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Abstract—Channel aware and opportunistic scheduling algo-
rithms exploit the channel knowledge and fading to increase
the average throughput. The maximum throughput scheduler
(MTS) transmits only to the best user at a time. It is unfair
to users at the cell edge. Obviously, there is a tradeoff between
average throughput and fairness in the system. In this work,
we study four representative schedulers, namely the MTS, the
proportional fair scheduler (PFS), the (relative) opportunistic
round robin scheduler (ORS), and the round robin scheduler
(RRS). We show that the average sum rate performance and the
average worst-case delay depend strongly on the user distribution
within the cell. MTS gains from asymmetrically distributed users
whereas the other three schedulers suffer. On the other hand, the
average fairness of MTS and PFS decreases with asymmetrical
user distribution. The key contribution of this paper is to put
these tradeoffs and observations on a solid theoretical basis. The
scaling laws of the average sum rate with the number of users
as well as of the average worst-case delay are derived. Both the
PFS and the ORS provide a reasonable performance in terms
of throughput and fairness. However, PFS outperforms ORS for
symmetrical user distributions, whereas ORS outperforms PFS
for asymmetrical user distributions.

I. INTRODUCTION, RECENT RESULTS, AND PRELIMINARIES

A. Introduction and contributions

The optimal strategy for maximizing the sum capacity with
perfect channel state information (CSI) of a cellular single-
input single-output (SISO) multiuser channel is to allow only
the user having the best channel conditions in terms of SNR
to transmit at each time slot (TDMA). This result in [1]
has induced the notion of multiuser diversity [2], i.e. the
achievable capacity of the system increases with the number of
users. The corresponding scheduling policy is called maximum
throughput scheduler (MTS).

A major disadvantage of MTS is its unfairness against users
at the cell edge. On the other hand, the most fair but channel
unaware scheduler is the round robin scheduler (RRS) [3],
that is, all transmissions take place in a strict cyclic order.
In order to increase the fairness for users at the cell edge,
the so called proportional fair scheduler can be applied. The
proportional fair scheduler (PFS) weights the instantaneous
transmission rates by their averages to find the best user1 and
achieves equal activity probability for all users [4]. Yet another

1This is sometimes called normalized SNR scheduler.

scheduler, which is referred to as opportunistic round robin
scheduling (ORS) was introduced in [5]. It is a combination
of the RRS and MTS. The comparison of different schedulers
with respect to different performance criteria is a highly viable
research area. For example, in [6] the throughput guarantee vi-
olation probability is approximated and simulated for different
schedulers in different channel models.

In order to quantitatively measure the impact of the sched-
uler on the fairness, different measures are proposed in the
literature [7], [8], [9]. The Jain fairness index (JFI) defined
in [7], also known as the Global Fairness Index (GFI) [10],
provides a single number between zero and one that measures
the fairness even for resource scheduling in finite windows.
The average fairness defined in [8] is developed from an
information-theoretic view. The worst-case delay as it is used
in e.g. [9] measures the average number of transmissions
needed until all users were active at least m times.

Obviously, there exists a tradeoff between average through-
put and average fairness. In this paper, we study this tradeoff
for the four scheduling algorithms MTS, RRS, PFS, and ORS.
The contributions of the paper are as follows: In Section I-E,
closed-form expressions for the four schedulers for arbitrary
user distributions are derived. The impact of the user distribu-
tion on the average sum rate is analyzed in Section II and it is
shown that the average sum rate is increased with asymmetri-
cal user distributions for MTS. For all other schedulers (RRS,
PFS, and ORS) it decreases. Different fairness measures and
their properties are discussed in Section III. Furthermore, we
study the impact of the user distribution and its connection to
the activity probabilities. The asymptotic performance for high
SNR or large number of users is analyzed in Section IV. In
section V, we illustrate the theoretical results with numerical
single-cell multiuser simulations.

B. System model

In the signal model, there are K mobile users who are
going to receive data from one base station. The single-antenna
quasi-static block flat-fading channels h1, ..., hK between the
mobiles and the base are modeled as constant for a block of
coherence length T and from block to block as zero-mean
independent complex Gaussian distributed with CN(0, ck).
The variance is ck = E

[

|hk|
2
]

for 1 ≤ k ≤ K. The
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additive zero-mean white Gaussian noise nk(t), 1 ≤ k ≤ K,
at the receivers are independent identically distributed (iid)
with variance σ2

n each. Furthermore, we assume that the sum
transmit power is constrained to be P . The SNR is given
by ρ = P

σ2
n

. The received signal at mobile k at time t is

yk(t) = hk

∑K

l=1 xl(t) + nk(t). In the following, we omit the
time index for convenience. The statistics of the fading channel
coefficients hk are completely characterized by their respective
ck. The transmit power directly corresponds to the variance of
the transmit signals pk = E

[

|xk|
2
]

for 1 ≤ k ≤ K. The
l1-norm of the power allocation vector p = [p1, ..., pK ] is
constrained to be ||p|| =

∑K

k=1 pk = P . For 1 ≤ k ≤ K
define wk by ||hk||

2 = ckwk, i.e. the wk are iid standard
exponentially distributed random variables. We assume that the
receivers have perfect CSI. Further on, we collect the channel
states in a vector h = [h1, ..., hK ].

In this work, we restrict our attention to a certain utility
function namely the transmission rate. Another approach is to
generalize to other utility functions of the type U(x) = x1−α

1−α

where x is the capacity share and α ≥ 0 is a free parameter.
Our results correspond to the special case α = 0.

C. Measure of user distribution

The distance of the MS k from the BS determines the
average channel power ck. In the following, we call the
vector of average channel powers c = [c1, ..., cK ], the user
distribution. In order to guarantee a fair comparison between
different user distributions, we constrain the sum variance to be
equal to the number of users, i.e.

∑K
k=1 ck = K. Without loss

of generality, we order the users in a decreasing way according
to their fading variances, i.e. c1 ≥ c2 ≥ ... ≥ cK . The
constraint regarding the sum of the fading variances ensures
that we compare scenarios in which the channel carries the
same average sum power.

We need the following definitions [11]:
Definition 1: For two vectors x,y ∈ Rn ordered in de-

creasing order one says that the vector x majorizes the vector y

and writes x ≻ y if
∑m

k=1 xk ≥
∑m

k=1 yk for m = 1, ..., n−1
and

∑n
k=1 xk =

∑n
k=1 yk. 2

The next definition describes a function Φ which is applied
to the vectors x and y with x ≻ y:

Definition 2: A real-valued function Φ defined on A ⊂ Rn

is said to be Schur-convex on A if x ≻ y on A implies Φ(x) ≥
Φ(y). Similarly, Φ is said to be Schur-concave on A if from
x ≻ y on A follows Φ(x) ≤ Φ(y).
Majorization is a useful tool to compare the impact of vec-
tors which can be partially ordered. The common monotony
properties of scalar functions corresponds to the Schur-convex
property of vector functions. The reason why it is called Schur-
convex and not Schur-monotone is that every symmetric and
convex vector function is Schur-convex. Majorization is a large
and active area of research in linear algebra, with entire books
[11] devoted to its theory and application.

2Note that sometimes majorization is defined by the sum of the smallest
m components [12].

It is worth mentioning that majorization induces only a
partial order on vectors with more than two components, i.e.
not all possible vectors can be compared with each other. This
is due to the fact that vectors with more than two components
cannot be totally ordered. However, a sufficient number of
vectors can be compared. Also, the extreme cases can be used
for comparison with any other vector. For more information
about this measure of user distribution and its application see
[13, Section 4.2.1].

D. High-SNR measures S∞ and L∞

The quantitative performance is analyzed using the high-
SNR offset concept from [14]. Denote by C(ρ) the average
throughput as a function of the SNR. The two high-SNR
measures are introduced as follows

S∞ = lim
ρ→∞

C(ρ)

log(ρ)
and

L∞ = lim
ρ→∞

(

log(ρ) −
C(ρ)

S∞

)

. (1)

The measure S∞ is called high-SNR slope and the measure
L∞ is called high-SNR power offset. At high SNR the average
throughput behaves like C(ρ) = S∞

(

ρ[dB]
3dB

− L∞

)

+ O(1).
For convenience, these high-SNR measures are defined in 3-dB
units. For further discussion, see [14, Section II]. These two
high-SNR measures are useful if two systems are compared
which differ either in their multiplexing gain, i.e. the slope
of the average throughput curve at high SNR, or which have
equal S∞ but are shifted at high SNR.

E. Types of (channel aware) scheduling

If perfect CSI is available at the base station, the sum rate
is maximized by single-user transmission to the best user only
[1], i.e. TDMA achieves the sum capacity. This result leads to
the notion of multiuser diversity [2]. This scheduler is called
MTS and the achievable average sum rate is given by

RMT
sum = E

[

log

(

1 + ρ max
1≤k≤K

||hk||
2

)]

. (2)

Note that the average sum rate of the MTS can be written in
integral representation [15] as

RMT
sum =

∫ ∞

0

ρ

1 + ρt

[

1 −

K
∏

k=1

(

1 − e
− t

ck

)

]

dt. (3)

The case with symmetrically distributed users (c = 1)
has been derived in [16]. The MTS is unfair from a user-
perspective because mobiles at the cell edge have less proba-
bility to be served.

The opposite type of scheduler is the round-robin scheduler
(RRS). It is not channel aware. It minimizes the average worst-
case delay, i.e. the average time until every user has been
served at least once. Note that there exists also the weighted
RRS that achieves max-min fairness in terms of throughput



rather than in terms of transmission resource. The average
sum rate of the unweighted RRS is given by

RRR
sum = E

[

1

K

K
∑

k=1

log
(

1 + ρ||hk||
2
)

]

. (4)

Note that (4) can be rewritten in closed form as

RRR
sum =

1

K

K
∑

k=1

Ei

(

1,
1

ρck

)

exp

(

1

ρck

)

(5)

where the exponential integral is given by Ei(a, x) =
∫∞

1
exp(−tx)t−adt.

These two schedulers are the two most extreme cases. The
MTS maximizes the average sum rate whereas the RRS min-
imizes the average worst-case delay. A compromise between
the two is the proportional fair scheduler (PFS) [2]. For the
analysis, we use the so called relative SNR scheduler. The user
is served which has the highest ratio of the instantaneous SNR
to average SNR. Hence, the achievable sum rate is given by

RPF
sum = E

[

log
(

1 + ρ||hk∗ ||2
)]

with (6)

k∗ = arg max
1≤k≤K

||hk||
2

ck

.

Note that (6) can be rewritten as

RPF
sum =

1

K

K
∑

k=1

K
∑

l=1

(−1)l−1

(

K
l

)

Ei

(

1,
l

ρck

)

e
l

ρck (7)

because the scheduling probability of all users is equal to 1
K

.
Another interesting channel aware scheduler is proposed in

[5]. The one-round version [17] of the relative opportunistic
round-robin scheduler (ORS) guarantees the same average
worst case delay as the RRS but exploits a certain amount
of multiuser diversity. It consists of K rounds and initializes
the set of available users S with S = {1, ...,K}. The relative
best user maxk∈S

||hk||
2

ck
out of the set of available users is

picked and removed from the set within each step. After K
steps it is guaranteed that all users were active at least once.
The sum rate performance is derived in [18, Eq. (8)]

ROR
sum =

1

K2

K
∑

n=1

n

K
∑

i=1

n−1
∑

j=0

(

n − 1
j

)

(−1)j

·
e

1+j
ci

1 + j
Ei

(

1,
1 + j

ci

)

. (8)

For our analysis, we prefer the representation in the following
lemma.

Lemma 3: The average sum rate of the ORS (8) can be
written as

∫ ∞

0

[

1 −
1

K2

K
∑

n=1

K
∑

i=1

(

1 − e
− t

ci

)n

]

ρ

1 + ρt
dt. (9)

II. ANALYSIS OF SUM RATE PERFORMANCE

The following result is proven in [19] and restated here
for convenience. It states that a more asymmetrical user
distribution increases the average sum rate with MTS.

Theorem 4: The average sum rate of the MTS is Schur-
convex with respect to c, i.e.

c � d =⇒ RMT
sum(c) ≥ RMT

sum(d). (10)

The average sum rate of the RRS is Schur-concave with
respect to the vector of average user powers c, i.e.

c � d =⇒ RRR
sum(c) ≤ RRR

sum(d). (11)

The average sum rate of the PFS is Schur-concave with
respect to the vector of average user powers c, i.e.

c � d =⇒ RPF
sum(c) ≤ RPF

sum(d). (12)

The average sum rate of the ORS is Schur-concave with
respect to the vector of average user power c, i.e.

c � d =⇒ ROR
sum(c) ≤ ROR

sum(d). (13)

In conclusion, there is only one scheduler which improves
for asymmetrically distributed users, namely the MTS. The
average sum rates of the other schedulers, PFS, ORS, and
RRS, decrease with more asymmetrically distributed user.

III. FAIRNESS ANALYSIS

A. Analysis of average worst-case delay

In oder to capture the fairness of the different schedulers,
the average worst-case delay is considered. The average worst-
case delay E[Dm,K ] measures the average number of trans-
missions that are needed until all K users have been active at
least m times. We define D1 = E[D1,K ].

The two most fair schedulers are the RRS and ORS. Both
have an average worst-case delay of mK, because all users
are guaranteed to be active within a block of K transmissions.
Especially, it takes K transmissions until every user has
transmitted exactly once, i.e.

DRRS
1 = DORS

1 = K. (14)

The PFS normalizes the users channels. Therefore, the
probability of user k being active is, independently of k,
1 ≤ k ≤ K, equal to 1

K
. Especially, it is independent of the

user distribution c. The result from [20] applies for m = 1

DPFS
1 = K

∫ ∞

0

1 − (1 − exp(−x))Kdt (15)

Note that (15) can be written as DPFS
1 = K (Ψ(K + 1) + γ)

with the Ψ-function [21, 6.3] and Euler’s constant γ [21,
6.1.3].

The analysis of the MTS is more difficult. Rewrite the
average worst-case delay [9, Section 3.3] without dropping
probability as

DMTS
1 = n

∫ ∞

0

(

1 −
K
∏

k=1

(

1 −
Γ(m, dkt)

Γ(m)

)

)

dt. (16)



For m = 1, the expression in (16) says how many packets are
transmitted on average until every user has at least transmitted
one. The coefficients dk in (16) are related to the probability
that user k is chosen πk = dk

K
. For the MTS, we prove the

following result.
Theorem 5: The average worst-case delay E[D1,K ] is

Schur-convex with respect to d, i.e.

d1 � d2 −→ DMTS
1 (d1) ≥ DMTS

1 (d2). (17)

Theorem 5 formally states the intuitive fact that the average
worst-case delay grows if some users are less frequently active
on average. If the probability that user k is active is equal to 1

K
,

independently of k, then the expression in (16) is minimized.
Note that a similar analysis has been performed in the different
context of Birthday matching in [22].

B. Jain’s fairness index and dispersion

In [7], a quantitative measure of fairness is introduced. It
is called Jain’s fairness index (JFI) or Global Fairness Index
(GFI) [10]. Define xk as the amount of a resource that is
distributed to user k. Then, JFI is defined as [7, Eq. (2)] JFI =
( 1

K

∑K
k=1

xk)
2

1
K

∑

K
k=1

x2
k

. Let us specialize this general definition to the
case in which one unit of resource is one transmission. The
JFI is averaged over L transmissions [18]

JFI(L) =
EL

(

1
K

∑K
k=1 xk

)2

EL
1
K

∑K

k=1 x2
k

.

Denote by πk the probability that user k is active within
L transmissions, then xk = πkL. Let L → ∞ to obtain

the long-term average JFI as JFI =
( 1

K

∑K
k=1

πk)
2

1
K

∑

K
k=1

π2
k

. Note that
∑K

k=1 πk = 1 and this leads to the dispersion of p,

Dsp(π) =
1

∑K
k=1 π2

k

(18)

Interestingly, this measure of fairness is closely related to
Majorization theory.

Theorem 6: The dispersion is a Schur-concave function of
the vector π, i.e.

π1 � π2 =⇒ Dsp(π1) ≤ Dsp(π2). (19)

C. Connection of user distribution, service probability, and
delay

From the results in the last subsections follows that the
impact of the user location on the different fairness measures
depends on the resulting activity probability vector p. There-
fore, we have to map the user distribution vector c to the
activity probability vector π. The concrete mapping depends
on the chosen scheduler. For PFS the activity probabilities of
all users are equal to πk = 1

K
and independent of c.

In order to apply Majorization theory to the analysis of the
average worst-case delay as a function of the user distribution,
we have to transfer the partial order for user distributions to
the partial order for probability that a user k is picked.

Define the vector of probabilities that user k is picked π =
[π1, ..., πK ] as a function of the user distribution c, i.e.

πk(c) = Pr

[

ckwk ≥ max
l 6=k

clwl

]

(20)

Unfortunately, the next result is an impossibility result.
It shows that it is not possible to say that if c � d then
automatically π(c) � π(d).

Lemma 7: The mapping from the vector of user distri-
butions to the vector of service probabilities is not order
preserving with respect to the partial order Majorization.

IV. ASYMPTOTIC CHARACTERIZATIONS

In this section, we characterize the average sum rate of
the different scheduling schemes for high SNR or for a large
number of users. The scaling laws of the schemes are derived
as a function of the user distribution.

A. High SNR behavior

The high SNR slope S∞ as defined in (1) for all four
scheduling schemes is equal to one because

S∞ = lim
ρ→∞

∫∞

0
log(1 + ρx)pdf(x)dx

log(ρ)
= 1. (21)

It is allowed to swap integration and limit by applying the
Dominated Convergence Theorem. In general, any TDMA
scheme could have at most a high SNR slope of one. The
high SNR power offset is different for the four schedulers,
which is shown in the following.

Theorem 8: For MTS, the maximum and minimum high
SNR power offsets are given by

max(L∞
MT ) = γ − log(K) (22)

min(L∞
MT ) = γ +

K
∑

k=1

(−1)k−1

(

K
k

)

log(k).

For RRS, the high SNR power offset as a function of the user
distribution is given by

L∞
RR(c) =

1

K

K
∑

k=1

γ − log(ck). (23)

For PFS, the high SNR power offset as a function of the user
distribution is given by

L∞
PF (c) = γ −

1

K

K
∑

k=1

K
∑

l=1

(−1)l−1

(

K
l

)

log

(

l

ck

)

. (24)

For ORS, the high SNR power offsets as a function of the
user distribution is given by

L∞
OR(c) =

1

K2

K
∑

n=1

n

K
∑

k=1

n−1
∑

j=0

(

n − 1
j

)

(−1)j

1 + j
·

·

(

γ + log

(

1 + j

ck

))

. (25)



The proof of Theorem 8 follows similar lines as in [23,
Theorem 2] and is omitted. Note that the Schur-convexity of
(23) can be directly observed and this proves the result in
(11). However, in (24) and (25) the Schur-convexity cannot
be directly observed because of the alternating sum.

The high-SNR power offsets obey the following inequality
chain L∞

MT ≤ {L∞
PF ,L∞

OR} ≤ L∞
RR. The order of

PFS and ORS depends on the correlation scenario. Note that
the average worst-case delay does not scale with the SNR.

B. Scaling with number of users

First, consider the case in which the users are symmetrically
distributed, i.e. c = 1. The scaling behavior with K → ∞ for
fixed SNR ρ can be easily shown by considering a simple
upper and lower bound on the average sum rate. The average
sum rate of RR does not scale with K at all. The results can
be compared to [24].

Lemma 9: For symmetrically distributed users c = 1, the
average sum rate of MTS, PFS, and ORS scale for large K
with log(log(K)), i.e.

lim
K→∞

RMT
sum(K)

log log(K)
= lim

K→∞

RPF
sum(K)

log log(K)

= lim
K→∞

ROR
sum(K)

log log(K)
= 1. (26)

The case in which the users are not symmetrically dis-
tributed is discussed in the numerical results section.

The scaling of the average worst-case delay with the number
of users is also of interest. Then next lemma gives the scaling
for the case in which the users are symmetrically distributed.
It follows directly from (14) and (??).

Lemma 10: For symmetrically distributed users, the aver-
age worst-case delay scales linearly with K for RRS and ORS.
For MTS and PFS, it scales as K log(K), i.e.

lim
K→∞

DRRS
1 (K)

K
= lim

K→∞

DORS
1 (K)

K
= 1

lim
K→∞

DMTS
1 (K)

K log(K)
= lim

K→∞

DPFS
1 (K)

K log(K)
= 1. (27)

V. ILLUSTRATIONS

In this section, we present illustrations which validate
and explain the theoretical results from the last sections.
The performance for the case with symmetrically distributed
users c = 1 is compared to the case with asymmet-
rically distributed users. For the asymmetric user distri-
bution, we choose an exponential decaying model ck =
exp(−tk) and normalize

∑K

k=1 ck = K. Note that this
does not model the path losses of the users. Each decay model
corresponds to a SNR or user distribution scenario, e.g. the
flat model ck = 1/K corresponds to the case where the SNR
values are lined up equidistantly. In the numerical simulations
we set K = 20 and t = 0.2, for each data point 100000 Monte
Carlo runs are performed to compute the averages.

MTS PFS ORS RRS

avg sumrate 5,13129 5,13126 4,635476 2,9092

avg worst case delay 70 70 20 20

dispersion 20 20 20 20
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Fig. 1. Average sum rate, worst-case delay, and dispersion for K = 20

symmetrically and asymmetrically distributed users.

A. General results

In Figure 1, the average sum rate, the average worst-case
delay, and the dispersion are shown for the four studied
schedulers. In the upper figure, the users are symmetrically
distributed, i.e. c = 1, whereas in the lower figure, the users
are asymmetrically distributed with t = 0.2. The results in
Figure 1 illustrate the following observations: The average sum
rate of MTS increases with more asymmetrically distributed
users (compare to equation (10)), while the average sum rate
of all three other schedulers decreases (compare to equations
(11), (12), and (13)). However, PFS outperforms ORS for the
symmetrical scenario whereas it is the other way round for the
assymetrical scenario. Another observation is that the average
worst-case delay is more differentiated than the dispersion.
This underlines that the average worst-case delay is better
suited for fairness analysis than the JFI-based dispersion.
Finally, the average worst-case delay for the asymmetrical
scenario of the PFS and ORS tends to grow without bound.
Therefore, taking the tradeoff between fairness and average
sum rate into account, the PFS and ORS perform reasonably
well. PFS is advantageous in symmetric scenarios whereas
ORS performs better in asymmetric scenarios.

B. Scaling with number of users

In figures (2) and (3), we show the average performance of
the four scheduling algorithms for symmetrically distributed as
well as asymmetrically distributed users. The derived scaling
laws in equations (26) and (27) are confirmed. The interesting
observation is that for the asymmetrical case, PFS outperforms
OFS for a small number of users whereas it is the other way
round for large number of users.

The average worst case delay for MTS and PFS increases
with asymmetrical user distribution as predicted in Theorem
5. As soon as a single ck approaches zero, the average
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Fig. 2. Average sum rate and worst-case delay over number of users for
symmetrically distributed users.

worst-case delay approaches infinity. The round-robin-based
schedulers RRS and ORS are robust against the asymmetrical
user distribution.

The main observation in this section is that for practical
scenarios in which fairness is important as well as users are
randomly distributed within the cell, ORS clearly outperforms
PFS. Note that the results presented here hold for a static
scenario in which we place the users only once inside the cell
and simulate the small-scale fading. Mobility as well as traffic
models are left for further research.
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Fig. 3. Average sum rate and worst-case delay over number of users for
asymmetrically distributed users.
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