
1

Traffic-Aware Dynamic Spectrum Access
Lei Yang, Lili Cao, Heather Zheng, Elizabeth Belding

Department of Computer Science, University of California, Santa Barbara, CA 93106

leiyang,lilicao,htzheng,ebelding@cs.ucsb.edu

Abstract— Demand-driven spectrum allocation can drastically
improve performance for WiFi access points struggling under
increasing user demands. While their frequency agility makes
cognitive radios ideal for this challenge, performing adaptive
spectrum allocation is a complex and difficult process. In this
work, we propose FLEX, an efficient spectrum allocation ar-
chitecture that efficiently adapts to dynamic traffic demands.
FLEX tunes network-wide spectrum allocation by access points
coordinating with peers, minimizing network resets through
local adaptations. Through detailed analysis and experimental
evaluation, we show that FLEX converges quickly, provides
users with proportional-fair spectrum usage and significantly
outperforms existing spectrum allocation proposals.

I. INTRODUCTION

As WiFi networks become a pervasive last mile connectivity

tool, WiFi users are suffering from poor performance at

crowded hotspots. Take for example recent experiences at

ACM conferences such as SIGCOMM and MobiCom. When

more than 200 attendees compete for wireless access on the

same network, each user obtains minimal bandwidth barely

enough to support email access. As bandwidth-hungry devices

such as AppleTV and iPhone join the fray, these frustrating

experiences will become an increasingly common part of our

daily lives. The fundamental observation is that increasing user

participation leads to greater variability in traffic density and

demands, and consequently more unpredictable user experi-

ences.

To improve the user experience, WiFi access points (AP)

must adjust their allocated bandwidth based on varying traffic

demands. Existing networks exploit MIMO techniques to

improve AP bandwidth, but the improvement is limited by

the number of antennas. On the other hand, varying APs’

spectrum allocation would be a natural and highly effective

approach. Unfortunately, current WiFi networks cannot exploit

this approach because of the following restrictions:

• Each AP’s spectrum usage is fixed by its radio hardware.

Because a WiFi radio can only access one channel at any

time, each AP’s spectrum usage is defined by the number

of radios equipped, typically less than 2 in practical

deployments.

• Each AP’s channel is statically assigned, but its traffic

demand varies across time. Upon a meeting or a class,

a lightly-loaded AP will become a hotspot within a few

minutes. More importantly, network measurements have

shown that traffic dynamics are unpredictable [8], making

static channel planning infeasible.

Copyright 2008 ICST 978-963-9799-36-3.

(a) WiFi radio

(b) Cognitive radio

Fig. 1. Comparing WiFi and CR radios. CRs can use multiple channels.

Lacking the flexibility to adapt spectrum usage, WiFi net-

works face great challenges in providing satisfactory user

performance. Cognitive radios (CR) are the ideal solution to

this problem. Unlike WiFi radios, CRs can access spectrum

flexibly. CRs partition spectrum into a large number of or-

thogonal channels, and transmit using a flexible set of channels

simultaneously as shown in Figure 1. Existing CR testbeds and

on-going research have demonstrated the hardware feasibility

of this technique [5], [18]. By adjusting the amount and the

frequency location of spectrum usage, CRs can adapt their

bandwidth on-the-fly.

Intuitively, user performance in WiFi networks can be

significantly improved by equipping APs and end-devices with

CRs. APs can quickly adapt their spectrum usages to varying

traffic demands while minimizing the interference with nearby

peers. The fundamental challenges are how to determine which

and how many channels each AP should use to maximize

user satisfaction, and how to adapt AP spectrum usages to

their dynamic traffic demands. Prior work [1], [20] develops

centralized algorithms to allocate each CR a spectrum block

of variable size based on traffic demands. Such centralized

architecture, while simplifying algorithm design, can suffer

from significant adaptation delay and communication cost in

large-scale wireless networks. To cope with fast-growing WiFi

deployments, APs should also determine their spectrum allo-

cations in a timely manner, requiring minimum management.

In this paper, we propose a distributed approach for CR-

equipped APs to dynamically access spectrum based on their

traffic demands. Our design considers the following three

primary goals:

• Quickly adapting to varying traffic demands.

• Capable of maximizing user proportional-fairness.

• Distributed, scalable, requiring minimum management.

More specifically, we present FLEX, a distributed architec-

ture for APs to adapt spectrum usage. Using FLEX, APs coor-

dinate with peers and iteratively apply local improvements to

tune network-wide spectrum allocation. Upon traffic dynamics,

instead of performing another round of global optimization,

only affected APs and their close neighbors perform local

improvements. These local actions occur in parallel across

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

2

A B

C

Fig. 2. An example scenario which shows the benefits of fast traffic-
aware adaptation. At time T0, two wireless users move from AP B
to AP C.

the network, resulting in very low adaptation delay. We

demonstrate analytically and show experimentally that this

new architecture quickly adapts to network dynamics and

significantly outperforms priori spectrum allocation proposals.

Our key contributions are of three-fold:

• We propose a novel distributed algorithm that applies

local improvements to tune network-wide spectrum al-

location considering traffic demands. We prove its con-

vergence and show that it provides guaranteed spectrum

usage.

• We implement the FLEX algorithm using a light-weight

coordination protocol and analyze the adaptation delay.

APs coordinate in the background without disrupting

existing user activity, and utilize spatial parallelism to

reduce adaptation delay.

• We perform extensive experiments to evaluate FLEX.

Compared to prior proposals, FLEX improves the spec-

trum utilization and fairness by more than 30%. FLEX

quickly adapts to traffic variations, requiring only 2-6

seconds for a large WiFi network of 400 access points.

II. MOTIVATION AND PROBLEM MODEL

FLEX targets WiFi deployments in large corporate or city

campuses, which place APs densely to provide seamless con-

nectivity. As user activity changes, each AP’s traffic demand

varies unpredictably [8]. The fundamental problem is how

to allocate spectrum channels to APs based on their traffic

demands to maximize user satisfaction while minimizing con-

flict. In this section, we demonstrate the benefits of fast traffic-

aware adaptation and formally present the FLEX problem

model. We will present the FLEX distributed allocation algo-

rithm in Section III and implement it as the FLEX coordination

protocol in Section IV.

A. Benefits of Fast Traffic-Aware Adaptation

To demonstrate the benefits of fast traffic-aware spectrum

allocation and adaptation, we consider the following example.

As shown in Figure 2, three APs A, B and C with different

numbers of associated users are within the interference range

of each other. We assume there are M = 9 channels and all

users have the same traffic demand.

Without considering traffic heterogeneity, each AP should

get the same amount of the spectrum: 3 channels. Since each

AP equally divides its spectrum to its associated users in time,

individual users associated with A, B and C get 0.6, 1, and 3

channels, respectively. Such unfairness among users can lead

to either user starvation or wasted spectrum resource. Being

traffic-aware, the system allocates 5 channels to A, 3 channels

to B, and 1 channel to C, so that each user gets the same

amount of spectrum: 1 channel. Therefore, being traffic-aware

can significantly improve user fairness and hence satisfaction.

Fast adaptation is critical for traffic-aware spectrum allo-

cation. Since wireless networks are dynamic in natural, each

AP’s traffic load varies quickly over time. Only if spectrum

allocations adapt quickly to traffic dynamics, can the benefits

of traffic-aware allocation be achieved. We show this using the

same example in Figure 2: at time T0, two users disassociate

with B and associate with C, changing the traffic loads of

B and C significantly. Unless AP spectrum allocations adapt

quickly to this new traffic load, the user of B gets 3 channels

while others get 1/3 channel.

Fast adaptation in large-scale wireless networks, however, is

challenging given the network scale. For example, metropoli-

tan wireless networks have thousands of APs concentrated in

a small area. To achieve fast traffic-aware spectrum allocation

in this type of networks, we need a distributed solution that

has minimum management overhead, and adapts quickly to

traffic dynamics.

B. Problem Model

We formally define the traffic-aware spectrum allocation

as a combinatorial optimization problem. For simplicity, we

describe the problem model and FLEX design within the

context of binary pairwise interference condition. In this case,

we group each AP and its users into a super-node, and two

super-nodes either conflict and cannot use the same channel

concurrently or do not conflict. We also assume channels

are homogeneous with the same bandwidth and interference

property. Our algorithm and analytical conclusions can be

extended to complex interference and channel conditions, as

discussed in Section VI.

We first define the following notations:

Nodes We group each AP and its users into a single node

i, i ∈ [1, N], where N is the number of APs in the campus.

Channels The spectrum is divided into a large set (M) of

orthogonal channels∗, indexed 1 to M .

Interference Constraints We model the interference con-

dition as a binary metric between any two nodes n, k:

cn,k =

{

1, node n and k conflict with each other

0, node n and k can reuse the same channel.
Neighbors Node k is the “neighbor” of node n if cn,k = 1.

Conflict-free Channel Allocation We represent an alloca-

tion as

am,n =

{

1, channel m assigned to node n
0, otherwise.

∗Using multicarrier modulation with proper guardband, channels in cogni-
tive radio networks are orthogonal [5], [18].

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

3

Under the interference constraints, an allocation is conflict-free

if am,n · am,k = 0, if cn,k = 1, ∀ n, k ∈ [1, N],m ∈ [1,M].

Let Sn =
∑M

m=1 am,n represent AP n’s spectrum usage.

Fairness-driven Optimization FLEX maximizes user sat-

isfaction by maximizing user proportional fairness. Let bi

represent the number of channels allocated to user i. Then the

allocation vector b = (bi, i ∈ I) is proportionally fair if for

any other feasible vector b
′, the aggregate of the proportional

changes is not positive:

∑

i∈I

b′i − bi

bi

≤ 0.

It was shown by [14] that the maximum proportional fairness

is achieved by maximizing
∑

i∈I log(bi). Assuming each AP

n’s bandwidth scales linearly with its spectrum usage Sn, and

is divided equally among its associated users†, we model each

user’s bandwidth as bi = Sn/tn where tn is the number of

users associated to AP n. As a result, we can rewrite the

proportional fairness metric as

Ufair =

N
∑

n=1

tn log
Sn

tn
=

N
∑

n=1

tn log

M
∑

m=1

am,n−

N
∑

i=1

tn log(tn)

For easy notation, we remove the second item in Ufair since

it does not depend on the allocation {am,n}.

From the above, we can represent FLEX’s spectrum alloca-

tion problem as

Find {am,n}n∈[1,N],m∈[1,M]

Maximize

N
∑

n=1

tn log

(

M
∑

m=1

am,n

)

(1)

Subject to am,n · am,k = 0, if cn,k = 1

∀ n, k ∈ [1, N],m ∈ [1,M].

This is a constrained non-linear optimization problem and

has been shown to be NP-complete [9]. In large-scale WiFi

networks, each AP’s number of users (ti) changes over time,

which raises the challenge to quickly adapt the channel as-

signment to optimize the fairness. To deal with this challenge,

FLEX introduces efficient heuristics to approximate the global

optimum while minimizing the computation overhead.

III. FLEX ALLOCATION ALGORITHM

Motivated by the idea in Section II, we design FLEX to

allow APs to coordinate and quickly adapt to varying traffic

demands. FLEX differs significantly from prior graph coloring

schemes [2], [7], [10] that allocate channels to achieve a given

spectrum usage while minimizing the number of channels

used. Instead, FLEX targets typical WiFi scenarios:

Given M spectrum channels, how do APs determine which

and how many channels to use in order to maximize user

fairness while being conflict-free?

The critical challenge is how should APs determine a

fairness-maximizing channel allocation with only local infor-

mation. FLEX introduces a novel distributed strategy using

†For simplicity we assume users have equal traffic demands. In practice,
APs can assign users with spectrum proportional to their traffic demands.

Time t1 Time t2

Fig. 3. FLEX local improvement framework – Nodes form local events
with their conflicting neighbors recursively. FLEX schedules multiple local
improvements in parallel to minimize adaptation delay.

iterative local improvements. Starting from an initial alloca-

tion, APs iteratively improve local spectrum usage towards an

allocation with higher system utility among its current solution

neighborhood. The process repeats until an efficient global

allocation is found. More importantly, by regulating the format

of local improvements, FLEX quickly leads the system to a

stable state where each AP acquires spectrum usage that is

lower-bounded.

A. Adaptation via Local Coordination

FLEX iteratively modifies local spectrum allocation to tune

network-wide spectrum allocation. Define a local area that

contains a set of nodes: P = {n1, n2, ...nP } (shown as a

shaded area in Figure 3). We can rewrite the optimization

function in eq. (1) into:

Ufair =
∑

n∈[1,N]\P

tn log Sn +
∑

n∈P

tn log Sn

= U(\P) + U(P). (2)

A local improvement over P is to modify

{{am,n}m∈[1,M]}n∈P (hereby referred to as {Sn}n∈P) to

improve Ufair. By applying local improvements recursively

across the network, FLEX gradually improves Ufair to

approximate the global optimum.

The fundamental challenge is how to ensure each local

improvement can improve Ufair. Because of interference,

changes to {Sn}n∈P may lead to conflicts at nodes outside P

and degrade U(\P). Furthermore, it may lead to a subsequent

set of local improvements across the area, destabilizing the

system. FLEX eliminates such conflict by limiting the set of

usable channels in P, preventing any conflict to nodes outside

P. That is, nodes in P will not use any channel that is used

by a conflicting neighbor inside and outside of P. In this

way, modifying {Sn}n∈P can improve U(P) without changing

U(\P). Hence, any local improvement over U(P) leads to a

global improvement in Ufair.

FLEX keeps P small to simplify the local optimization

procedure. The simplest format is a single node, P = {n},

i.e. a node gets one more channel only if it is not used

by any neighbors. This format, commonly found in cellular

networks [11] to minimize voice blocking, is extremely limited

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

4

in maximizing fairness for data services. We analyze the local

improvement format and adopt a different strategy: Any node

in need of spectrum can request its conflicting neighbors

to give up some channels in order to maximize the local

fairness. Hence, each local improvement contains a node n
and its immediate neighbors: P = {n, N(n)} where N(n) =
{k |c(n, k) = 1}. Node n will modify {an,m}n∈P,m=1..M to

maximize U(P) while maintaining the same U(\P).
Our algorithm is supported by the following theorem, which

shows that the system converges‡ after a limited number of

local improvements. Each AP obtains a guaranteed number of

channels, proportional to the ratio of its traffic demand and

those of its neighbors.

Theorem 1: The system will converge within a finite num-

ber of iterations. If APs have equal traffic demands, it will

converge with an expected number of O(N2) iterations. When

the system converges, AP n’s spectrum usage is lower bounded

by

Sn > tn · (

⌊

M

tn +
∑

k∈N(n) tk

⌋

− 1) (3)

When M À tn +
∑

k∈N(n) tk, Sn ≥ tn·M
tn+

∑

k∈N(n) tk
, referred

to as the relaxed lower bound.

The proof is in Appendix A. Note that this bound is similar

to the local fairness constraint defined in [13], [20] and in

the classical weighted fair queuing problem [6]. However, the

main difference is that this fairness expression is derived as

a performance guarantee as the result of the global fairness

optimization in (1). It is a lower bound on AP’s spectrum

usage, not a preset constraint.

B. Organizing Multiple Local Improvements

As traffic and network topology vary, many local improve-

ments are required to tune network-wide spectrum allocation.

As shown in Figure 3, FLEX schedules multiple local im-

provements to execute in parallel to minimize adaptation delay.

FLEX implements these strategies as a coordination protocol

executed by each AP. We will present the protocol design and

analyze its performance in Section IV.

IV. USING FLEX IN PRACTICE: AN ACCESS POINT

COORDINATION PROTOCOL

Aside from its algorithmic advantage, we show that FLEX

can be implemented in practice as a coordination protocol.

In corporate or city WiFi campuses, APs are cooperative and

execute the FLEX coordination protocol to adapt spectrum

allocation to traffic dynamics and maximize user satisfaction.

APs exchange spectrum usage and traffic load information

with peers periodically to identify sub-optimality in spec-

trum allocation. Upon detecting a sub-optimal allocation, APs

communicate with neighboring peers to apply FLEX local

improvement. We note that APs coordinate in the background

‡The system converges when no local improvement of the given format
can improve the system utility.

without disrupting existing users communications. Upon iden-

tifying an efficient allocation, APs inform users to modify their

spectrum usage. The primary goal of our protocol design is to

minimize the system-wide adaptation delay.

We assume APs exchange coordination information through

a dedicated control radio, which is widely used in existing CR

testbeds [16], [19]. The protocol sits on top of the MAC and

produces coordination messages as application packets. For

simplicity, we describe the protocol assuming APs can reli-

ably identify and directly communicate with their conflicting

neighbors i.e. N(n). We discuss practical implications of these

assumptions in Section VI.

A. Executing A Local Improvement Event

To perform a local improvement over P = {n, N(n)}, APs

execute the following procedures.

• Request – AP n initiates the local improvement by broad-

casting a “request” to its conflicting neighbors. AP n
initiates a local improvement if 1) it identifies conflicts in

channel usage with its neighbors N(n), or 2) it identifies

sub-optimality in local spectrum allocation.

• Acknowledgement – Upon receiving a request, an AP

responds with an ACK if it is not currently participating

in any local improvement event, otherwise a NACK.

• Announcement – Without collecting all the |N(n)| ACK

acknowledgements within a certain time, AP n cancels

the coordination event. Otherwise, n will execute a local

improvement and broadcast the local allocation adjust-

ment to its neighbors.

• Improvement and Release – Upon receiving the an-

nouncement, nodes in P will record their new spectrum

allocation and release themselves from the current local

improvement event.

Figure 4 presents the state transition diagram for APs running

the FLEX protocol. Each AP transits among “idle”, “initiator”

and “responder”. To avoid conflict, FLEX requires that at

any given time, each node can only participate in one local

improvement event.

We can derive the duration of a local improvement event as

the sum of these four stages:

T = Trequest + Tack + Tannounce + Trelease

where Trequest and Tannounce are the time to broadcast a

single coordination packet, Tack is the time to collect ac-

knowledgements from multiple neighbors and Trelease is a

small constant factor. The value of T depends significantly on

the underlining MAC protocol. Using a 802.11 MAC protocol,

the dominating component is Tack because multiple neighbors

of n will contend to send back acknowledgements which

may collide with each other. In Section IV-C we analytically

evaluate the delay.

B. Organizing Multiple Coordination Events

The system’s adaptation delay represents the total time re-

quired for the FLEX algorithm to converge, i.e. no AP initiates

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

5

Idle InitiatorResponder

Receive an Announce or Release
Or Timeout

Receive All ACKs
Broadcast Announcement

Receive a NACK or Timeout
Broadcast Release

Receive new Request
Send NACK

Receive a Request
Send ACK

Broadcast Protect

Need Coordination,
Broadcast Request

Fig. 4. FLEX State Transition Diagram

local improvement. To minimize the adaptation delay, FLEX

allows multiple local improvements to execute in parallel. The

example in Figure 3 shows that at time t1, 4 local improvement

events execute in parallel without any conflict. This is achieved

naturally using local requests.

On the other hand, while maximizing parallelism, the FLEX

protocol also places conflicting coordination events to different

times. Because APs only have local view of the network,

conflicts will likely occur when multiple local improvements

contend for transmission medium or an AP. For example, when

APs near an active local improvement event start to initiate

new events, their coordination packets will disrupt existing

coordinations. Similarly, when neighboring APs initiate new

events simultaneously, their request packets contend. Even if

their requests were sent successfully, they are likely to target

common neighbors. Because each node can only ACK to one

event, most requests fail, leading to unnecessary waste of

resource and higher coordination delay.

The FLEX protocol minimizes conflicts by organizing

the timing of local improvement events. First, to minimize

contention among requests, APs apply a request backoff to

randomize their timing. Using an exponential increase mech-

anism similar to the 802.11 protocol, APs double request

backoff window when its request fails. Second, to minimize

disruption to active events, APs broadcast a protection packet

immediately before responding ACK to a request. The packet

carries a protection period (TP) field that estimates the time

required to finish the current event, TP = Tack +Tannounce +
Trelease. Neighbors use this information to delay their future

requests/coordinations to the estimated finish time. Finally,

APs use timeouts to release themselves from unsuccessful

local improvement events. APs in the initiator state estimate

the maximum waiting time for acknowledgements; APs in

the responder state estimate the maximum waiting time for

announcements.

C. Analytical Models of TP and T

As discussed earlier, the dominating component in TP (and

T) is Tack. In this section, we show that we can analytically

derive Tack as a function of |N(n)|, assuming the control radio

uses the 802.11 MAC protocol.

To model the random backoff and contention among N(n)
nodes who respond to the coordination request, we adopt the

method in [3]. Let tv represent the time gap between two

consecutive successful transmissions. From [3],

tv = E[Nc](E[Coll]+τ+DIFS)+E[Idle](E[Nc]+1)+E[S]

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 5 10 15 20 25 30

C
oo

rd
in

at
io

n
D

el
ay

 (
m

s)

Number of Neighbors

Simulation
Analysis

Fig. 5. Time needed to perform a local improvement in a circular topology.

where E[Nc] is the average number of collisions within tv ,

E[Coll] is the average collision length, E[S] is the average

successful transmission time, τ is maximum propagation delay

and E[Idle] is the average number of idle slots within tv . For

the FLEX protocol, we can compute them as [3]:

E[Nc] =
1 − (1 − p)K

Kp(1 − p)K−1
− 1

E[Coll] = m, E[Idle] =
(1 − p)K

1 − (1 − p)K
· tslot

E[S] = m + 2 · δ + SIFS + ACK + DIFS (4)

where δ is the packet transmission delay, K is the number

of transmitting nodes, and m is the MAC transmission time

for FLEX acknowledgement packets. Using these results, we

can compute the average time required for N(n) nodes to

acknowledge the initiator: E[Tack(N(n)] =
∑|N(n)|

K=1 tv(K).
In Figure 5 we verify the proposed model using Qualnet

simulations. We place X nodes around a center node n
(with the same distance to n). Each node needs to send an

ACK to n. We measure the average time required for n to

collect all the ACKs and compare them to the estimated Tack.

Results show that the analytical result closely approximate

the simulated protocol performance. Hence, APs can use this

analytical result to optimize the request backoff window size,

the protection period and the values of timeouts.

V. EXPERIMENTS

In this section, we evaluate FLEX in terms of its alloca-

tion algorithm and coordination protocol. We implement the

FLEX coordination protocol using the Qualnet simulator. We

examine the adaptation delay of FLEX’s coordination protocol

using different network and traffic scenarios.

A. FLEX Protocol Performance

We evaluate the protocol performance by measuring:

(1) System convergence time which is the time required to

finish the last local improvement. It represents the adaptation

delay over traffic dynamics.

(2) Coordination overhead which is the total number of local

improvement events, including both successful and failed ones.

It estimates the protocol communication overhead.

Because the coordination delay depends heavily on the

number of conflicting neighbors per AP, we first examine the

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

6

protocol performance assuming a grid topology where APs

have 4 and 8 conflicting neighbors, respectively. To examine

the protocol scalability, we expand the grid size to increase the

number of APs while keeping the same number of conflicting

neighbors. We also examine the impact of random topologies

where APs are placed randomly on the grid with up to 4 and

8 neighbors. We assume each data channel provides 1Mbps

bandwidth in average.

We assume APs can identify and communicate directly

with conflicting peers using a 802.11 control radio. The

simulation configuration is listed in Table I. Using the default

configuration, the analytical estimation for T is E[T] = 12ms.

We set the initial request backoff window size to 10E[T]. We

set TP = 4E[T] and the timeouts to 4E[T] to schedule local

events. Each simulation is 100s. The result is averaged over

30 random seeds.

TABLE I

QUALNET SIMULATION PARAMETERS

Parameter Default Range

of APs (N) 400 9–400

of data channels 30 5–80

of neighbors per AP 8 4,8, random in [0,4][0,8]

Traffic load per APs 10Mbps random in [5,15]Mbps

Control channel rate 1Mbps 1,2,5.5Mbps

1) Static Traffic Load: We start from a simple scenario

where APs have static traffic load. We use this experiment

to examine the system optimization time at initialization. We

assume APs start from an empty allocation S = {0, 0, ...0}
and coordinate to reach an efficient allocation.

Figure 6(a) shows that the coordination overhead (the num-

ber of local improvements) scales linearly with the network

size and is insensitive to the degree of conflict. This result

confirms our analysis on the system convergence. Figure 6(b)

shows that the system convergence time flattens quickly as the

network scale increases. The different trends in Figure 6(a)

and (b) demonstrate the power of parallel execution of local

improvement events. As the degree of conflict increases from

4 to 8, the amount of time to finish a single local improvement

increases, and hence the system convergence time increases as

well. But most importantly, we see that the proposed system

converges quickly, requiring only 7-15s for a network of 400

APs.

We are also interested in understanding how local improve-

ments iteratively refine the network-wide spectrum allocation.

Figure 6(c) plots the cumulative distribution of each AP’s

allocated channels at different stages of the entire process

(50% represents half into the coordination process). Starting

from an empty allocation, APs gradually acquire channels

and balance their allocations. Halfway into the process, 75%

of APs obtain more than 6 channels, while the rest have 0-

4 channels. At the end of the process, the spectrum usage

becomes well balanced.

2) Dynamic Traffic Load: We now examine the FLEX

protocol when APs have dynamic traffic load. Instead of

starting from an empty allocation, APs will adjust from their

present allocations. Therefore, only APs experiencing traffic

variations and their neighbors will perform local improve-

ments, significantly reducing adaptation delay. In this case,

the convergence time depends on the percentage of APs with

traffic variations, their location, and the degree of traffic

variations.

Similar to [17], we examine the convergence time using two

types of traffic patterns: 1) uniform traffic patterns where APs’

traffic varies randomly between [5,15]Mbps; and 2) hotspot

traffic patterns where a small percentage of APs located in the

center have traffic varying randomly between [5,15]Mbps and

the others have static traffic load.

Uniform Traffic Figure 7(a) plots the convergence time

for uniform dynamic traffic over a network of 400 APs. As

expected, the convergence time increases with the number

of APs with traffic variations. Compared to Figure 6(b), the

convergence time reduces from 17s to 5.5s if 50% of APs

change traffic load. Even at a 100% rate, the delay of 8s is also

significantly smaller because APs adjust from a non-empty

allocation.

Hotspot Traffic Figure 7(b) plots the convergence time

when a number of APs in the center of a 20x20 network

change traffic dynamically. We measure the result over differ-

ent percentage of APs in the hotspot. Compared to the uniform

traffic scenario, the system requires slightly higher adaptation

time when the same percentage of APs change traffic. This is

because local improvement events are densely packed in the

center (shown in Figure 7(c)), which reduces the level of the

parallelism. On the other hand, Figure 7(c) also shows that

the local improvement events are self-contained in the hotspot

area, indicating a powerful property of FLEX’s local actions.

Overall, the adaptation delay of 2-6s is still significantly small

for a large WiFi deployment of 400 APs.

3) Sensitivity Analysis: In this section we study how

different system settings affect FLEX. Previous figures have

shown the impact of network scale and conflict degree. We

now examine the impact of the number of data channels M ,

the control radio data rate and the network topology.

Varying M Figure 8(a) plots the convergence time for a

400 AP network over different M values. The convergence

time scales linearly with M . For a conflict degree of 4, the

curve flattens after M > 50 because of usage saturation.

Varying Control Radio Rate We compare the convergence

time when the control radio data rate varies between 1-

5.5Mbps, shown in Figure 8(b). As expected, FLEX benefits

from a higher control data rate. More importantly, the results

indicate the convergence time increases only linearly as the

control data rate drops.

Random AP Topology The above simulations use a grid

topology to control the conflict degree. We also evaluate

FLEX when APs are randomly deployed. We assume APs are

randomly scattered in an area of 4000mx4000m. By adjusting

transmission/interference ranges, we produce various network

topologies of different conflict conditions. Figure 8(c) shows

the result when each AP has up to 4 or 8 conflicting neighbors.

Similarly, the convergence time increases linearly with the

network scale and is significantly small (0.5–6s).

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 L

oc
al

 Im
pr

ov
em

en
ts

Number of APs

4 Neighbors
8 Neighbors

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400

C
on

ve
rg

en
ce

 T
im

e
(s

)

Number of APs

4 Neighbors
8 Neighbors

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 A

llo
ca

te
d

C
ha

nn
el

s

Cumulative Fraction

50% Stage
80% Stage

100% Stage

Fig. 6. Coordination protocol performance under static traffic patterns, each AP has the same traffic demand 10. From left to right: (a) Coordination overhead
as the number of local events, (b) System convergence time and (c) CDF of AP spectrum usage at different coordination stage.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80 90 100

C
on

ve
rg

en
ce

 T
im

e
(s

)

% of APs with Dynamic Traffic

N = 400

4 Neighbors
8 Neighbors

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25

C
on

ve
rg

en
ce

 T
im

e
(s

)

% of APs in Hotspot

N = 400, 1 Hotpot

4 Neighbors
8 Neighbors

0

10

20

0

10

20
0

1

2

3

N
um

be
r

of
 C

oo
rd

in
at

io
n

Fig. 7. FLEX’s convergence time under dynamic traffic patterns, 400 APs. From left to right: (a) Uniform traffic scenario, (b) Hotspot traffic scenario, (c)
Distribution of local improvement events for the hotspot scenario (one hotspot containing 25 APs).

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80

C
on

ve
rg

en
ce

 T
im

e
(s

)

Number of Channels

4 Neighbors
8 Neighbors

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

C
on

ve
rg

en
ce

 T
im

e
(s

)

Number of APs

1 Mbps
2 Mbps

5.5 Mbps
 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

C
on

ve
rg

en
ce

 T
im

e
(s

)

Number of APs

<= 4 Neighbors
<= 8 Neighbors

Fig. 8. FLEX’s convergence time under various system settings. Assuming dynamic traffic demand, 50% APs change traffic demand uniformly from 5 to
15. From left to right: (a) Varying the number of data channels M , (b) Varying the control radio data rate and (c) Random AP placement.

VI. PRACTICAL CONSIDERATIONS

In this section, we discuss practical issues associated with

our network model and problem definition.

Identification and Communication with Conflicting APs

Because APs are statically placed, each AP can periodically

perform interference measurements to identify conflicting

peers using the techniques proposed in [12], [17]. FLEX’s

local improvements can naturaly adapt spectrum allocation

to varying conflict conditions across APs as their associated

users move. The FLEX coordination protocol assumes APs

can directly communicate with conflicting peers to broadcast

channel usage and exchange coordination messages. This can

be done by configuring the communication range of the control

radio as the interference range of the cognitive radio. As a

refinement, users associated with APs can also relay these

messages between interfering APs.

Extension to Complex Interference Characterizations. In

this paper, we use a widely used binary matrix [9], [12],

[15] to model the pair-wise interference among access points.

Recent work [17] refines this model using probabilistic pair-

wise model to approximate packet losses. Our work can

be extended to this model by adding weights to channels.

On the other hand, many practical interference models are

based on aggregated SNR measurements, namely the physical

model [9]. The channel allocation problem under this model,

however, becomes extremely complex because in order to

determine a node’s incoming interference, every node in the

whole network needs to be considered. We are investigating

efficient allocation schemes by reducing the global interference

constraint into a set of local constraints.

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

8

VII. RELATED WORK

The idea of traffic-aware spectrum allocation has also been

considered in existing literatures [13], [17]. In [13], the authors

propose an algorithm to assign dynamic-width channels to

APs, and improve the system fairness by assigning wider

channels to APs with more users. In [17], the authors propose

to assign different weights to APs according to their traffics,

such that APs with more traffics can be farther separated

in frequency to minimize interference. While both [13], [17]

propose centralized algorithms that perform well in small scale

networks, our distributed algorithm and protocol design targets

large-scale dynamic-traffic networks. Our results show that

our solution is able to scale to a large network size, and

can perform fine grained spectrum allocation by fast local

adaptation.

Our work differs from [4], a distributed algorithm that

assigns channels to maximize system fairness. First, while [4]

assumes backlogged traffic and focuses on AP-level fairness,

our work extends the problem scope significantly by consider-

ing heterogeneity in traffic demands and addressing user-level

fairness. Results in Section V show that our approach signif-

icantly outperforms [4] under real traffic dynamics. Second,

our work uses a very different evaluation methodology. Instead

of focusing on algorithmic complexity such as iterations, we

build a highly efficient coordination protocol to realize the

proposed algorithms and focus on complexity metrics like

system adaptation delay. By enabling spatial parallelism, we

conclude that the complexity remains flat as network size

grows, rather than the linear growth trend as suggested by

[4].

VIII. CONCLUSION

In this paper we present FLEX, a distributed architecture for

WiFi access points to dynamically access spectrum to adapt to

varying user traffic demands and maximize user satisfaction.

Using cognitive radios, APs coordinate to apply local improve-

ments recursively and tune network-wide spectrum allocation

to maximize proportional fairness. We implement FLEX as a

light-weight coordination protocol for practical deployment.

Through detailed analysis and experimental evaluation, we

show that FLEX converges quickly, provides users with

proportional-fair spectrum usage and significantly outperforms

existing spectrum allocation proposals.

ACKNOWLEDGEMENT

We gratefully acknowledge the support from NSF through
grant CNS-0721961 and CNS-0832090.

REFERENCES

[1] BAHL, P., CHANDRA, R., MOSCIBRODA, T., WU, Y., AND YUAN, Y.
Load aware channel-width assignments in wireless lans. Tech. Rep.
2007-79, Microsoft Research, 2007.

[2] BUCHSBAUM, A. L., KARLOFF, H., KENYON, C., REINGOLD, N.,
AND THORUP, M. Opt versus load in dynamic storage allocation. In
Proc. of STOC (2003).

[3] CALÌ, F., CONTI, M., AND GREGORI, E. Dynamic tuning of the ieee
802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM

Trans. Netw. 8, 6 (2000), 785–799.
[4] CAO, L., AND ZHENG, H. Spectrum allocation in ad hoc networks via

local bargaining. In Proc. of SECON (2005).

[5] CHALLAPALI, K., CORDEIRO, C., AND BIRRU, D. Evolution of
spectrum-agile cognitive radios: first wireless internet standard and
beyond. In Proc. of WICON (2006).

[6] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and simulation
of a fair queueing algorithm. In Proc. of SIGCOMM (1989).

[7] GERGOV, J. Algorithms for compile-time memory optimization. In
Proc. of SODA (1999).

[8] HENDERSON, T., KOTZ, D., AND ABYZOV, I. The changing usage of
a mature campus-wide wireless network. In Proc. of MobiCom (2004).

[9] JAIN, K., PADHYE, J., PADMANABHAN, V., AND QIU, L. Impact of
interference on multi-hop wireless network performance. In Proc. of

MobiCom (2003).
[10] JANSEN, K., AND PORKOLAB, L. On preemptive resource constrained

scheduling: Polynomial-time approximation schemes. SIAM J. Discret.

Math. 20, 3 (2006).
[11] KATZELA, I., AND NAGHSHINEH, M. Channel assignment schems for

celluar mobile telecommunication systems. IEEE Personal Communi-

cations 3, 3 (June 1996), 10–31.
[12] MISHRA, A., SHRIVASTAVA, V., AGARWAL, D., BANERJEE, S., AND

GANGULY, S. Distributed channel management in uncoordinated wire-
less environments. In Proc. of MobiCom (2006).

[13] MOSCIBRODA, T., CHANDRA, R., WU, Y., SENGUPTA, S., BAHL, P.,
AND YUAN, Y. Load-aware spectrum distribution in wireless lans. In
Proc. of ICNP (2008).

[14] NANDAGOPAL, T., KIM, T.-E., GAO, X., AND BHARGHAVAN, V.
Achieving mac layer fairness in wireless packet networks. In Proc.

of MobiCom (2000).
[15] PENG, C., ZHENG, H., AND ZHAO, B. Y. Utilization and fairness

in spectrum assignemnt for opportunistic spectrum access. Mobile

Networks and Applications (MONET) 11 (May 2006), 555–576.
[16] RAYCHAUDHURI, D., ET AL. CogNet - an architecture for experimental

cognitive radio networks within the future internet. In Proc. of MobiArch

(2006).
[17] ROZNER, E., MEHTA, Y., AKELLA, A., AND QIU, L. Traffic-aware

channel assignment in enterprie wireless networks. In Proc. of ICNP

(2007).
[18] WYGLINSKI, A. M. Effects of bit allocation on non-contiguous

multicarrier-based cogntiive radio transceivers. In Proc. of VTC (2006).
[19] YUAN, Y., BAHL, P., CHANDRA, R., CHOU, P. A., FERRELL, J. I.,

MOSCIBRODA, T., NARLANKA, S., AND WU, Y. Knows: Kognitiv
networking over white spaces. In Proc. of IEEE DySPAN (2007).

[20] YUAN, Y., BAHL, P., CHANDRA, R., MOSCIBRODA, T., NARLANKA,
S., AND WU, Y. Allocating dynamic time-spectrum blocks in cognitive
radio networks. In Proc. of MobiHoc (2007).

APPENDIX

A. Proof of Theorem 2

The convergence of the system follows from the fact that the

system utility increases every time and there are only a finite

number of possible assignments in the system. Next, when

traffic demands are equal, following a similar proof in [4], we

can prove that after an expected number of O(N2) iterations,

the system will converge. Finally, the third part of Theorem 1

follows from the following lemma:

Lemma 1: Given a P × Q binary matrix BP×Q, and a list

of (traffic) numbers t0, t1, · · · , tQ−1, let r = P/Σti. Define

Sn =
∑P−1

m=0 Bm,n, for 0 ≤ n ≤ Q − 1. Then there exists

0 ≤ c ≤ P − 1, s.t.

Lc =
∏

0≤i≤Q−1,Bc,i=1

(

Si − 1

Si

)ti

≥
r − 1

r
. (5)

Proof: We prove the Lemma by an induction on Q.

When Q = 1, r = P/t0. If for some 0 ≤ c ≤ P − 1,

Bc,0 = 0, then c satisfies (5). Otherwise, for all 0 ≤ c ≤ P−1,

Bc,0 = 1. Then S0 = r · t0, and for arbitrary c, the left side

is (r·t0−1
r·t0

)t0 , by Lemma 2, greater than the right side.

Assuming the lemma holds for all k < Q (Q ≥ 2), we

derive two cases of Q:

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

9

• If there exists 0 ≤ i ≤ Q−1, s.t. Si/ti ≤ r. Then we can

find the c required in the Lemma from those with Bc,ni
= 0,

with the help of induction hypothesis.

• If for all 0 ≤ i ≤ Q − 1, Si/ti > r, then

P−1
∏

c=0

Lc =
∏

0≤c≤P−1

∏

0≤i≤Q−1,Bc,i=1

(

Si − 1

Si

)ti

=
∏

0≤i≤Q−1

∏

0≤c≤P−1,Bc,i=1

(

Si − 1

Si

)ti

=
∏

0≤i≤Q−1

(

Si − 1

Si

)Si·ti

(Lemma2) ≥
∏

0≤i≤Q−1

(

r · ti − 1

r · ti

)r·ti·ti

(Lemma2) ≥
∏

0≤i≤Q−1

(

r − 1

r

)r·ti

=

(

r − 1

r

)r·Σti

=

(

r − 1

r

)P

(6)

Hence
∏P−1

c=0 Lc ≥ (r−1
r

)P . Because Lc ≥ 0 for all 0 ≤ c ≤
P − 1, there must exist 0 ≤ c ≤ P − 1, s.t. Lc ≥ r−1

r
.

In the following, we will be using these results:

Lemma 2: f(x) = (1− 1
x
)x is monotonically increasing in

[1, +∞). f(x) = (1− 1
r·x)x, r ≥ 1 is monotonically increasing

in [1, +∞). f(x) = (1 + 1
r·x)x, r ≥ 1, is monotonically

increasing in [1,+∞).

Next, we prove Theorem 1 using LEMMA 1. Let M =
(tn +

∑

k∈N(n) tk) · r + r0, r, r0 ∈ Z, 0 ≤ r0 ≤ d,

r = b M
tn+

∑

k∈N(n) tk
c. If r = 0, the theorem is trivial. In the

following we assume r > 0. Suppose on the contrary that for

some n,

Sn ≤

(⌊

M

tn +
∑

k∈N(n) tk

⌋

− 1

)

· t. (7)

Suppose there are d elements in N(n), and suppose

W.L.O.G. they are indexed by {0, 1, · · · , d − 1} (i.e. N(n) =
{0, 1, · · · , d − 1}), and n is indexed by d. Also suppose

W.L.O.G. that the channels assigned to n are indexed by

{M−1,M−2, · · · ,M−Sn}. We can represent the allocation

matrix {am,n} by:

Index 0 · · · d-1 d · · ·

0 · · · · · · · · · 0 · · ·
...

...
. . .

... · · ·
...

M − Sn − 1 · · · · · · · · · 0 · · ·
M − Sn 0 · · · 0 1 · · ·

...
...

. . .
...

...
...

M-1 0 · · · 0 1 · · ·

Now a(0:M−Sn−1),(0:d−1) satisfies the conditions in Lemma

1, with P = M − Sn and Q = d. By Lemma 1, there exists

0 ≤ c ≤ M − Sn − 1, s.t.

∏

0≤i≤d−1,ac,i=1

(

(
∑M−Sn−1

m=0 am,i) − 1

(
∑M−Sn−1

m=0 am,i)

)ti

≥
r′ − 1

r′
. (8)

where r′ =
M − Sn

Σti
≥

M − (r − 1) · t

Σti

=
((t + Σti) · r + r0) − (r · t − t)

Σti
> r. (9)

Because am,i = 0 for M − Sn ≤ m ≤ M − 1 and 0 ≤

i ≤ d − 1, we have
∑M−Sn−1

m=0 am,i =
∑M−1

m=0 am,i = Si,

0 ≤ i ≤ d − 1. Next, from (8),

∏

0≤i≤d−1,ac,i=1

(

Si − 1

Si

)ti

≥
r′ − 1

r′
>

r − 1

r
. (10)

• Sn = 0. Then

(Sn + 1)t ·
∏

i∈N(n)∧ac,i=1

(Si − 1)ti

> 0 (by(10))

= (Sn)t ·
∏

i∈N(n)∧ac,i=1

(Si)
ti . (11)

• Sn > 0. Then

(Sn + 1)t ·
∏

i∈N(n)∧ac,i=1(Si − 1)ti

(Sn)t ·
∏

i∈N(n)∧ac,i=1(Si)ti

=

(

Sn + 1

Sn

)t

·
∏

0≤i≤d−1,ac,i=1

(

Si − 1

Si

)ti

(by(10)) >

(

Sn + 1

Sn

)t

·
r − 1

r

(by(7)) ≥

(

(r − 1) · t + 1

(r − 1) · t

)t

·
r − 1

r

(Lemma2) ≥
(r − 1) + 1

(r − 1)
·
r − 1

r
= 1. (12)

In both cases, it shows that we can apply local improvements

over A by assigning channel c to node n. This contradicts

with the assumption that the system has converged and no

more local improvements can improve the system utility.

Digital Object Identifier: 10.4108/ICST.WICON2008.4953
http://dx.doi.org/10.4108/ICST.WICON2008.4953

