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Abstract—In this article we present branch-and-bound algo-
rithms for the access point assignment problem in WLANs, when
the objective function is based on the throughput of stations in
the network. We consider: a) maximizing the aggregate through-
put, b) achieving lexicographically max-min fair throughputs,
c) achieving proportionally fair throughputs. The performance
of all branch-and-bound algorithms is examined for various
degrees of approximation. Thus we show trade-offs between the
increased cost of exploration and improvement in the objective
value. We further compare their performance to that of greedy
algorithms, embedded as a depth-first-search in the branch-
and-bound methods. An omnipresent result is the near-optimal
performance of the greedy algorithms, which is particularly im-
portant when considering their practical application. In all cases,
the performance of the algorithms improves as the distribution
of wireless stations becomes more concentrated in areas of the
network, as in hotspot topologies.

Index Terms—WLAN, 802.11, access point assignment,
throughput, optimization, branch-and-bound algorithms

I. INTRODUCTION

In recent years, the need for increased coverage and ca-
pacity of WLANs has led to denser deployments of access
points (APs). As a result, transmission ranges of APs are
usually overlapping, and wireless stations (STAs) can be in
communication range to several APs. The ensuing increased
interference problems in the network can be alleviated to
some extent by applying efficient power control or channel
assignment mechanisms [1], [2]. For STAs that operate in the
same frequency and are in communication range with several
APs, the persisting problem is how to efficiently assign STAs
to APs so as to improve the performance of the network.

In current WLANs, a STA scans the channel for bea-
con signals of nearby APs and connects to the AP which
has the strongest Radio Signal Strength Indication (RSSI)
value1. Based on the received power level, the physical layer
transmission rate is selected together with the appropriate
modulation and encoding scheme so that a given packet error
rate is satisfied. In general, a higher receiver input power
allows a higher transmission rate to be used. While this –
herein called Max-RSSI – scheme ensures the best possible

This work has been supported by the NoE CONTENT (IST-84239).
1The RSSI is a unitless measure of the power of the signal, in an arbitrary

scale.

reception/transmission conditions, it does not consider the
actual throughput of STAs, as occurring from the 802.11
contention mechanism. In other words, it does not explicitly
consider performance as an objective.

Performance objectives we consider in this paper, associated
with the throughput of wireless STAs are the following:
i) maximizing the aggregate throughput ii) maximizing the
minimum throughput, and iii) achieving proportionally fair
throughputs. Each of these objectives has a different practical
value. The first could be related to maximizing a linear utility
function, usually defined from the point of view of a network
operator. A well-known drawback of such an assignment is the
induced unfairness in the throughput allocation. The second
objective amounts to achieving as even as possible throughput
values for all STAs. The third objective, based on the notion
of proportional fairness introduced by Kelly [3], is known to
achieve an efficient compromise between the first two, both
increasing the aggregate throughput and maintaining fairness
in the attained throughput values.

We consider a set of WLAN stations (STA) S = {1, . . . , N}
and a set of access points (AP) P = {1, . . . , P}, where P <
N . Each STA j (j = 1, . . . , N ) can be serviced by a subset of
APs Pj , which is called the selection set of STA j. The quality
of servicing STA j by AP i ∈ Pj is denoted by θj,i. In our
case it represents the throughput of a STA, which depends on
contention from other STAs in the same cell and the channel
conditions.

For simplicity we shall use the throughput arising from ideal
random polling:

θj,i =
1

∑

u∈Ui

1
ru,i

, (1)

where Ui is the set of STAs connected to AP i, and ru,i is
the physical transmission rate of the connection of STA u
with AP i, considered to be some function of SNR: ru =
h(SNR(u, i)) .

This is a common simplification for the throughput of a
STA (see [4]–[6]). It embodies two major aftereffects of the
802.11 mechanism. First, that the addition of more STAs
in the same cell (i.e., connected to the same AP) always
decreases the throughput of the existing STAs in the cell, due

peri
Typewriter
WIOPT 2008, 1st–3rd Apr 2008, Berlin, Germany. 

Copyright © 2011–2012 ICST ISBN 978-963-9799-18-9

DOI 10.4108/ICST.WIOPT2008.3054

peri
Typewriter



to increased contention. Secondly, that all STAs in the same
cell obtain the same throughput, whose value is close to the
minimum transmission rate of all STAs in the cell. This is a
fundamental max-min fairness property of the protocol. The
inverse of the right-hand-side of (1) is often termed the load
of AP i [4], interpreted as the amount of time to transmit
one unit of information by each of the STAs in the cell. The
AP load can alternatively be used as performance objective
in an optimization problem. Clearly, minimizing the sum of
loads of all APs is equivalent to maximizing the aggregate
throughput of all STAs. There is no such equivalence for the
other objectives.

For each of the objectives, the problem is formulated as a
nonlinear integer programming problem, with a non-convex
and non-separable objective function. Analytical solutions
were derived in [5] for the proportional fairness objective, in
some simplified subcases and relaxations of the problem. In
[6], the total load of all APs is treated as an energy function,
which is minimized over time using a Gibbs sampler together
with simulated annealing. In [4], minimizing the maximum
load over all APs is considered. An approximate solution is
obtained by solving the related fractional association problem
(a linear programming problem), and then using a rounding
method to approximate the optimal integral association.

In this paper, we consider the application of Branch-and-
Bound (BB) algorithms for each of the aforementioned thr-
oughput objectives. In [5], a BB solution for the nonlinear in-
teger program in the proportional fairness case was acquired by
using a ready-made optimization software package (although
no indices were given on the performance and efficiency of
the algorithm). Here we take an inherently combinatorial ap-
proach. A key contribution is to identify appropriate bounding
rules and branching procedures for each performance objec-
tive, that reduce the complexity of the search. We examine
optimal as well as approximate solutions to the problem,
i.e. considering a given relative error from the optimal. By
construction, each BB algorithm has also an imbedded greedy
sub-algorithm, and is guaranteed to find a solution at least as
good as the greedy one. Based on this construction, we can
show trade-offs between the cost of additional exploration of
the state space and the increase in distance from the optimal,
for various degrees of approximation.

We examine the performance of both BB and greedy algo-
rithms for two characteristic topologies. In the first, STAs are
uniformly distributed in the network area, while in the second
STAs are concentrated in areas around each AP, thus creating
“hotspots” in the network. We show that the performance
of all algorithms is improved in such “hotspot topologies”.
Computationally efficient BB algorithms are constructed in
the max-aggregate throughput and max-min fair throughput
cases. In the proportional fairness case, the derived bounds
are not tight enough to lead to a small computational cost.
Nevertheless, in all cases the greedy algorithms are shown
to be near-optimal; hence, taking into account their small
computational complexity, they are more suitable for practical
applications.

The rest of the paper is structured as follows. In Section II,
we formally describe the objective functions used. Section III
presents the construction of the BB and greedy algorithms for
each throughput objective. In Section IV we present the perfor-
mance of the algorithms for the two characteristic topologies.
Section V is devoted to a discussion on the implementation
of the algorithms. We end in Section VI with the major
conclusions and further issues opened from this research.

II. OBJECTIVE FUNCTIONS

An assignment of STA j to AP i is denoted by a function
αj

def= α(j) = i. An assignment of STAs to APs is denoted by
the set A = {(1, α1), . . . , (N, αN )}. To disburden notation,
we denote this set simply as A = {α1, . . . , αN}. We empha-
size the dependence of the quality of each connection on all
other assignments by the identity θj,i = θj,i(α1, . . . , αj−1,
αj+1, . . . , αN ).

The objective is to find an optimal assignment A∗ =
(α∗1, . . . , α

∗
N ) such that

F(A∗) = max
A∈R=P1×···×PN

F(A) ,

where the set of all possible assignments R = P1×· · ·×PN is
the feasible set of the problem and F(A) = F(α1, . . . , αN ) def=
f(θ1,α1(α2, . . . , αN ), . . . , θN,αN

(α1, . . . , αN−1)) is a func-
tion which can represent different aspects of throughput per-
formance.

We consider sums of increasing utility functions of through-
put, namely the aggregate throughput, f(Θ) =

∑N
j=1 θj,αj ,

and the sum of proportionally fair throughputs, f(Θ) =∑N
j=1 log θj,αj [3].
Further, we consider the case of achieving lexicographic

max-min fairness. This entails not only maximizing the min-
imum throughput, but finding the “most balanced” allocation
of throughputs to STAs. It amounts to finding the lexicograph-
ically greatest throughput vector in the following sense: If
(θD,1, . . . , θD,N ) is a vector of STAs throughputs in decreas-
ing order, this is said to be lex-greater than another vector
(θ′D,1, . . . , θ

′
D,N ), also sorted in decreasing order, if and only

if (∃ m > 0) : (θD,i = θ′D,i ∀ i < m) ∧ (θD,m > θ′D,m).
Hereafter in this paper, max-min fairness will be taken to

mean lexicographic max-min fairness. The term lex-max-min
fairness will also be used for shortness.

III. BRANCH-AND-BOUND METHODS

We follow the formulation for a Branch-and-Bound ap-
proach for the generalized assignment problem in [7].

The BB algorithm will proceed by partially assigning
STAs to APs. Let a partial assignment, when only STAs
in the subset S ′ ⊂ S have been assigned, be denoted by
AS′⊂S def= {(j, αj)}j∈S′ . The subset of remaining possible
assignments, when the associations of STAs in S ′ are held
fixed, is RS′⊂S = {A ∈ R | AS′⊂S ⊂ A} . Any assignment
AS′′⊆S ∈ RS′⊂S , of STAs in a set S ′′ such that S ′ ⊂ S ′′ ⊆ S,
shall be called an extended assignment over the set S ′.



Consistently, we shall call an assignment where all STAs have
been associated with an AP a complete assignment.

Each node in the constructed branching tree will be a partial
or complete assignment, and at level k of the branching tree
k ≤ N STAs will be assigned.

A. Bounding Rules

1) The Aggregate Throughput Case: We start with the
following:

Lemma 1: Consider a partial assignment AS′⊂S . Let S ′i
be the subset of STAs assigned at this point to AP i (i =
1, . . . , P ), with |S ′i| = ci, and let assigned STA j have
transmission rate xj,i, j = 1, . . . , ci. If an unassigned STA
with rate xci+1,i is to be connected to AP i, an increase in
the objective function of that cell occurs if and only if

xci+1,i >
ci

1
x1,i

+ · · ·+ 1
xci,i

. (2)

Proof: The condition follows straightforwardly from sim-
ple algebra.
That is, the new rate must be greater than the current aggre-
gate throughput in order to have an improvement. From the
necessary and sufficient condition the following corollary is
obtained by induction.

Corollary 1: When STAs assigned sequentially to an AP
have decreasing transmission rate values, the resulting se-
quence of aggregate throughput values is also decreasing.

An upper bound on the value of a partial assignment AS′⊂S
can now be derived provided STAs assigned sequentially at
each cell have decreasing transmission rate values. That is,
for a partial assignment of ci STAs to AP i, if a (ci + 1)th
assignment is made, we insist that xci+1,i ≤ xci,i.

Theorem 1: For M = max{rj,i, j ∈ S \ S ′, i ∈ Pj}, an
upper bound on the value of any complete assignment resulting
from the partial assignment AS′⊂S is

Uaggr(AS′⊂S) =

max
i∈P


(ci + 1)

(
1

1
x1,i

+ · · ·+ 1
xci,i

+ 1
M

)
+

∑

k 6=i

Fk


 ,

(3)

where Fk is the value of the objective function for cell k under
the assignment AS′⊂S .

Proof: The right part in (3) gives the maximum value of
an extended assignment over S ′ with one more STA assigned.
From Corollary 1, subsequent objective values in extended
assignments will be decreasing. Hence the theorem is proved.

Remark 1: The additional cost for calculating the maximum
transmission rate M of the remaining elements is linear in N ,
and it suffices to do an ordering of STAs’ transmission rates
to each AP only once.

2) The Max-Min Fairness Case: A well-known property of
the average is that

min
j∈S

θj,αj ≤
∑

j∈S θj,αj

N
. (4)

Therefore, an upper bound on the value of a partial assign-
ment for the max-min fairness case can be found from the
corresponding upper bound for the aggregate throughput case:

Umax−min(AS′⊂S) =
Uaggr(AS′⊂S)

N
. (5)

This again holds provided STAs assigned sequentially to an
AP have decreasing rate values.

3) The Proportional Fairness Case: The above analysis
fails in the case of the proportional fairness objective, due to
the non-linearity of the logarithmic function. A general upper
bound for a partial assignment can be based on the fact that
the addition of more STAs in a cell deteriorates throughput
for all existing STAs in that cell.

Thus the following upper bound on the value of any
complete assignment resulting from the partial assignment
AS′⊂S is derived:

Upf (AS′⊂S) = F(AS′⊂S) +
∑

s/∈S′
log

(
max
i∈Ps

θS
′

s,i

)
, (6)

where F(AS′⊂S), is the sum of logarithms of the throughputs
of STAs in AS′⊂S and θS

′
s,i is the throughput of STA s in

connection to AP i, given a system containing only the STAs
in S ′.

B. Branching Procedures

The analysis in the aggregate and max-min fair throughput
cases leads us to adhere to a monotonicity structure in our
search, where subsequent assignments to the same AP have
decreasing rate values. It is obvious that we can arrive at a
complete enumeration of possible assignments of STAs to APs
by keeping this monotonicity (since merely a re-arrangement
of the order of these assignments would do the job).

Appropriately, we do not have to do anything else to accom-
plish this, other than select at each step the assignment with the
highest upper bound on the objective function. (This follows
from the strict monotonicity of the objective functions.) The
assignment selected at level k of the branching tree is, in the
aggregate throughput case,

(j, i) := arg max
j /∈Sk, i∈Pj

(Uaggr(Ak ∪ (j, i))) , (7)

where Ak, Sk contain the partial assignments and STAs
assigned up to level k, respectively. Notice that this upper
bound looks at the situation at the next two levels, and hence
is tighter than the one derived by simply selecting the best
k + 1 extended assignment.

In the max-min fairness case, we select the (STA, AP)
pair which will yield the smallest deterioration in the current



minimum throughput:

(j, i) := arg lex max
j /∈Sk,i∈Pj

( min
k∈Sk∪{j}

`∈Pk

θk,`) . (8)

To provide for lex-max-min fairness, we have included in the
above operator the additional comparisons for the lexicograph-
ically greatest throughput vector.

Remark 2: Note that a lex-max-min ordering of thr-
oughputs corresponds to a lex-min-max ordering of loads,
but not vice versa. Since many STAs may be associated to
an AP, the same lex-min-max load vector may occur for
unequal throughput vectors (an example is shown in [4]).
Hence, to achieve the “most balanced” throughput association,
optimization must necessarily consider a throughput objective.

In the proportional fairness case the assignment which
yields the highest upper bound Upf (AS′⊂S) to an extended
assignment will be selected:

(j, i) := arg max
j /∈Sk, i∈Pj

(Upf (Ak ∪ (j, i))) . (9)

Based on the upper bound expressions (3),(5),(6), node
elimination will be performed as follows. Let the set CA
contain all complete assignments derived at some point of the
execution of the algorithm, and denote by F̂ the maximum
value of any assignment in the set, F̂ = maxA∈CA F(A) . If
for some partial assignment AS′⊂S , U(AS′⊂S) < F̂ , then we
no more need to check branches from this node and this node,
or any already derived branches from this node are eliminated.

1) Recursive Branching: All algorithms combine Branch-
and-Bound with a recursive technique akin to dynamic pro-
gramming, that we call recursive branching. It arrives without
delay at the “most promising” solution and then backtracks
at previous levels trying to improve this solution. Such an
approach was followed in [8] for the problem of assigning
workforce on different units of a production line. Key elements
of the algorithm are the following:

1) Initially, at levels k = 0, . . . , N − 1 we assign STAs to
APs sequentially in a depth-first manner, so that we arrive
at a complete assignment after N steps. At each step, the
assignment with the highest upper bound on the objective
function is selected, as in (7), (8), or (9).

2) After we arrive at the “most likely” solution, we back-
track at previous levels in search for improved alterna-
tives. A dynamic programming technique is applied: we
ensure that at any level k, k = 1, . . . , N − 1, given Ak,
the sequence of remaining assignments is optimal. (The
algorithm backtracks from level k to level k−1 when the
remaining N−k+1 STAs have been optimally assigned.)
Examined level-k assignments are stored in a set Ek; these
are excluded while searching for improved assignments
at levels greater or equal to k (i.e., until we backtrack
to level k − 1). After we have reached level 0 again, the
assignment of STAs is optimal and the algorithm stops.

The algorithm is easy to program and requires a small
storage space. The recursive algorithm is shown in pseudocode
as Algorithm 1. To provide a compact pseudocode for all

Algorithm 1 Recursive Branch-and-Bound algorithm
1: S0 := ∅; A0 := ∅;
2: Ek := ∅, k = 1, . . . , N ;{Ek stores assignments excluded

from levels ≥ k}
3: k:=1; F̂ := −∞; {k: current level}
4: while k > 0 do
5: read Ak, Sk;
6: select (j, i) according to (7), (8) or (9), where (j, i) /∈

E`, ` = 1 . . . , k;
7: if (U(Ak ∪ (j, i))) < F̂ or (j, i) =NULL then
8: Ek := ∅; k := k − 1;
9: else

10: Sk := Sk−1 ∪ {j}; Ak := Ak−1 ∪ (j, i);
11: Ek := Ek ∪ (j, i); k := k + 1;
12: end if
13: if k = N + 1 then
14: F̂ := F(Ak−1); A∗ := Ak−1;
15: Ek−1 := ∅; k := k − 2;
16: end if
17: end while

objective functions, we have dropped subscripts on upper
bound functions. We also note that in the max-min fairness
case an extra step is required that checks for the lexicograph-
ically greatest vector at level k = N . Additionally in our
implementation, we have added an extra control on line 7:
backtracking to previous levels is also realized if the maximum
throughput value in an examined assignment is smaller than
the maximum throughput of the current best assignment. In
case of ties, a node or unassigned STA for branching can also
be selected randomly among equal-valued alternatives. Finally,
in case where some STAs can only be assigned to a single AP,
the starting node contains these assignments.

C. Approximate Solutions

Suppose we have a complete assignment with value F̂ , and
U is the maximum upper bound over all active (i.e., non-
eliminated) nodes. For a given relative error σ, this complete
assignment can be adopted as an approximate solution when
U−F̂

U ≤ σ. In our recursive algorithm, we eliminate during the
search all partial assignments AS′⊂S for which

U(AS′⊂S)− F̂
U(AS′⊂S)

≤ σ . (10)

D. Greedy Algorithms

In all throughput objective cases, the depth-first-search part
of the BB algorithm constitutes a greedy algorithm. The
algorithms are characterized as greedy because they attempt
to choose the best possible next assignment pair based on the
current assignment and some local optimization criterion. In
our case, the optimization criterion consists of maximizing
the upper bound of a partial assignment. This allows to look
more ahead into the future, and hence improve performance.
All algorithms are adaptive, in the sense that there is no a



priori fixed sequence of assignments, but each new decision
is made based on the previous decisions.

IV. EXAMPLES

In this section we present some examples with two realistic
topologies in an 802.11a network. We distribute 10 STAs in
a 100 m×100 m square area with 3 APs fixed at coordinates
(20,20), (50,50), (80,80). In the first topology STAs are uni-
formly distributed in the area, while in the second multiple
hotspot areas are created.

TABLE I
POWER-DEPENDENT DATA RATES IN 802.11a [9] (FOR A 1000 BYTES

PSDU AND OFDM MODULATION AT 5 GHZ)

Data rate (Mbps) Minimum sensitivity
(dBm)

6 -82
9 -81
12 -79
18 -77
24 -74
36 -70
48 -66
54 -65

Physical transmission rates depending on received input
power levels are shown in Table I. Received powers in dBm
are calculated as

Pr = Pt − (Pref + 10γ log10 d) , (11)

where Pt (in dBm) is the transmit power, typically 20 dBm
(100 mW), Pref is the reference loss at a distance of 1m from
the transmitter, typically 46.4 dB at 5 GHz, γ is the path loss
exponent set at 2.7 (this choice was made for an intermediate
environment, between 2.0 for open space and 3.5 for an office
building environment), and d the distance from the transmitter
in meters.

To evaluate the performance of the algorithms, we mainly
compare them to an exhaustive search. The time complexity
of the algorithms in all cases is comprised of two costs: the
cost for calculating the objective value of an assignment, or an
upper bound to the objective value for a partial assignment,
and the cost for the selection algorithm which subsequently
finds the optimal assignment. Calculating the upper bound
of a partial assignment has an increased cost, mainly due to
additional selection operations for finding maximal objects.
However, as was explained in Remark 1, and given that the
number of APs is usually small, the additional complexity is
not extravagant.

To simplify our evaluation, we only consider the total num-
ber of function value comparisons (objective values or upper
bounds to objective values in case of partial assignments) –
and vector comparisons in the max-min fairness case – as a
measure of the complexity of the algorithms. This is contrasted

to the respective cost incurred by a selection algorithm in an
exhaustive search, which in the worst case is equal to PN .

It is worth noting that the demonstrated performance cor-
responds to minimum memory requirements. The number of
comparisons can be further reduced, e.g. by storing the values
of partial assignments, so that re-computations are avoided
when the algorithm backtracks or goes forward in levels of the
branching tree. Such programming devices are not investigated
in this paper. It should be mentioned that, in the results,
assignments are optimal in a maximal sense. Due to the
discrete set of data rate values, different assignments may lead
to the same objective value.

Example 1. Uniform Topology: Intuitively, the case of a uni-
form topology is the hardest for the assignment problem, since
STAs may have similar signal quality to several APs. Optimal
assignments for a selected instance of such a topology are
shown in Fig.1, where physical transmission rates are shown
for each link (in Mbps). Average results for the performance
of the BB and greedy algorithms for each throughput objective
in such a topology are presented in Table II, for 30 randomly
generated instances of the topology. For each objective the
respective BB algorithms are examined for different values of
the relative approximation error σ. As σ goes to zero, the algo-
rithms converge towards the optimal assignment. In all cases
an approximate algorithm initially performs the same depth-
first search as the greedy algorithm, therefore its performance
is at least good as the one of the greedy algorithm. Further,
the same sequence of pseudo-random instances is examined
so that results are directly comparable.

In the results, the second row of each sub-table shows the
percentage of cases where the greedy algorithm reached the
optimal assignment, and the third the relative error compared
to the objective value of the optimal assignment, averaged over
all experiments. In the max-min throughput case, the relative
error is measured based on the minimum throughput values.2

The best behavior is exhibited by the max-aggregate-
throughput BB algorithm, outperforming exhaustive search.
In the lex-max-min fairness case, the BB method carries
out a smaller number of comparisons for an approximation
error of about 10%. In the proportional fairness case, the BB
method does not possess bounds tight enough to end in a
small number of steps. Nevertheless, it is important to notice
that greedy algorithms for all objective functions perform
well.3 The average relative error is smaller than 3% in Tables
II(a),II(c), and goes up to 12.19% in Table II(b), which can be
considered acceptable. In fact, making the algorithms “more
optimal” by reducing the approximation error σ only yields
a very small advantage compared to the cost of performing
additional comparisons. In many cases additional exploration

2The approximation error for the BB algorithm in the max-min fairness case
is based on the upper bound of the minimum throughput. This is different from
the average relative error calculated in the third row of Table II(b), which turns
out to be a little higher.

3The increased number of comparisons for the greedy algorithm in the
lex-max-min fairness case as opposed to the aggregate throughput and
proportionally fair throughput cases is due to additional comparisons for lex-
greater throughput vectors.
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Fig. 1. Assignments of STAs to APs in a selected instance of the uniform topology.
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(b) Optimal max-min fair and proportionally fair
throughput assignment

Fig. 2. Assignments of STAs to APs in a selected instance of the hotspot topology.

does not manage to find a better solution that the greedy
algorithm, and hence such greedy algorithms with very small
computational cost may be sufficient in practical situations.

It is also shown that in the case of a uniform topology,
the current Max-RSSI assignment scheme does not reach any
of the throughput objectives, and performs significantly worse
than the greedy algorithms we have considered.

Example 2: Hotspot Topology: Hotspots are considered
within a 20m × 20m area around each AP. STAs are placed
with probability 0.5 at the central hotspot, and at each of the
remaining hotspots with probability 0.25.

Optimal assignments for a selected instance of such a
topology are shown graphically in Fig. 2. Hotspot areas are
shown in dashed boxes; in each area STAs are connected
at the maximum rate of 54 Mbps, shown on top of each
box. Transmission rates are also shown for links outside

these boxes. For the example shown in Fig. 2 the solutions
to the max-aggregate throughput and Max-RSSI assignments
coincide, as well as the solutions for the optimal max-min and
proportionally fair assignments. This is frequently the case in
such a topology.

The structure of a hotspot topology makes the combinatorial
assignment problem much easier, since, for each STA, there
are greater disparities between connection rates to each AP,
and hence good or bad decisions are distinguished more easily.
This reflects on the performance of the BB as well as greedy
algorithms, which are much more improved in such a case. We
have again conducted experiments over 30 random instances
of this topology, and results for the average performance of
the BB and greedy algorithms are shown in Table III.

It is striking that for the max aggregate throughput case
the greedy algorithm always converged to the optimal assign-



TABLE II
AVERAGE PERFORMANCE OF BB (WITH VARIOUS DEGREES OF APPROXIMATION) AND GREEDY ALGORITHMS FOR DIFFERENT THROUGHPUT

OBJECTIVES, IN THE UNIFORM TOPOLOGY

(a) Max aggregate throughput

σ = 0 σ = 0.01 σ = 0.05 σ = 0.1 Greedy Max-RSSI
Avg. number 52456 33839 15157 12740 165 N/Aof comparisons

% of optimality 100 66.67 53.33 46.67 46.67 0cases
Avg. relative 0 0.74 1.88 2.28 2.41 10.02error (%)

(b) Max-min throughput

σ = 0 σ = 0.01 σ = 0.05 σ = 0.1 Greedy Max-RSSI
Avg. number 179170 164830 107578 48662 184 N/Aof comparisons

% of optimality 100 80 43.33 36.67 36.67 10cases
Avg. relative 0 1.67 5.07 10.31 12.19 26.68error (%)

(c) Proportionally fair throughputs

σ = 0.15 σ = 0.2 σ = 0.25 Greedy Max-RSSI
Avg. number 379133 252516 31065 165 N/Aof comparisons

% of optimality 36.67 33.33 33.33 30 6.67cases
Avg. relative 0.87 0.96 0.96 1.08 6.54error (%)

ment. Conformingly the BB algorithm also had very good
performance and found the optimal assignment in a single
depth-first search (with a higher total number of comparisons).
We also remark that for the hotspot topology, the max-min
fair BB algorithm has significantly improved performance.
Even for σ = 0, the number of comparisons is much smaller
than in the exhaustive search case. Improved performance is
maintained when allowing a higher approximation error, as
well as for the greedy algorithm. On the other hand, for
a reasonable approximation error the proportionally fair BB
algorithm does not exhibit good behavior, even for a hotspot
topology. However, the performance of the greedy algorithm
is also much improved compared to the uniform topology
case, showing a high percentage of optimality cases and an
extremely small average relative error.

Finally, as it is anticipated, in a hotspot topology case the
Max-RSSI scheme is a near-optimal heuristic for maximizing
the aggregate throughput. However, it is inappropriate for the
remaining objectives.

V. IMPLEMENTATION ISSUES

The feasible transmission rate of each STA to each AP in
its range is needed as input to the algorithms. The necessary
mechanisms for this task are already implemented in WLANs
for supporting the current RSSI scheme. The transmission
rate information must be delivered to a control center in
the network which will carry out the AP assignment task.
In current WLANs with a few tens or hundred nodes, the
centralized gathering and processing of information should be

feasible in terms of the processing cost and delays (wireline
connections are assumed between APs). For even larger net-
works, a practical approach is to partition the network and
making the assignment decisions separately for each partition.
The optimality loss by making assignments separately for each
partition is likely to be negligible.

An important issue in the network is churn, with STAs
terminating or initiating new connections randomly. Additional
dynamic effects caused by changes of STAs’ positions and
varying channel conditions are less important in WLANs,
which are characterized by low mobility. It is evident that,
depending on the rate of changes in the topology, a balance
must be sought between the cost of successive re-assignments
and the distance from the optimal assignment, for the selected
performance objective. Given their witnessed good approxima-
tion to optimal assignments in all cases, the greedy algorithms
having very low complexity can be run in a practical online
scheme.

Consider a number of STAs in a WLAN, optimally assigned
to APs at a certain time instant. At a subsequent instant some
STAs have left the network and some new ones have joined
in, connecting to APs according to some non-optimal criterion
(e.g., Max-RSSI). It is hard to calculate the distance of the
new assignment from the optimal assignment in such a case.
Even the assignment of the remaining initial STAs may not
be optimal. A practical online scheme consists of running the
greedy algorithm for the network with the new topology. This
will give a good approximation to the new optimal assignment.
Then we can compare it with the value of the new assignment,



TABLE III
AVERAGE PERFORMANCE OF BB (WITH VARIOUS DEGREES OF APPROXIMATION) AND GREEDY ALGORITHMS FOR DIFFERENT THROUGHPUT

OBJECTIVES, IN THE HOTSPOT TOPOLOGY

(a) Max aggregate throughput

σ = 0 Greedy Max-RSSI
Avg. number 318 165 N/Aof comparisons

% of optimality 100 100 83.33cases
Avg. relative 0 0 4.17error (%)

(b) Max-min throughput

σ = 0 σ = 0.01 σ = 0.05 σ = 0.1 Greedy Max-RSSI
Avg. number 23164 23090 2529 380 198 N/Aof comparisons

% of optimality 100 100 93.33 83.33 83.33 6.67cases
Avg. relative 0 0 0.21 0.89 0.89 30.31error (%)

(c) Proportionally fair throughputs

σ = 0.15 σ = 0.2 σ = 0.25 Greedy Max-RSSI
Avg. number 220232 46529 8112 165 N/Aof comparisons

% of optimality 70 66.67 66.67 66.67 6.67cases
Avg. relative 0.27 0.36 0.36 0.36 4.2error (%)

and decide to do a re-assignment if the difference exceeds
some threshold value.

VI. CONCLUSIONS AND FURTHER DISCUSSION

In this paper, we investigated the application of BB algo-
rithms for optimally assigning STAs to APs based on several
throughput objectives. We arrived at computationally efficient
algorithms in the max-aggregate throughput and lex-max-min
fair throughput cases, with extremely good performance in
hotspot topologies. For the proportional fairness objective,
simple tight bounds could not be derived and an analytical BB
algorithm based on the nonlinear integer program formulation
may prove to be more efficient. Apart from that, the focus
was on studying approximate algorithms in all cases. We
constructed suboptimal greedy algorithms based on the same
bounds used in the BB techniques. These showed to behave
remarkably well in all cases, being only at a small relative
distance from the optimal and arriving at the exact optimal as-
signment for a large percentage of our tests. Their performance
further improved when considering hotspot topologies. On the
contrary, it was observed that the current Max-RSSI assign-
ment scheme which does not target performance explicitly is
only a good heuristic for maximizing the aggregate throughput
in a hotspot topology (yet inferior than the corresponding
greedy algorithm).

The observed good performance of the greedy algorithms
is very significant from an engineering perspective, since a
low-cost good algorithm is all we need in a real system. We
searched for properties of these algorithms and the problem it-
self that would account for this very good performance. As we
said, favorable properties are that the algorithms are adaptive,
always searching for the current best pair in each subsequent
assignment, and that the local optimization criterion (based on
maximizing the upper bound of the partial assignment) allows
to look more ahead into the future. It is also worth adding
that each considered assignment problem is the intersection
of easy-to-solve subproblems (one for each AP) that have a

matroidal structure. However, apart from these observations,
no solid property was found. It is of course an open problem
to search for approximation bounds for these algorithms.

There is also the question of how the algorithms perform
when the scale of the problem increases. That is, either
the number of STAs and/or APs increases, or there is a
larger geographical area. Arguably, this depends more on the
structure of the problem, and how uniform transmission rates
to different APs are. We have seen that the performance of the
algorithms improves when the distribution of STAs is more
concentrated in hotspot cells. Thus, if such a structure is kept,
we would expect the algorithms to perform well when the scale
increases. Preliminary tests we conducted confirmed this, and
showed the BB algorithms to achieve significantly improved
performance over exhaustive search, in the same cases as with
the smaller scale. However, in some random instances the
computation time was again extravagant, which inhibited us
from presenting average results for larger scales. We advocate
that again, in a real scenario and for larger scales, the greedy
algorithms should be employed.

Another issue concerns the construction of online algo-
rithms. In the previous section we discussed an online scheme
for AP assignment, however it remains that the algorithms
are inherently offline. An online algorithm takes as input
the sequence of newly arriving STAs, and outputs for each
the best possible association, without considering global re-
assignments. It is interesting to apply greedy schemes here and
evaluate their performance with respect to the offline greedy
algorithms as well as the optimal assignments.

Finally, it is worth discussing an extension of the assignment
problem, which we call the incomplete coverage problem.
Consider a modified version of the problem where we allow
that only a subset of N − k STAs, where 0 < k < N , be
serviced, and we would like to determine the best assignment
of N − k STAs to APs, so that the objective function of the
system is optimized.

A practical instance in which it appears is when some



STAs are very distant from any AP or generally have bad
channel conditions, so that their inclusion in the network
would largely deteriorate performance of the whole system
and it is preferable to exclude them. The problem is also raised
in admission control, since with each connection request of a
new STA one may need to decide on a number of STAs to
evict in order to maintain QoS.

Note that exhaustive search in this case requires
(

N
N−k

)
·PN−k comparisons. The same branch and bound algorithm
can be used to solve the problems, with the difference that a
complete assignment is now supposed to occur at the (N−k)th
level. However, it was experimentally confirmed this is a bad
approach to take, both because of the increase in state space
and because bounds in this case are much less tight. The
greedy algorithms for each objective can instead be applied
with the new stopping criterion.
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