the sake
for analysis. In practical scenarios, as back-off values are
usually discrete integers, we can think of nodes sampling
from f23(x2, x3) and use the value after rounding off to
the nearest integer.

The SPRT collects observations until significant evi-
dence in favour of one of the two hypotheses is accu-
mulated. The legitimate node (Node 1) is assumed to
execute the SPRT and it periodically collects samples
from each of its neighbours. These samples are an
indication of the back-off values used by the neighbours.
After collecting each sample, at the i− th stage, Node 1
chooses between the following options: accept one or
the other hypothesis and stop collecting samples, or
defer decision for the moment and obtain observation
i + 1. The SPRT has two thresholds a and b that aid
the decision. The figure of merit at each step is the
logarithm of the likelihood ratio of the accumulated
sample vector until that stage. Let (xi, yi) represent
the sample vector collected from Node 2 and Node 3
respectively at stage i. For any positive integral value
i, the probability that a sample (x1, y1), ..., (xi, yi) is
obtained from Node 2 and Node 3 is given by

p1i = f23(x1, y1)...f23(xi, yi)



when H1 is true, and by

p0i = (f0(x1, y1)) ... (f0(xi, yi))

when H0 is true. The latter equation is due to the fact
that, when H0 is true, both the Node 2 and Node 3 follow
the uniform distribution independently.
Let α be the probability that H1 will be accepted when
H0 is true and β be the probability that H0 will be
accepted when H1 is true These parameters are the
strength parameters of the statistical test. So, in the con-
text of our problem, α represents the probability of false
alarms and β represents the probability of missing the
detection. For the case of testing between hypotheses H0

(normal behaviour) and H1 (misbehaviour), that involve
probability distributions f0 and f23, the logarithm of the
likelihood ratio zi at stage i with accumulated samples
(x1, y1), ..., (xi, yi) is calculated as follows.

zi = log

(

f23 ((x1, y1), ..., (xi, yi))

f0((x1, y1), ..., f0(xi, yi))

)

We assume the observation samples are statistically
independent. Hence,

zi =
i
∑

j=1

log

(

f23((xj , yj))

f0(xj) ∗ f0(yj)

)

Now, the estimated sample size, E(N), for SPRT is
calculated based on [12] where L(θ) is the Operating
Characteristic (OC) function of the test.

α = PFA = 0.01; β = PM = 0.01;

A =
(1 − β)

α
; B =

β

(1 − α)

z = log

(

f23(xi, yi)

f0(xi) ∗ f0(yi)

)

L(θ) =

(

A−1 − 1

A−1 − B−1

)

c = (L(θ) logB + (1 − L(θ)) logA)

E(N) =

(

c

E(z)

)

(10)

At each stage i of the experiment (at each integral value
of i), the cumulative sum S = z1 + z2 + ... + zi is
computed. If log B ≤ S ≤ log A, the experiment
is continued by taking additional observation, If S ≥
log A, the experiment is terminated with the acceptance
of H1. If S ≤ log B, the experiment is terminated with
the acceptance of H0.

Thus, the intelligent and adaptive attackers will try
to maximize the number of samples required by the
monitoring node (Node 1). As per Eqn. (10) given above,
this can be achieved by minimizing E (z).

E. The Attacker-Detector Model

1) Formulation of the Optimization Problem: Putting
the above discussion together, we can formulate an
optimization scenario wherein the attackers try to mini-
mize the channel access share for the legitimate node
in the network, and at the same time, maximize the
detection delay by the monitoring node. Let X2,X3 be
two random variables representing the back-off values
chosen by Node 2 and Node 3 following a joint pdf
f23(x2, x3). The basic problem is to find the optimal joint
pdf f23(x2, x3) which minimizes the following objective
function i.e.,

min
f23

g23(x2, x3) =

∫ W0

0

∫ W0

0
log(f23(x2, x3)) f23(x2, x3) dx2 dx3

subject to
∫ W0

0

∫ W0

0
f23(x2, x3)dx2 dx3 = 1 (11)

In addition, Eqn. (9) needs to be satisfied as discussed
in Section IV-C.2.

2) Determining the Optimal Attacker Distribution:
We can see that this problem involves solving the opti-
mization problem, given by Eqn. (9) and Eqn. (11), in
the space of functions. We form the Lagrangian function
converting the constrained optimization problem to an
unconstrained problem by using the method of Lagrange
multipliers. From variational calculus [13], we examine
the problem of finding the extrema of the functional

v(z(x, y)) =

∫∫

D

F

(

x, y, z,
∂z

∂x
,
∂z

∂y

)

dx dy (12)

where x and y are independent variables and values
of the functions z(x, y) on the boundary C of the
domain D are prescribed, i.e., there is given a curve
C∗ in the three-dimensional space, and every admissible
surface z(x, y) is supposed to pass through this curve.
The Lagrangian function of the optimization problem is
of the form given in Eqn. (12) where the solution to
the optimization problem is the joint optimal attacker
distribution f23. It follows that each function z(x, y)
which gives an extremum to Eqn. (12) should satisfy
the following second order partial differential equation,
known as the Ostrogradski’s equation [13].

Fz −
∂

∂x
(Fp) −

∂

∂y
(Fq) = 0

where

p =
∂z

∂x
; q =

∂z

∂y
;

Here, Fz is interpreted as partial derivative of F with
respect to z. Similar interpretation holds for Fp and Fq.
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versus detection delay at q1 = q2 =
q3 = 0.7

Applying correspondence between z(x, y) and
f23(x2, x3), we can get the optimal attacker distribution
as

f23(x2, x3) = e−1−λ−µ(αx2+βx3+γmin(x2,x3)) (13)

where λ and µ are Lagrange multipliers which need to
be evaluated using Eqn. (11) and Eqn. (9).

V. VALIDATION AND RESULTS

A. Single Node DTMC model: We can see from the re-
sults of our MATLAB implementation of the model, i.e.,
in Fig. 2, that the collision probability increases linearly
with load and reaches a saturation at the normalised load
of about 0.5. Due to our assumption that a packet will
not be retransmitted if it encounters collision, the nodes
do not select back-off from a higher contention window
and thus results in higher collision probabilities than in
the scenario where packet collisions lead to contention
window doubling. Also, from the model results, we can
see, from Fig. 3, that as the value of q increases the node
will spend lesser time in the idle states as it tends to
have more data to transmit. Finally, it tends towards the
saturation assumption as q → 1 where the probability
of the node being in idle state is almost zero. Based
on these results, we claim that the proposed DTMC
model behaves as expected and use it for modelling the
collusion between two nodes.

B. Global System Model: We observe from Fig. 4, ai in-
creases linearly with q and reaches a saturation at around
normalised load of 0.5 for W0 = 8. ai reaches saturation
at lower loads as W0 increases. Also, saturation value of
ai decreases with increase in W0 as the node spends
more time waiting for transmission or being idle.
C. Attacker-Detector Model: Fig. 5 depicts the estimated
attackers’ distribution (Eqn. (13)) as a 3-D mesh curtain
plot for W0 = 32 and q1 = q2 = q3 = 0.7. We
can clearly see that smaller back-off values of Node 2
and Node 3 are more probable than higher values which
does not happen if both the attackers were obeying the
IEEE 802.11 protocol. This clearly gives advantage for
the attackers for using the estimated distribution. As we
can see from Fig. 6, the degree of misbehaviour has
a significant effect on the detection delay. It requires
more samples and correspondingly, more time, to detect
collusion for lower values of misbehaviour coefficient
which conforms to the results obtained for the saturation
case in [6].
D. Experimental Details:-

Based on the above analysis, the optimal attacker
distribution is found and the expected value of the sample
size is estimated. Table II reports the analytical results
obtained using MATLAB. The values of λ and µ indi-
cate the optimal attacker distribution for different loads.



TABLE II: Attackers’ distribution parameters and estimated
sample size for different loads for W0 = 8. Note that E(N)
indicates the estimated sample size

q1 q2 q3 λ µ E(N)
0.2 0.2 0.2 2.609020 -4.472466 156.45
0.7 0.7 0.7 2.620430 -2.271771 159.95
0.8 0.1 0.1 2.599258 -4.706785 153.60
0.1 0.8 0.8 2.621764 -5.255232 160.40
0.1 0.1 0.8 2.701894 -5.631417 188.10
0.9 0.05 0.05 2.592955 -8.046555 151.80

To validate the estimate, we have generated samples
from the attacker distribution using a statistics library
called UNU.RAN [14]. Using this library, samples are
generated according to the bivariate attacker distribution
using the HITRO (HIT-and-run sampler with Ratio-Of-
uniforms) Markov chain method of statistical sampling.
The generated samples are input to SPRT, in MATLAB,
which is setup with the parameters corresponding to
attacker distribution under test. For different sets of
samples, the experiment is conducted and on an average,
the sample size needed approaches the estimated value.

VI. CONCLUSION AND FUTURE WORK

To summarize, we have explored the problem of
back-off manipulation at the MAC layer by malicious
colluding adversaries in a non-saturated environment
from an analytical perspective. We proposed a non-linear
optimization model based on results from a sequential
statistical inferencing test such as SPRT to understand
the attacker-detector scenario. To evaluate the optimal
joint attacker distribution, a measure for fairness in the
network was provided by modelling each node as a
Discrete Time Markov Chain (DTMC). The fairness
condition was expressed as a constraint to the opti-
mization model. We then got an analytical estimate of
the sample size for different loads. We then presented
validation and verification results got from simulations
done in MATLAB. As possible extension of this work,
the number of nodes can be increased and the scenario
of collusion of any two attackers in this setting can
be studied. Also, we plan to extend the analysis for
handling finite number of retransmissions (contention
window doubling) in our future work.
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APPENDIX

Simplification of the expression Pr(Y1 < Y2) where Y1

and Y2 are two random variables is given below. Y1 is an
unknown random variable with pdf f(y1) taking values in
[0, W0] whereas Y2 is a uniformly distributed in [0, W0], where
W0 is some constant.

Pr(Y1 < Y2) =

∫

W0

0

Pr(Y2 > Y1|Y1 = y1)f(y1)dy1

=

∫ W0

0

Pr(Y2 > y1)f(y1)dy1

=

∫

W0

0

(1 − Pr(Y2 ≤ y1)f(y1)dy1

= 1 −

∫

W0

0

(y1/W0)f(y1)dy1

= 1 − E(Y1)/W0

In the context of this paper, Y2 refers to the legitimate node,
Y1 may refer to any attacker node and W0 represents the
maximum back-off window size at stage 0 of the IEEE 802.11
DCF protocol.




