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ABSTRACT
Single-rate multicasting may yield low utilization of the net-
work resources when a subset of the receivers creates a bot-
tleneck for the whole multicast group. Thus, practical multi-
rate multicasting strategies are required to allow users with
better channels to achieve maximum performance. While
earlier studies have investigated such mechanisms using rout-
ing strategies over fixed trees, in this work we consider the
possibility of using network coding without a given sub-
graph. Our scheme identifies the optimal routes and pro-
vides the utility maximizing rate allocation and coding so-
lution. We also propose and investigate a nested multicasting
method to reduce the complexity of the original scheme for
practical implementation.

Categories and Subject Descriptors
C.2 [Network Architecture and Design]: Distributed
Networks, Network Communications; G.1.6 [Optimization]:
Convex Programming; F.2 [Analysis of Algorithms and
Complexity]: General

Keywords
Multi-rate Multicast, Network Coding, Convex Optimiza-
tion, Primal-dual method, Congestion Control, Utility Max-
imization

1. INTRODUCTION
Multi-hop communication networks are expected to efficiently
serve many applications with diverse characteristics and quality-
of-service constraints. Many of these applications, including
voice/video broadcast and file sharing, generate data to be

∗This work was supported by: DTRA Grant HDTRA1-
08-1-0016; and the Control-Based Mobile Ad-Hoc Network-
ing (CBMANET) Program under DARPA subcontract no.
060786.
WICON’08, November 17-19, 2008, Maui, Hawaii, USA.
Copyright 2008 ICST 978-963-9799-36-3.

multicast to a group of destinations rather than a single one.
Traditionally, the rate of such a single-rate multicast session
is chosen such that all the receivers can successfully receive
the transmitted information at the selected rate. It is shown
in [1] and [15] that linear network coding can be used in such
a scenario to achieve the maximum possible allowable rate.
With this strategy, nodes are allowed to“mix” the packets of
the session as they traverse them, and thus can improve the
achievable rate of the session. Many works have exploited
such advantages (e.g. [6, 11, 7, 4]).

However, the single-rate nature of the traditional multicas-
ting strategy is limiting because its throughput is restricted
by the capacity to the bottleneck destination. In other words,
all the destinations suffer from the constraints associated
with the destination under the worst conditions. In order
to overcome this problem, we study multi-rate multicast ca-
pabilities, where the source is allowed to multicast its data
to different destinations at different rates based on the con-
dition of the network to them. With this capability, the
bottleneck destinations will not able to throttle the whole
communication quality.

There are a number of papers focusing on multi-rate multi-
casting scenario, but without the capability of network cod-
ing. In particular, Kar et.al. [13] propose an optimization-
based approach for a given fixed routing tree associated with
each multicast session. In another related work, Bui et.al.
[3] propose multi-rate multicasting based on scheduling vir-
tual (shadow)“traffic”that“moves” in reverse direction from
destinations to sources. This work also assumes a single
fixed tree for routing the traffic and network coding is not
utilized. Sarkar et. al. [22] propose multicasting with M-
Best trees and switching between the trees depending on
congestion level. Switching between trees gives some sort of
dynamism to the algorithm. But the M-Best trees are still
assumed to be pre-defined.

In this paper, we propose a distributed rate allocation, schedul-
ing, routing, and coding solution to multi-rate multicasting
for general multihop networks when network coding is al-
lowed, and when the routes are not predefined. The main
novelties of this paper are:

• We formulate the multi-rate multicast utility maximiza-
tion problem by decomposing the multi-rate session into
many single-rate subsessions, and optimizing over the sub-
session rates.
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• We do not assume presence of pre-defined routes or trees.
The algorithm automatically forms the optimal subgraphs
in addition to finding the optimal rates.

• The algorithm makes provision for intra-session network
coding, which enables higher network throughput.

• We propose a novel extension to the original algorithm to
reduce the complexity of the implementation significantly.
This low-complexity algorithm utilizes the special structure
of the multi-rate multicast problem to construct the opti-
mal subsessions gradually rather than optimizing over an
exponential number of them.

The rest of the paper is organized as follows. Section 2 in-
troduces the system model and sets up the multi-rate mul-
ticast problem. Then, Section 3 provides the design of our
cross-layer mechanism through the use of dual methods. In
Section 4, we provide the analysis of the proposed mecha-
nism and its optimality characteristics. In Section 5, we ex-
ploit the special structure of the problem to provide a low-
complexity implementation for the cross-layer mechanism.
Section 6 includes extensive simulation results for both the
original and low-complexity algorithms. Our concluding re-
marks are provided in Section 7.

2. MODEL AND PROBLEM DESCRIPTION
Consider a fixed multihop network that is described by a
graph G = (N ,L), where N is the set of nodes with cardinal-
ity N and L is the set of directed links. While in a wireless
network, the achievable link rates are interdependent due
to interference effects, in a wired network it can be assumed
that each link (i, j) has a fixed capacity of cij ∈ {0, 1, 2, · · · }.
Although our results can be extended to cover wireless con-
ditions, in this paper we will focus on wired networks in
order to avoid unnecessary complications and to provide the
main idea more clearly.

We denote the multi-rate multicast session with rate y :=
(yd)d∈D from source node s to the set of destination nodes
D by (s,D,y). The multi-rate nature of the multicast trans-
mission allows destination d to be served at rate yd, subject
to achievability constraints. Throughout the paper, we will
focus on the scenario of a single multi-rate multicast ses-
sion for ease of discussion. However, we note that all of our
results can be extended to multiple multi-rate multicast ses-
sions when network coding is only allowed within a session.

We decompose multi-rate multicast session (s,D,y) into many
single-rate multicast subsessions, where each subsession, (s,Dk, xk),
is described by the source node s, a subset of destinations
Dk ⊂ D, and a single-rate xk. Accordingly, the potential
number of subsessions of a given session is K := 2|D|. Note
that, with such a decomposition, the destination rates y and
the subsession rates x := (xk)K

k=1 are related as

yd(x) =
∑

k3d

xk, for all d ∈ D, (1)

where k 3 d means {k : d ∈ Dk}, i.e., all subsessions that
have d as a destination.

Subsession k injects packets with an average rate of xk to
be multicast to its destination group Dk, where each packet

is represented by a vector over a finite field Fr, where r is
assumed to be a large positive integer. In our framework,
we allow each subsession to perform intra-session network
coding. Specifically, as the packets of the same subsession
traverse the network nodes, we allow the node to create ran-
dom linear combinations of the packets before transmitting
them to the neighboring nodes. In particular, a random
linear combination of the packets {P1, · · · ,PJ} is given by
∑J

j=1 θjPj , where {θj} are randomly selected coefficients
from the finite field. Such intra-session coding operations
are known to improve the achievable throughput region of
the network (e.g. [1, 12]). We aim to exploit such net-
work coding capabilities for subsessions while optimizing the
subsession rates to yield the best multi-rate session perfor-
mance.

We assume that the utilization achieved at each destination,
say d ∈ D, is measured by a utility function Ud(·) of its
rate yd. We make the following assumptions on the utility
function:

• Ud(.) is a strictly concave, twice differentiable, non-decreasing
function of mean rate yd.

• For every m and M satisfying 0 < m < M < ∞, there
exists constants c̃ and C̃ satisfying 0 < c̃ < C̃ < ∞ such
that

c̃ ≤ −
1

U
′′

d (yd)
≤ C̃, ∀yd ∈ [Km, KM ],

where K = 2|D| is the number of subsessions.

We note that these conditions hold for a large class of utility

functions, including Ud(yd) = y
(1−φ)
d /(1 − φ) for φ > 0 that

is known to capture a large class of fairness criteria (see [19]).
We remark that the strictness of the concavity of Ud(·) can
be relaxed without too much complication. Also, observe
that although Ud(·) is a strictly concave function of yd, it is
only concave in x since y and x are related as in (1).

Our goal is to design a practical algorithm that finds the
optimal subsession rates x̂ := (x̂k)K

k=1 that maximize the
aggregate utilization of the destinations. In order to for-

mulate this problem more rigorously, we let f
(d,Dk)
ij be the

information flow rate over link (i, j) ∈ L for an individual

destination d ∈ Dk in Subsession k; and rDk
ij be the physical

flow rate for Subsession k over link (i, j) ∈ L. Under the
intra-session network coding capability for each subsession,
the physical and information flow rates are related by ([12])

r
Dk
ij ≥ max

d∈Dk

f
(d,Dk)
ij , for all (i, j) ∈ L, k ∈ {1, · · · , K}. (2)

Network coding enables us to transmit the coded packets
at a rate equal to the maximum information rate of all the
destination nodes belonging to that subsession. Information
flow rate out of node i for Subsession k and d ∈ Dk, is given
by

f
(d,Dk)

out(i) :=
∑

j:(i,j)∈L

f
(d,Dk)
ij , ∀d ∈ Dk, i ∈ N .

Similarly, information flow rate into node i for subsession k
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and d ∈ Dk, is given by

f
(d,Dk)

in(i) :=
∑

j:(j,i)∈L

f
(d,Dk)
ij , ∀d ∈ Dk, i ∈ N .

Finally, we define the variable

xk
i :=

{

xk, if i = s,
0, otherwise.

(3)

Now, we are ready to formulate our goal as an optimization
problem. We approach the problem from the destinations’
point of view and maximize the destination utilities rather
that subsession utilities while retaining the multi-rate mul-
ticast nature of information flow. We note that this is the
natural formulation since the utility functions are described
per destination. This leads the following optimization prob-
lem.

max
{x,f ,r≥0}

∑

d∈D

Ud(yd(x)) (4)

s.t. f
(d,Dk)

out(i) − f
(d,Dk)

in(i) = xk
i , i 6= d, ∀k, ∀d ∈ Dk,

f
(d,Dk)
ij ≤ rDk

ij , ∀k ∈ {1, · · · , K}, ∀d ∈ Dk,

K
∑

k=1

r
Dk
ij ≤ cij , ∀(i, j) ∈ L.

The first constraint is the information flow conservation con-
straint per node, implying that the information influx to a
node must be equal the information outflux, unless the node
is a destination node. The second constraint is a network
coding constraint indicating the relationship between infor-
mation flow rate and physical flow rate given by equation
(2). And, the final constraint is the link capacity constraint.

Under the stated assumptions on the utility function this op-
timization is a convex optimization problem, and strong du-
ality holds due to the polyhedral nature of the constraint set
(see [2]). However, since the utility function is not strictly
concave in x, there may not be a unique solution to the
optimization problem (4). We denote the solution to the
optimization problem by a set of subsession rates denoted
by χ̂. Each point x̂ ∈ χ̂ in the optimal set is a maximizer of
the expression

∑

d∈D Ud(yd(x)).

In the following section, we use duality theory and dual
methods to develop a flow control and resource allocation
mechanism that solves the above problem. Then, in Sec-
tion 5 we exploit the special structure of the problem to
propose a nested multicasting strategy that significantly re-
duces the complexity of the original algorithm from expo-
nential to linear in the number of destinations.

3. ALGORITHM DESIGN
In this section, we develop a joint congestion control, re-
source allocation and coding algorithm for the multi-rate
multicast optimization problem (4). The development is
based on a primal-dual update policy that guarantees op-
timal routes, stability, and optimal rate allocation.

Let µ :=
(

µ
(d,Dk)
i

)

i,d,k
be the Lagrange multiplier vector

associated with the first constraint of (4). Then, the La-

grangian is given by

L(x, µ) =
∑

d∈D

Ud(yd)

−
∑

i

∑

k

∑

d∈Dk

µ
(d,Dk)
i (xk

i − f
(d,Dk)

out(i) + f
(d,Dk)

in(i) ),

where we dropped the x dependence of yd(x) for brevity,

and µ
(d,Dk)
i can be interpreted as congestion price at node

i for Subsession k and Destination d ∈ Dk. The congestion
prices at different nodes can be indicative of queue lengths
of the logical queues at each node i for subsession k and
destination d ∈ Dk. The design of physical queues from the
logical queues is an issue of implementation which we do not
discuss in this paper.

The Lagrangian can be re-arranged as

L(x, µ) =
∑

d∈D

(

Ud(yd) −
∑

k3d

µ(d,Dk)
s xk

)

+
∑

(i,j)

∑

k

∑

d∈Dk

f
(d,Dk)
ij (µ

(d,Dk)
i − µ

(d,Dk)
j ),

where s is the source node of the multi-rate multicast session.
Then, the objective function of the dual problem becomes

max
{x,f ,r≥0}

L(x, µ) = max
x≥0

∑

d∈D

(

Ud(yd) −
∑

k3d

µ(d,Dk)
s xk

)

(5)

+ max






0≤f
(d,Dk)
ij

≤r
Dk
ij

∑

k∈K r
Dk
ij

≤cij







∑

(i,j)

∑

k

∑

d∈Dk

f
(d,Dk)
ij (µ

(d,Dk)
i − µ

(d,Dk)
j ).

(6)

The above formulation enables us to break down the problem
into two separate convex optimization problems: the first
maximization (5) over x is related to the rate allocation;
and the second maximization (6) over (f , r) is related to
scheduling, routing, and coding.

It should be noted that contrary to many earlier works in the
literature (e.g. [14, 18, 16, 8, 23, 20, 5]) the nature of the rate
allocation problem does not readily lend itself to complete
decomposition across subsession rates. In this case, due to
the network coding capabilities and the destination-based
utility functions, the optimal subsession rates are interde-
pendent. This motivates us to use first-order optimization
methods to solve for the rate allocation (primal) problem,
and iteratively update the rates in the subgradient direction.

On the other hand, the nature of the resource allocation
problem (6) is similar to the backpressure schemes that are
extensively studied in the literature (e.g. [24, 21, 10, 9,
17]), except that the objective function is defined in terms
of “information flow rates” rather than the traditional phys-
ical link rates due to the network coding capability within
subsessions. Thus, the implementation of the algorithm re-
quires the description of network coding operations to be
performed at the nodes.

The following iterative cross-layer mechanism describes the
details of our proposed algorithm.
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Definition 1 (Cross-layer Mechanism). Assume that
the algorithm operates in slotted time, and at a time slot t,
(x[t], µ[t]) is known.

Rate Control: The flow rate of each subsession k is updated
depending upon the congestion level it observes through the
price level at its source as follows: for all k,

xk[t + 1]

=
(

xk[t] + α
∑

d∈Dk

(

U ′
d(yd[t]) − µ(d,Dk)

s [t])
)

)M

m
, (7)

where U ′
d(y) = dUd(y)

dy
; yd[t] :=

∑

k3d xk[t]; and zb
a denotes

a projection of z to the closest point in the interval [a, b].
Further, α > 0 is a small step-size parameter, 0 < m <
mins x̂k where x̂ is the optimal solution, and M is a finite
constant that is greater than

∑

(i,j)∈L cij.

Resource Allocation and Coding: For each link (i, j),
two parameters w∗

i,j [t] and k∗
i,j [t] are computed as follows.

w∗
i,j [t] = max

k

∑

d∈Dk

(µ
(d,Dk)
i [t] − µ

(d,Dk)
j [t])+

k∗
i,j [t] = arg max

k

∑

d∈Dk

(µ
(d,Dk)
i [t] − µ

(d,Dk)
j [t])+

where (z)+ := max(0, z). Here, w∗
i,j [t] can be interpreted as

the weight of the link (i, j), and k∗
i,j [t] denotes the index of

the subsession data to be transmitted over link (i, j). This

means that the physical rate r
Dk
ij [t] of subsession k∗

i,j [t] is
equal to cij , and all the other subsessions are unscheduled.

The subsession k∗
i,j [t] is served as follows:

1. Let

D+
k∗

i,j
[t] = {d ∈ Dk∗

i,j
[t] : µ

(d,Dk)∗

i [t] − µ
(d,Dk)∗

j [t] ≥ 0}.

Then, for each d ∈ D+
k∗

i,j
[t] take ci,j packets from its

associated queue. If the queue empties, continue to the
next step.

2. Form cij independent random linear combinations of
these selected packets and transmit them over link (i, j).

3. At the receiver end, enqueue a copy of the incoming

packets at each of the queues µ
(d,Dk)∗

j with d ∈ D+
k∗

i,j
[t].

Finally, update the µ vector as follows: for all i, k,

µ
(d,Dk)
i [t + 1]

=
(

µ
(d,Dk)
i [t] + β(xk

i [t] + f
(d,Dk)

in(i) [t] − f
(d,Dk)

out(i) [t])
)+

, (8)

where β > 0 is a small stepsize parameter.

We remark that the dual update equation (8) in the cross-
layer mechanism is tightly related to the actual queue-length

evolution. In particular, if we let q
(d,Dk)
i [t] denote the length

of the queue at node i that contains packets destined to node
d ∈ Dk as part of the subsession k, then, we approximately
have q[t] ≈ βµ[t]. This means that a scaled version of the
actual queue-lengths can also be used in the scheduling al-
gorithm, and no extra price maintenance is necessary.

4. ALGORITHM ANALYSIS
In this section, we introduce a heuristic fluid model of the
joint scheduler-congestion control mechanism of Definition 1,
and prove its stability and optimality properties. The anal-
ysis of such a model sheds light into the operation of the
original model without the complications associated with
the discrete-time operation. It is shown in several earlier
works that the optimality of such a fluid model suggests the
optimality of the original discrete-time implementation (e.g.
[8, 9, 17]). Here, we will only prove the optimality of the
fluid model, leaving the analysis of the discrete-time imple-
mentation to an extended version of the paper.

To construct the fluid model we first approximate the oper-
ation of the discrete-time cross-layer algorithm by a heuris-
tic continuous-time dynamic system. Accordingly, the evo-
lution of the instantaneous subsession rates is assumed to
be governed by the following differential equation: for all
k ∈ K,

ẋk(t) = α
(

∑

d∈Dk

(U
′

d(yd(t)) − µ(d,Dk)
s (t))

)+

xk(t)
. (9)

Similarly, the evolution of the prices is governed by the dif-
ferential equation: for all i, k,

µ̇
(d,Dk)
i (t) = β

(

xk
i (t) + f

(d,Dk)

in(i) (t) − f
(d,Dk)

out(i) (t)
)+

µ
(d,Dk)
i

(t)
,

(10)

where (y)+z is equal to 0 if {y = 0, z < 0}, and y, otherwise.
Here, (t) is used instead of [t] to signify that we are working
in continuous-time. We assume that the resource allocation
and coding algorithm computes the link schedules and rates
at every instant of time as described in Section 3.

Notice that equations (10) and (9) mimic the evolution of
(8) and (7), respectively. Thus, proving the optimality char-
acteristics of this continuous-time system is important in ex-
tending its conclusion to the original system. The following
theorem proves the globally asymptotic optimality of the
continuous-time system.

Theorem 1. Starting from any initial condition (x(0), µ(0)),
the state of the system (x(t), µ(t)) converges to (x̂, µ̂) as
t → ∞, where x̂k is an element of the vector x̂ ∈ χ̂ and µ̂ is
an element in the set of optimal prices.

Proof. Consider the Lyapunov function

Wt(x, µ) =
1

2α

∑

k∈K

(xk(t) − x̂k)2+

1

2β

∑

i

∑

k

∑

d∈Dk

(µ
(d,Dk)
i (t) − µ̂

(d,Dk)
i )2

Digital Object Identifier: 10.4108/ICST.WICON2008.4948 
http://dx.doi.org/10.4108/ICST.WICON2008.4948 



Differentiating the Lyapunov function with respect to time,
we get the Lyapunov drift

Ẇt(x, µ) =
1

α

∑

k∈K

(xk(t) − x̂k)ẋ(t)

+
1

β

∑

i,k,d∈Dk

(µ
(d,Dk)
i (t) − µ̂

(d,Dk)
i )µ̇

(d,Dk)
i (t)

For notational simplicity, we drop the time index but all the
rate and flow quantities must be interpreted as time depen-
dent functions. Using equation (9) and (10) to determine
the primal and dual gradients, we get

Ẇt(x, µ) =
∑

k∈K

(xk − x̂k)
(

∑

d∈Dk

(U
′

d(yd) − µ(d,Dk)
s )

)+

+
∑

i,k,d∈Dk

(µ
(d,Dk)
i − µ̂

(d,Dk)
i )

(

xk
i + f

(d,Dk)

in(i) − f
(d,Dk)

out(i)

)+

≤
∑

k∈K

(xk − x̂k)
(

∑

d∈Dk

(U
′

d(yd) − µ(d,Dk)
s )

)

+
∑

i,k,d∈Dk

(µ
(d,Dk)
i − µ̂

(d,Dk)
i )

(

xk
i + f

(d,Dk)

in(i) − f
(d,Dk)

out(i)

)

The inequality follows since we remove the projection oper-
ation from the rate and price gradients.

Optimality of (x̂, µ̂) implies that

∑

d∈Dk

(U
′

d(ŷd) − µ̂(d,Dk)
s ) = 0, ∀k ∈ K.

We add this quantity in the first summation and optimal
rate in the second summation of the Lyapunov drift. Hence,

Ẇt(x, µ) =
∑

k∈K

(xk − x̂k)
(

∑

d∈Dk

[U
′

d(yd) − U
′

d(ŷd)

+ µ̂(d,Dk)
s − µ(d,Dk)

s ]
)

(11)

+
∑

i,k,d∈Dk

(µ
(d,Dk)
i − µ̂

(d,Dk)
i )(xk

i + f
(d,Dk)

in(i) − f
(d,Dk)

out(i)

+ x̂k
i − x̂k

i ) (12)

Consider the quantity,

∑

i

∑

k

∑

d∈Dk

(µ
(d,Dk)
i − µ̂

(d,Dk)
i )(xk

i − x̂k
i )

=
∑

k

∑

d∈Dk

(µ(d,Dk)
s − µ̂(d,Dk)

s )(xk − x̂k).

The equality follows from the definition of xk
i in (3). This

quantity cancels with the second part of (11) and hence the
Lyapunov drift expression reduces to

Ẇ (x, µ) =
∑

k∈K

(xk − x̂k)
(

∑

d∈Dk

(U
′

d(yd) − U
′

d(ŷd))
)

(13)

+
∑

i,k,d∈Dk

µ̂
(d,Dk)
i (f

(d,Dk)

out(i) − f
(d,Dk)

in(i) − x̂k
i ) (14)

+
∑

i,k,d∈Dk

µ
(d,Dk)
i (x̂k

i + f
(d,Dk)

in(i) − f
(d,Dk)

out(i) ) (15)

Next, note that (13) can be rearranged as

(13) =
∑

d∈D

(

(yd − ŷd)(U
′

d(yd) − U
′

d(ŷd))
)

. (16)

Observe that (16) ≤ 0 since the utility function is concave
by assumption.
To show that other terms in the Lyapunov drift are negative,
we start with (14). We can write

∑

i

∑

k

∑

d∈Dk

(µ̂
(d,Dk)
i )(f

(d,Dk)

out(i) − f
(d,Dk)

in(i) )

=
∑

(i,j)

∑

k

∑

d∈Dk

f
(d,Dk)
ij (µ̂

(d,Dk)
i − µ̂

(d,Dk)
j )

≤(a)
∑

k∈K

∑

d∈Dk

x̂kµ̂(d,Dk)
s ,

where the inequality (a) can be proved by the following argu-
ment: by Karush-Kuhn-Tucker (KKT) conditions (see [2])

µ̂
(d,Dk)
i (x̂k

i + f̂
(d,Dk)

in(i) − f̂
(d,Dk)

out(i) ) = 0,

∀i ∈ N, k ∈ K

Summing over all nodes and subsessions and noting that
x̂k

i = 0, ∀i 6= s,

∑

k∈K

∑

d∈Dk

µ̂(d,Dk)
s x̂k

=
∑

i

∑

k

∑

d∈Dk

µ̂
(d,Dk)
i (f̂

(d,Dk)

out(i) − f̂
(d,Dk)

in(i) )

=
∑

(i,j)

∑

k

∑

d∈Dk

f̂
(d,Dk)
ij (µ̂

(d,Dk)
i − µ̂

(d,Dk)
j )

≥
∑

(i,j)

∑

k

∑

d∈Dk

f
(d,Dk)
ij (µ̂

(d,Dk)
i − µ̂

(d,Dk)
j )

for any feasible f satisfying 0 ≤ f
(d,Dk)
ij ≤ r

Dk
ij and

∑

k∈K r
Dk
ij ≤

cij ∀(i, j), since (x̂, f̂ , µ̂) maximizes the Lagrangian function
in (6). From the result of (17), it follows that (14) ≤ 0.

To prove (15) ≤ 0, we proceed as follows: from the flow
balance equations we have

x̂k
i = f̂

(d,Dk)

out(i) − f̂
(d,Dk)

in(i) , ∀i ∈ N, k ∈ K, d ∈ Dk.

Multiplying by corresponding subsession prices and sum-
ming it over all nodes and subsessions

∑

k∈K

∑

d∈Dk

x̂kµ(d,Dk)
s =

∑

i

∑

k

∑

d∈Dk

(f̂
(d,Dk)

out(i)

−f̂
(d,Dk)

in(i) )µ
(d,Dk)
i

=
∑

(i,j)

∑

k

∑

d∈Dk

f̂
(d,Dk)
ij (µ

(d,Dk)
i − µ

(d,Dk)
j )

≤
∑

(i,j)

∑

k

∑

d∈Dk

f
(d,Dk)
ij (µ

(d,Dk)
i − µ

(d,Dk)
j ) (17)

Inequality follows since the resource allocation operation in
Definition 1 sets the information flow rates to maximize the
expression in (17).

From (17) it follows that (15) ≤ 0. Combining the re-
sults, (13) + (14) + (15) ≤ 0, and hence the Lyapunov drift,
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Ẇt(x, µ) ≤ 0 and further,

ξ := {(x, µ) : Ẇt(x, µ) = 0}

is contained in the set

S := {(x, µ) : (13) = (14) = (15) = 0}

Let M be the largest invariant set of the primal-dual al-
gorithm contained in ξ. By LaSalle’s invariance principle
(provided in the Appendix for completeness), (x(t), µ(t))
converges to the set M as t → ∞. Since M ⊂ ξ ⊂ S,
as t → ∞, the limit point of the pair (x(t), µ(t)) must also
satisfy (13) = (16) = 0. It must be noted that strict con-
cavity of the utility functions implies (16) = 0 only when

U
′

d(yd) = U
′

d(ŷd) and hence limt→∞ yd(t) = ŷd.

The arguments in the proof of this theorem can be used to
form the foundation of the discrete-time analysis, which is
omitted in this paper due to space constraints.

While such optimality characteristics is important and cer-
tainly attractive, it must be noted that our cross-layer al-
gorithm is based on decomposing a single multi-rate session
with |D| number of destinations into 2|D| single-rate multi-
cast subsessions, one for each subset of destinations. Thus,
the complexity of the algorithm grows exponentially with
the size of the multicast session. Next, we will propose a low-
complexity implementation by utilizing the special structure
of the problem.

5. COMPLEXITY REDUCTION
In this section, we propose a novel strategy to reduce the
exponential complexity of the cross-layer mechanism with
respect to the number of destination nodes. The main idea
behind our approach can be described by a horizontal water-
filling analogy as follows. Consider the maximum achievable
rates in the multi-rate multicast session as a function of the
destinations, such illustrated in Figure 1, where we can see
that Destination 4 has the best channel, while Destination
5 has the worst channel.

Figure 1: Determining the optimal subsessions with
a nested structure.

The idea is to start by serving a single subsession contain-
ing all the destinations and then adding more subsessions by
gradually eliminating the bottleneck destinations by utiliz-
ing the pricing information at the sources. In the example
of Figure 1, we see that Destination 5 must be eliminated
in the first round as it is the bottleneck link of the first
(i.e. bottom) subsession. Then, in the second round the

first two subsessions are served, leading to the identification
of Destination 1 as the bottleneck destination in the second
subsession. Thus, Destination 1 is eliminated in the third
round to construct the third subsession, and so on. The
details of our proposed procedure is described next.

Definition 2 (Low-Complexity Mechanism). Perform
the following steps.

• Initialize the number of subsessions R to 1, with D1 = D.

• In the Rth round, R = 1, · · · , K − 1, with {D1, · · · ,DR}
denoting the existing multicast subsessions, do:

(i) Run the cross-layer mechanism of Definition 1 only for
the subsessions with destinations {D1, · · · ,DR}, such that

xr(t) → x̃r, for each r = 1, · · · , R; and µ
(d,Dr)
s (t) → µ̃

(d,Dr)
s ,

for each r = 1, · · · , R, and d ∈ Dr.

(ii) Let d?
R = arg maxd∈DR

µ̃
(d,DR)
s , which implies that d?

R

is the bottleneck destination in the multicast subsession DR

since its price is the maximum.

(iii) Construct the (R + 1)st subsession as DR+1 = DR\d
?
R.

If (R + 1) = K, exit. Otherwise start the (R + 1)st round.

It can be seen in Step (ii) of the iterative procedure that
the limit price levels at the source are used to identify the
bottleneck link in the most recent, i.e. Rth, multicast sub-
session, and in Step (iii), the next subsession is created by
eliminating the identified bottleneck, d?

R. The exact anal-
ysis of this scheme is complicated and beyond the scope of
this work. Instead, in the next section, we simulate sev-
eral network settings to compare the optimality character-
istics of the original scheme and the low-complexity varia-
tion. Our simulations demonstrate that the low complexity
scheme continues to achieve full optimality in addition to
the complexity gains it provides.

6. NUMERICAL RESULTS
In this section we provide some simulation results for three
well-known network topologies serving a multi-rate multi-
cast session with 2, 3, and 6 destinations, respectively. We
study the performance of the original cross-layer algorithm
of Definition 1 and the low-complexity implementation pro-
posed in Definition 2 under various capacity constraints. We
start with the canonical butterfly network.

6.1 Butterfly Network
Consider the butterfly network as shown in Figure 2. As-
sume that there is a single multi-rate multicast session hav-
ing node s as the source node and nodes d1 and d2 as the
destination nodes. We decompose this multi-rate multicast
session into three single-rate multicast subsessions each hav-
ing source node s. The subsessions have the following des-
tination set, D1 = {d1}, D2 = {d2} and D3 = {d1, d2}.
We interpret subsessions 1 and 2 to be unicast subsessions
and 3 to be the multicast subsession. We assume that the
utilization achieved at each destination d ∈ D, is measured
by Ud(yd) = log(yd), which leads to the proportionally fair
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allocation. We choose the α and β parameters to be 0.01,
and examine the network under different scenarios to show
the effectiveness of our cross-layer algorithm.

Figure 2: The butterfly network.

Case(a): Initially we analyze the network with link capacity
of all links to be 1 unit. The subsession rates at convergence
point are tabulated in Table 1 and the time evolution of the
rates is plotted in Figure 3. The rows of the table indicate
different subsessions and their corresponding destination set.
“ON” indicates the node is in the destination set and “OFF”
indicates it is not. We see that the rate values at convergence
point are 0, 0 and 2 respectively. Each destination receives
a data rate of 2 which equals the theoretically maximum
achievable rate specified by the max-flow-min-cut theorem.
Also, it can be observed that rates for the unicast subses-
sions are 0. Hence when the link capacities are uniform, all
the data can be transmitted through multicast taking full
advantage of network coding.

Case(b): In the second simulation scenario, we introduce
a bottleneck link in the paths of one of the destinations,
i.e. we reduce the average capacity over link (1, d1) to 0.1
units. We achieve this average capacity through a Bernoulli
random process with parameter 0.1. The subsession rates are
again tabulated in Table 2 and evolution of rates in Figure 4.
The net achieved rate for destination d1 is 1.1 units where
as destination d2 receives a rate of 2 units. Case (b) clearly
shows the effectiveness of our algorithm: while single-rate
multicast with fixed coding subgraphs would have resulted
in a lower data rate to both the destinations due to receiver
d1 creating the bottleneck for the whole multicast group,
our cross layer mechanism still achieves rates very close to
theoretical value for either destinations.

Table 1: Case (a)

d1 d2 xk

S 1 OFF ON 0
S 2 ON OFF 0
S 3 ON ON 2

Table 2: Case (b)

d1 d2 xk

S 1 OFF ON 0
S 2 ON OFF 0.9
S 3 ON ON 1.1

Case(c): In the third simulation scenario, we introduce bot-
tleneck links in the paths of both the destinations by setting
the average capacities of links (1, d1) and (2, d2) to 0.1. The
resulting rate values at convergence are tabulated in Table 3
and evolution of rates in Figure 5. It can be seen once again
that all the data is transmitted through the multicast sub-
session and the algorithm takes advantage of network coding

Table 3: Case (c)

d1 d2 xk

S 1 OFF ON 0
S 2 ON OFF 0
S 3 ON ON 1

Table 4: Case (d)

d1 d2 xk

S 1 OFF ON 0.5
S 2 ON OFF 0.5
S 3 ON ON 0.6
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4No. of Iterations

 

Destn d
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Destn d
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Destn d
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Figure 3: Case (a)
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Figure 4: Case (b)
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Figure 5: Case (c)
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Figure 6: Case (d)

between packets of the multicast subsession to achieve a rate
of 1 unit to either of the destinations.

Case(d): In the fourth simulation scenario, we set the av-
erage capacity of link (3, 4) to 0.1 units, and all others to
1. The resulting rate values at convergence are tabulated in
Table 4 and evolution of rates in Figure 6. Both the des-
tinations achieve a rate of 1.1 units, which is optimal. We
note that the proposed rates of 0.5 units for unicast and
0.6 units for multicast subsessions can be achieved by time
sharing the links (1, d1) and (2, d2) between the unicast and
multicast subsessions.

Also, note that the system converges to within a small neigh-
borhood of the optimal, since we have chosen constant step-
sizes. The choice of the step-size parameter determines the
tradeoff between optimality and convergence rate. In partic-
ular, the smaller the stepsize, the slower the convergence and
the closer to the optimal, which is a general characteristic
of any gradient based method.

6.2 Larger Networks
In this section, we illustrate the effectiveness of the low com-
plexity multicasting strategy of Definition 2 not only in re-
ducing the algorithm complexity but also in achieving data
rates very close to the optimal value.

The network considered for illustrating complexity reduc-
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Figure 7: Network serving a session with 3 destina-
tions.

tion is shown in Figure 7. The multi-rate session has three
destinations, and all the links are assumed to have unit ca-
pacity, except for link (1, d1), which has an average capacity
of 0.1 units. The rate values at convergence for different sub-
sessions at different rounds are tabulated in the rightmost
column of Table 5 and the evolution of rates for the last
round is plotted in Figure 8. The numbers below the desti-
nations in Table 5 indicate the convergent price values at the
source node for the corresponding destination. The boxed
numbers in each round indicate that the corresponding des-
tination has the highest price and is the bottleneck receiver
in the subsession. Hence it is eliminated in the subsequent
rounds.

Table 5: Subsession rates at different rounds for the
nested multicast strategy.

Round # d1 d2 d3 xk

Round 1 2.7 0.0 0.0 1.1
Round 2 0.9 0.6 0.4 1.1

- 0.5 0.5 0.9
Round 3 1.0 0.7 0.3 1.0

- 0.5 0.5 0.9
- 0.5 - 0

0.5 1 1.5 2
x 10

5No. of Iterations

 

Destn d
1
,d

2
 and d

3
Destn d

2
 and d

3
Destn d

2

Figure 8: Evolution of rates in the third and final
round of the Network in Figure 7.

Next, we consider an even larger network serving a session
with six destination nodes as shown in Figure 9. The link ca-
pacities for all the links are 1 unit except for those indicated
in Figure 9. The prices and rate values at convergence
for different subsessions at different rounds are tabulated
in Table 6 and the evolution of rates for the last round is

Figure 9: Network serving a session with 6 destina-
tions.

plotted in Figure 10. The optimality and effectiveness of
the algorithm is clearly evident in this case: the original
cross layer mechanism has to deal with an exponential num-
ber of subsessions (64 in this case) and becomes infeasible
as the number of destinations increases, whereas the low-
complexity implementation only uses up to a linear number
of subsessions (6 in this case).

Table 6: Subsession rates at different rounds for the
nested multicast strategy.

Round# d1 d2 d3 d4 d5 d6 xk

Round 1 5.2 0.0 0.0 0.0 0.0 0.0 1.2
Round 2 0.9 3.4 0.1 0.0 0.0 0.0 1.1

- 3.3 0.1 0.0 0.0 0.0 0.4
...

...
...

...
...

...
...

...
Round 6 0.9 1.6 0.0 0.6 0.0 0.9 1.1

- 0.9 0.7 0.7 0.7 0.2 0.2
- - 0.8 0.7 0.7 0.1 0.0
- - - 0.6 0.5 0.5 0.5
- - - - 0.5 0.5 0.3
- - - - - 0.6 0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

5No. of Iterations
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Figure 10: Evolution of rates in the third and final
round of the Network in Figure 9.

7. CONCLUSIONS
In this paper, we formulated and solved the problem of
multi-rate multicasting for aggregate utility maximization
with network coding capabilities. Our approach is based
on decomposing the multi-rate session into many single-
rate sessions, each using network coding capabilities, and
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then optimizing over the subsession rates. Using primal-
dual methods, we developed a cross-layer algorithm which
specifies the rate allocation, routing, scheduling, and coding
decisions based on appropriately maintained dual parame-
ters (prices), and then proved that a continuous-time model
of our algorithm converges to the optimal allocation from
any initial condition. Noting the exponential complexity of
the original design with respect to the size of the multi-
cast group, we utilized the special structure of problem to
develop a low-complexity implementation that reduces the
complexity to linear in the size of the multicast group with-
out sacrificing significantly from optimality. This algorithm
gradually constructs the set of subsessions with a nested des-
tination set structure, instead of considering all of them at
once. We also performed extensive simulations to confirm
the optimality characteristics of the original algorithm and
its low-complexity variant.
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APPENDIX
Theorem 2 (LaSalle’s Invariance Principle). Consider

the differential equation: ẏ(t) = f(y(t)). Let Y : D → R
be a radially unbounded (i.e. lim||z||→∞ Y (z) = ∞), con-
tinuously differentiable, positive definite function such that
Ẏ (z) ≤ 0 for all z ∈ D. Let ξ be the set of points in D where

Ẏ (z) = 0. Let M be the largest invariant set1 in ξ. Then,
every solution starting in D approaches M as t → ∞.

1S is defined as an invariant set for a dynamic system ẏ(t) =
f(y(t)) if every trajectory y(t) which starts from a point in
S always remains in S.
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