
Optimal Stochastic Routing in Low Duty-cycled Wireless
Sensor Networks

Dongsook Kim
Department of Electrical Engineering and

Computer Science
University of Michigan, Ann Arbor, MI

kimds@umich.edu

Mingyan Liu
Department of Electrical Engineering and

Computer Science
University of Michigan, Ann Arbor, MI

mingyan@umich.edu

ABSTRACT

We study a routing problem in wireless sensor networks
where sensors are duty-cycled. When sensors alternate be-
tween on and off modes, delay encountered in packet delivery
due to loss in connectivity can become a critical problem,
and how to achieve delay-optimality is non-trivial. For in-
stance, when sensors’ sleep schedules are uncoordinated, it is
not immediately clear whether a sensor with data to trans-
mit should wait for a particular neighbor (who may be on
a short route) to become available/active before transmis-
sion, or simply transmit to an available/active neighbor to
avoid waiting. To obtain some insight into this problem, in
this paper we formulate the above problem as an optimal
stochastic routing problem, where the randomness in the
system comes from random duty cycling, as well as the un-
certainty in packet transmission due to channel variations.
Similar framework has been used in prior work which results
in optimal routing algorithms that are sample-path depen-
dent, also referred to as opportunistic in some cases. We
show such algorithms are no longer optimal when duty cy-
cling is introduced. We first develop and analyze an optimal
centralized stochastic routing algorithm for randomly duty-
cycled wireless sensor network, and then simplify the algo-
rithm when local sleep/wake states of neighbors are avail-
able. We further develop a distributed algorithm utilizing
local sleep/wake states of neighbors which performs better
than some existing distributed algorithms such as ExOR.

1. INTRODUCTION
For the past decade or so, wireless sensor networks have

been extensively studied for a variety of applications: mil-
itary, environmental, and scientific. In many of these ap-
plication scenarios, sensors are deployed in large quantities,
sometimes in remote areas. Each sensor has the ability to
measure and wirelessly transmit data. In order to operate
them remotely and autonomously, they are required to be
reliable, robust, scalable, and secure among other things. In
particular, since they are operated on battery power and are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICON ’08, November 17-19, 2008, Maui, Hawaii, USA
Copyright 2008 ACM ICST 978-963-9799-36-3 ...$5.00.

not always easily accessible or maintained in general, energy
conservation is critical in keeping such networks long-lasting
and useful. As a result, energy efficient design of such net-
works at all levels, from material to circuit to protocol, has
long been a key subject of research and engineering. Low
duty-cycling has been widely considered as one of the most
effective ways of conserving energy, by periodically turning
off sensors that are not actively in use. There are many chal-
lenges in designing low duty-cycled wireless sensor networks.
The temporary unavailability of sensors can adversely affect
both the coverage and connectivity of the network. In ad-
dition, duty-cycling causes all kinds of delays, in sensing,
detection, and packet delivery (routing).

In this study, we are interested in designing good rout-
ing algorithms (measured by low delay) for wireless sensor
networks in the presence of very low duty cycles as well as
transmission failures due to channel uncertainty. In par-
ticular, we will consider a class of random sleep schedules
where sensors go to sleep independent of each other and for
a random duration given by a certain probability distribu-
tion. In such a scenario, when a node does not have future
information on other nodes’ sleep schedules but only which
of its neighbors are currently available, its routing decision
(the selection of a neighbor to relay a packet) must properly
balance the immediate availability of a node against the fu-
ture performance of the corresponding route. For instance,
we may pre-determine a best route based on average perfor-
mance (delay) using prior statistics, and at each hop of this
route the upstream node simply waits for the downstream
node to become available. Alternatively, we can make a
state-dependent decision depending on which set of neigh-
boring nodes are available. An extreme example of this lat-
ter method is to forward the packet to the earliest available
neighbor.

This duty-cycle-related uncertainty is further com-
pounded by the uncertainty in packet transmission. That
is, a transmission may succeed or fail depending on channel
conditions, which is in general time varying. Again, here a
node must weigh the pros and cons of using a pre-determined
route and wait at each hop till a transmission succeeds, or
can make a forwarding decision depending on which down
stream nodes have successfully received the packet (this is
possible due to the wireless broadcast medium).

We see that in either case, one could either choose to
perform routing in a deterministic way by selecting a route
independent of the sleep state or the success/failure state of
the network, or one could try to utilize information avail-
able to the nodes in making a closed-loop routing decision.

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

Traditionally, most routing algorithms fall under the for-
mer category, see for instance [3, 5, 6, 9–12, 14], and thus do
not react to transmission failure actively. More recently,
there have been a number of stochastic routing (also re-
ferred to as opportunistic routing) algorithms proposed in
the literature [2, 8, 13] to address the uncertainty in trans-
mission. The key idea underlying this latter category is
to make routing decisions after having observed the out-
come of an earlier transmission, i.e., after knowing which
down stream nodes have or have not successfully received
the transmission. Given different realizations of these trans-
mission events, the actual route taking by a packet can be
different, thus the term even-based routing or sample-path
dependent routing [8]. This type of routing algorithms has
a clear advantage over traditional deterministic routing in
that it takes into account state information available to the
nodes. It was shown in [8] that there exists an optimal
Markov policy which is an index policy in a time-invariant ad
hoc network, while in a time-varying ad hoc network neces-
sary and sufficient conditions were found for an index policy
or a priority policy to be optimal. In addition to the more
analytical approach discussed above, there are also practical
routing algorithms aimed at finding the best possible relay
for each transmission. ExOR by Biswas et al [2] is a rout-
ing scheme that exploits the broadcast nature of wireless
medium by selecting the next forwarder among those which
successfully received data after data transmission. This was
called opportunistic forwarding in [2], and conceptually a
very similar idea that that studied in [8] but with a different
relay selection criterion.

Compared to the above cited work, our problem has one
more source of uncertainty: the uncertainty due to sleep
scheduling in addition to that due to transmission failure.
In this paper we will adopt the opportunistic routing idea
and try to extend it to the case of low duty-cycle. In partic-
ular, we will follow closely the stochastic decision framework
developed in [8]. As we will show, optimal policies for the
problem considered in [8] are not in general optimal for low
duty-cycled sensor networks simply because they do not take
into account the current sleep state of nodes. In particular, a
sender may be forced to wait when a subset of its neighbors
are asleep.

The model used in this paper is an extension to [8] in
that it captures the randomness of topology caused by duty-
cycling in addition to the randomness in channel conditions.
The objective is to seek an optimal routing policy in such
networks with respect to performance metrics such as trans-
mission cost and delay, and to resolve the trade-off between
these two performance metrics. In subsequent sections we
will formally define this optimization problem. Various poli-
cies are then explored and characterized for optimality. The
main contributions of this paper are as follows.

1. As a benchmark we develop and analyze a centralized
optimal stochastic algorithm for randomly duty-cycled
wireless sensor network.

2. We develop a centralized stochastic routing algorithm
with reduced state space which performs near-optimal
when local sleep/wake states of neighbors are available.

3. We further develop a distributed algorithm utilizing
local sleep/wake states of neighbors which performs
better than some existing distributed algorithms such
as ExOR, etc.

This paper is organized as follows. Section 2 provides
the description of the network model with assumptions and
definitions. Based on the specified model, we consider the
centralized stochastic routing problem with the information
of duty-cycles of nodes in the network in Section 4. In Sec-
tion 5, we present a centralized stochastic routing algorithm
without such duty-cycling information of the entire network
to complement weak scalability of the optimal algorithm
given in the previous section. We develop a distributed algo-
rithm to compute a policy that resembles the near-optimal
centralized algorithm shown in Section 6. The performance
of algorithms is extensively evaluated in Section 7 by self-
comparison and cross-comparison. Finally, we conclude in
Section 8.

2. DESCRIPTION OF THE MODEL AND

PROBLEM FORMULATION
We consider a static wireless ad-hoc or sensor network

where nodes are duty-cycled independently from one an-
other. Our model, referred as Model (M), is defined to
capture some substantial features at the network layer with
physical and link layer features included but simplified. The
lossy wireless medium is reflected in pair-wise time-invariant
transmission success probabilities between two nodes.

2.1 A High Level Description
At a high level, the central problem is to find a good (in

terms of delay or certain cost measure) route from a source
node to a destination node. In a non-duty cycled static net-
work, a typical method is to associate a measure/cost with
each link in the network and perform shortest path routing.
For instance, if such a cost is unit, then one ends up with a
least-hop-count route; if such a cost indicates the expected
number of transmissions over a link (by using a predefined
transmission success probability), then the resulting route
has the least number of expected transmissions. Similar
measures can also be defined to take into account factors
such as energy consumption.

In our scenario, these nodes are not always available due to
duty-cycling, and not available all at the same time. Since
a node can potentially obtain the information on whether
each of its neighbors are available when a packet needs to be
transmitted, a routing decision (i.e., the selection of the next
hop relay node) must be made as to whether one should se-
lect the least-cost node among all wake nodes, or to wait for
a particular node to wake up who has the least-cost among
all nodes (wake and asleep), or some variations of these. In
this context, it is not immediately clear what principles a
good routing algorithm should employ.

As a thought process, we will start by considering a cen-
tralized system, where at each instance of time (we assume
discrete time) some central agent has the full knowledge of
which subset of nodes have already received the message,
and which subset of nodes are currently awake. The central
agent cannot foresee future sleep state of the nodes, but only
the current. The routing decision at each time step then re-
duces to the question of among this set of nodes that have
already received the message, which one should be selected
as the relay node to retransmit the message, and whether
we should simply do nothing, wait for one time step, and re-
consider the decision at the next time. This in essence is the
routing decision problem we seek to address in this paper.

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

For this centralized version of the problem we will derive
the structural properties of the optimal routing policy and
construct an algorithm that computes such a policy. To re-
duce the computational complexity we will further propose
a sub-optimal routing algorithm and is considerably simpler.

We then consider a distributed implementation of the
above sub-optimal algorithm, whereby each node only has
access to local information: who among its neighbors have
received the message, and who among its neighbors are cur-
rently awake or asleep. A node then must decide, based
on such local information whether it should serve as a relay
for the message it receives. Such a distributed implementa-
tion is accomplished via packet exchange and certain local
information update procedure.

Below we state formally the assumptions and notations
used in this paper.

2.2 Assumptions

• We will focus on the routing of a single message origi-
nated from somewhere in the network and has a single
destination node. Under the stochastic routing frame-
work, since the routing is sample-path dependent, each
message may follow a different path. Thus by this as-
sumption we are ignoring possible interaction or inter-
ference introduced by simultaneous message transmis-
sions or subsequent messages in the same stream.

• We consider a discrete time system, where in each time
step (or time slot) a node is active/awake with a time-
invariant probability, independent of other time slots
and other nodes. For simplicity in our derivation we
will assume that this active probability is the same for
all node, though they need not be. The complement of
active probability is also called the sleep probability.

• We further assume in addition to the previous as-
sumption, that any node that has successfully received
the message will remain awake. This assumption is
adopted for simplicity in presentation in our analysis.
In practice, we only need to ensure that the node who
is designated as the relay should stay awake till the
next hop/relay receives the message successfully.

• A transmission between a sender and a receiver node
has a time-invariant probability of being successful, in-
dependent of other transmission attempts. If this suc-
cess probability is nonzero, then the latter is called a
“neighbor” of the former. This probability does not
have to be symmetric between two nodes. Any as-
sumption on this is somewhat irrelevant in our con-
text since our routing algorithm naturally precludes
routing loops from occurring and given a source node
and given a realization of the transmission outcomes
and sleep schedules we will utilize no more than one
direction on any link.

• A transmission and its ACK from successful receivers
occur within a single time slot.

• Our routing problem is classified as anycast. There
is a set of nodes to one of which a message needs to
reach. This reflects the situation where a message from
a sensor needs to be delivered to one of several gateway
nodes.

2.3 Notations
A summary list of notations used in Model (M) in this

paper is as follows.
N is the number of nodes in the network.
Ω = {1, · · · , N} is the set of all nodes. So, |Ω| = N .
I is a nonexistent node which represents the idle action.
qij is the transmission success probability from node i to

node j, given that both nodes are awake. As stated earlier,
j is called a neighbor of i if qij > 0.

p is the active probability for all nodes.
(W, A) refers to a state of the system, where W ⊆ Ω

and A ∈ {0, 1}N . W is defined as the set of nodes that
have received the message. A is defined as the sequence of
sleep(0)/active(1) status of all nodes. In particular, node i is
awake if it has received a message as stated in assumptions:
Given A = {a1, a2, · · · , aN}, ai = 1 for all i ∈ W .

F (W) denotes a feasible set of all possible sleep/active
states A induced by W so that A is consistent with W .
More specifically, given W , there are a total of 2N−|W | sets
of A’s in F (W) where ai = 1 for all i ∈ W and ai ∈ {0, 1}
for all i ∈ Ω − W .

F (W |W ′, A′) for W ⊂ W ′, A′ ∈ F (W ′) denotes a sub-
set of sleep/active states A ∈ F (W), such that that A is
identical to A′ except that ai ∈ {0, 1} for all i ∈ W ′ − W .

F (W |W ′, A′) for W ⊃ W ′, A′ ∈ F (W ′) denotes a subset
of sleep/active states A ∈ F (W), such that that A is iden-
tical to A′ except that ai = 1 for all i ∈ W − W ′. We see
that there is only one such A in this set.

T : 2Ω → 2N is defined as a mapping from W to a vector
T (W) = {w1, w2, · · · , wN}, W ⊆ Ω where each element
wi = 1 if node i has received the message, and 0 otherwise.

P i(W ′, A′|W, A) indicates the probability of state
(W ′, A′) reached from state (W, A) by choosing i for trans-
mission, i ∈ W . Let T (W) = {w1, w2, · · · , wN} and A =
{a1, a2, · · · , aN} ∈ F (W). Also, T (W ′) = {w′

1, w
′
2, · · · , w′

N}
and A′ = {a′

1, a
′
2, · · · , a′

N} ∈ F (W ′). If a node i is chosen
for transmission, the transition probability is given by

P i(W ′, A′|W, A)

=





∏

∀j:wj=0,aj=1,w′

j
=1

qij



 ·





∏

∀j:wj=0,aj=1,w′

j
=0

1 − qij





·





∏

∀j:aj=0,w′

j
=1

0



 · pIa′−Iw′ (1 − p)N−Ia′ , for ∀i ∈ W,

where Iw′ is the number of 1’s in T (W ′), and Ia′ is the
number of 1’s in A′. If the idle node I is chosen,

P I(W ′, A′|W, A) =

{

pIa′−Iw′ (1 − p)N−Ia′ , if W ′ = W
0, otherwise.

R : 2Ω → R is the reward functions. Specially, we denote
Ri = R({i}).

π is a Markov policy such that π depends only on the
current state (W, A). We write π(W, A) = i to indicate
that policy π transmits at node i when in state (W, A), i ∈
W . We write π(W, A) = I to indicate policy π choose the
idle/wait action. We write π(W, A) = r to indicate policy π
retires and receives reward R(W) = r when in state (W, A).

V π(W, A) is the expected reward when starting in state
(W, A) under policy π.

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

2.4 Problem Formulation

Problem 1. We consider the transmission of a packet in
a low duty-cycled wireless network of N nodes, where each
node is active with probability p, described by Model (M).
At each time instant the central controller chooses among
three actions: (1) select a node among nodes that have the
packet for the next transmission; (2) wait for the next time
step; and (3) terminate the routing process. It acts at the
beginning of each time slot with the knowledge of the set
of nodes which received the message and the set of current
active nodes in the network. The transmission from a node
i will cost ci > 0 and is the local broadcast to its active
neighbors. If i = I, ci = α ≥ 0, denoting the penalty on
idle waiting. This transmission is successfully received by a
neighbor j with a time-invariant probability pij given node
j is active during that time slot. Each transmission event
is assumed to be independent of another. The objective is
to choose the right action at each time step and the right
time to terminate the process so as to maximize the total
expected reward less cost:

E{R(Sf) −

τ−1
∑

t=1

ci(t)},

where τ is the stopping time when the transmission process
is terminated, Sf is the state at τ , and i(t) is the node
(including idle action) chosen by the policy at time t.

3. PRELIMINARIES
Below we present a number of definitions that will be help-

ful in exploring important properties of an optimal Markov
policy on Model (M). When nodes are always awake (i.e.,
p = 1), which is a special case of Problem 1, the authors
of [8] have shown that an optimal Markov policy is both
a priority policy and a index policy. The first few defini-
tions below are reproduced from [8] for this thesis to be
self-contained. These explain what a priority or an index
policy is. We then present an example to illustrate they are
not able to capture the extra dynamics introduced by node
sleeping. This motivates us to define a generalized version
of priority policies and index policies.

Definition 1. [8] A Markov policy π is a priority policy
if there is a strict priority ordering of the nodes s.t. ∀i ∈ Ω
we have π(S ∪ {i}) = π({i}) = i or ri, ∀S ⊆ Ωi, where Ωi is
the set of nodes of priority lower than i.

Definition 2. [8] A function f : 2Ω → R is an index
function on Ω if f satisfies

f(S) = max
i∈S

f({i}), ∀S ⊆ Ω.

Definition 3. [8] A priority policy π is called an index
policy if V π(·) is an index function on Ω.

In the following, we use a simple example to show that the
above definitions cannot be directly applied to Model (M);
in other words, an optimal policy may not be found in the
class of priority policies for Problem 1.

Example 1. A Case where an Optimal Markov Policy can-
not be a Priority Policy

n1

n2

n4

n5

n3

0.72

0.6

0.99

0.9

0.8

W

Figure 1: System for an Example 1.

We consider a system depicted in Figure 1, where Ω =
{1, 2, 3, 4, 5} and p = 0.1. Assume that Ri = 0 except
node 5 which has a reward R5 > 0. For simplicity we
also assume that ci = 1 for i ∈ Ω ∪ {I}. In this ex-
ample, an active node i is denoted by ia and a sleeping
node i by is. As mentioned in the previous subsection,
nodes in W are assumed to be awake. Therefore, only
nodes to be concerned for on/off states are the nodes in
Ω − W , i.e., A ∈ F (W). Let W = {1, 2, 4} as shown
in the Figure 1. Let π∗ to be an optimal Markov pol-
icy. We have π∗(W, {3a, 5a}) = 4, π∗(W, {3a, 5s}) = 1,
π∗(W, {3s, 5a}) = 4, and π∗(W, {3s, 5s}) = I based on the
calculation by applying stochastic dynamic programming,
which can be found in [7]. Let us focus on A = {3a, 5s}.
In this case, node 1 seems to be the highest priority node
among nodes 1, 2, and 4. Now, suppose W = {1, 2}. For
the sleep/wake states in F (W |{1, 2, 4}, {3a, 5s}), we obtain
π∗(W, {3a, 4a, 5s}) = 2 and π∗(W, {3a, 4s, 5s}) = 1 by the
calculation similarly done as before. When node 4 is in sleep,
node 1 is the highest priority node as expected. On the other
hand, when node 4 is active, node 2 is the highest priority
node among node 1 and node 2. In other words, node 1 is
not always the highest priority node among nodes 1, 2, and 4
but nodes’ priorities may change with sleep states of nodes.

Remark 1 As can be seen from the above example, remov-
ing a node like 4 from the set W = {1, 2, 4} has a significant
impact on the resulting optimal policy, even though it is not
the highest priority node given A = {3a, 5s}. This is be-
cause node 4 is the highest priority node in W given other
sleep/wake states such as {3a, 5a} and {3s, 5a}. To sum-
marize, given W , if a node i is the highest priority node
in W for some feasible sleep/wake state, then the priority
ordering in W − {i} are not always preserved under other
sleep/wake states. Thus if we remove node i we need to
recalculate the priority ordering of nodes in W − {i}. By
contrast, in the case when p = 1, this priority ordering is
preserved no matter which node we remove from the set W .
This is the primary difference between Problem 1 and that
considered in [8] both from a conceptual and a computational
point of view.

Motivated by the above example, it is necessary to gener-
alize the preceding definitions in the context of our problem.

Definition 4. Consider a Markov policy π such that
π(W, Ai) = ni ∈ W ∪ {I}, ∀i ∈ {1, · · · , m} for W ⊆ Ω

and ∀Ai ∈ F (W) where m = 2N−|W |. This policy is called
a Generalized(G)-priority policy if the following condition
holds: Define NW =

⋃m

i=1 ni − {I} and for ∀S ⊆ W − NW ,

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

we have

π(W, Ai) = π(S ∪ NW , A) = ni,

∀A ∈ F (S ∪ NW |W, Ai), ∀i ∈ {1, · · · , m},

where the condition on A is simply to ensure that the sleep
state A is consistent with state Ai (it is identical to Ai except
for nodes in W − S −NW what are unspecified). What this
definition says is that a policy is a G-priority policy if there
exists a set NW of priority nodes within W whose priorities
are strictly higher than the rest regardless of the sleep state,
but whose priority ordering among themselves can only be
determined for a specific sleep state. This set consists of
nodes that would have been selected in at least one sleep
state.

Definition 5. A function f : 2Ω × 2N → R is an
Generalized(G)-index function on 2Ω if f satisfies

f(W, A) = max
W̃⊆W,Ã∈F (W̃ |W,A)

f(W̃ , Ã), ∀W ⊆ Ω, ∀A ∈ F (W).

Definition 6. A priority policy π is called an
Generalized(G)-index policy if V π(·) is an G-index
function on Ω.

3.1 Special Cases of Problem 1
There are two special case interpretations of Problem 1

depending on what we use as costs.

3.1.1 The case of cI = 0

If the idle cost is zero, there is no penalty on waiting.
In this case, there is no loss of optimality to always wait
till all nodes are awake (a positive probability event) and
then make a decision on who is to transmit. Given that we
only consider the problem in this particular sleep state (all
awake), the problem become identical to the one studied and
solved in [8], and the algorithm developed there is readily
applicable.

3.1.2 The case of ci = cI = c

If all costs are the same, the problem can be regarded as
finding a policy which minimizes delay. Assuming the trans-
mission of a packet consumes a certain amount of time and
so does waiting, each cost can be translated into a time unit.
Therefore, the problem is to find a policy that minimizes the
sum of the time slots taken.

4. ANALYSIS OF PROBLEM 1
In this section, we analyze Problem 1 and derive structural

properties of an optimal policy π∗. We will take a central-
ized point of view and assume that at each time instant,
a decision-maker has complete information on the time-
invariant transition probabilities and the current sleep/wake
state. We will then use these properties to construct opti-
mal and sub-optimal routing policies. In a later section we
will discuss distributed implementations of these.

Our system of Problem 1 can be modeled by a two-
dimensional finite state Markov chain. That is, each de-
cision is made based on current state (W, A) where state
space is finite. Hence, we limit our attention to Markov
policies. One may use stochastic dynamic programming to
find an optimal Markov policy. However, its computational
complexity is high. For instance, suppose that the num-
ber of nodes in the network is N and |W | = n. Given W ,

there are 2N−n A’s in F (W) and n +1 actions, one for each
node in W plus I. For each pair (W, Ai), Ai ∈ F (W), its
optimal value function requires the optimal value functions
for other sleep/wake states (W, Aj), ∀Aj ∈ F (W). All these
optimal value functions are solved simultaneously by set-
ting the action for each (W, Aj). Thus, the number of such

combinations is (n + 1)2
(N−n)

for given W . And there are
N !

n!(N−n)!
W ’s for |W | = n. Therefore, the total number of

calculations is

N
∑

n=1

N !

n!(N − n)!
(n + 1)2

(N−n)

. (1)

As N grows, the complexity grows rapidly. For this rea-
son, instead of applying stochastic dynamic programming
directly, we will investigate the structural properties of an
optimal Markov policy, which are then used to construct
algorithms with lower complexity.

We next show that there exists an optimal G-index policy
for Problem 1 in Theorem 1. In a nutshell, the proof of
Theorem 1 is to show that an optimal Markov policy with
certain properties is a G-priority policy, which is in turn a G-
index policy by proving that the expected reward function
is a G-index function. We then propose an algorithm to
find an optimal G-index policy and discuss its computational
complexity. It should be noted that this method follows
closely the framework developed in [8] although there are
technical differences due to the introduction of sleep states.

The proof of Theorem 1 utilizes some useful lemmas pre-
sented in the following. Lemma 1 below is essentially the
same as given in [8], only adapted to our notation. The
proofs for the next four lemmas are omitted due to the space
limit, which can be found in [7]. The following lemma is to
show the properties of an optimal Markov policy that if all
supersets that can be reached from a state have optimal
expected reward values and the actions at the state for all
sleep states are optimal, then the expected reward value at
the state is optimal.

Lemma 1 Let π∗ be an optimal Markov policy for Problem
1. Suppose we are given W1 and A1 ∈ F (W1), and let π be
a Markov policy with the following properties:

V π(W, A) = V π∗

(W, A), ∀W ⊃ W1, ∀A ∈ F (W),

π(W1, A1) = π∗(W1, A1), ∀A1 ∈ F (W1).

Then

V π(W1, A1) = V π∗

(W1, A1).

In the following lemma, we show the monotonicity of an
optimal Markov policy.

Lemma 2 In Problem 1, let π∗ be an optimal Markov pol-
icy. Let W1, W2 ⊆ Ω and W2 ⊆ W1. Then, for A1 ∈ F (W1),

V π∗

(W2, A2) ≤ V π∗

(W1, A1) where A2 ∈ F (W2|W1, A1).

In the next lemma, we show the properties of an optimal
Markov policy, specifically the G-priority structure.

Lemma 3 Let π∗ be an optimal Markov policy for Prob-
lem 1. Then, there exists a Markov policy π which has the
following properties.

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

1. For all W ⊆ Ω where |W | ≥ 2 and all possible Ai ∈

F (W) = {A1, · · · , Am}, m = 2N−|W |,

π(W, Ai) = ni ∈ W ∪ {I} ⇒ π(W − {j}, A) = ni,

∀j ∈ W − ∪m
i=1ni, ∀A ∈ F (W − {j}|W, Ai),

π(W, Ai) = rni
, ni 6= I ⇒ π(W − {j}, A) = rni

,

∀j ∈ W − ∪m
i=1ni, ∀A ∈ F (W − {j}|W, Ai).

2. For all W ⊆ Ω where |W | ≥ 2 and all possible Ai ∈
F (W), and π(W, Ai) = ni ∈ W ∪ {I} or rni

, ni 6= I
for i ∈ {1, · · · , m},

V π(W − {j}, A) = V π(W, Ai)

= V π∗

(W, Ai) = V π∗

(W − {j}, A),

∀j ∈ W − ∪m
i=1ni, ∀A ∈ F (W − {j}|W, Ai).

3. π is an optimal Markov policy.

In the following lemma, we show that an optimal markov
policy has the expected reward that is a G-index function.

Lemma 4 For any optimal Markov policy π∗, V π∗

(·) is a
G-index function on Ω ∪ {I}.

Theorem 1 There is an optimal Markov policy π∗ for Prob-
lem 1 which is a G-index policy.

Proof. By Lemma 3, there exists a Markov policy π∗

which is an optimal Markov policy. V π∗

(·) is a G-index func-
tion by Lemma 4. This says that the optimal decision on the
resulting set after removing some nodes that are not in

⋃

i ni

from W remains the same. Thus the conditions in Definition
4 are satisfied. Thus π∗ is a G-priority policy. Since π∗ is a
G-priority policy and its V π∗

(·) is a G-index function, π∗ is
a G-index policy according to Definition 6.

5. OPTIMAL AND SUB-OPTIMAL ROUT-

ING ALGORITHMS

5.1 An Optimal Centralized Algorithm for
Problem 1

We present an algorithm to compute the optimal G-index
policy for Problem 1. Compared to the brute-forth dynamic
programming, our algorithm utilizes the properties of G-
index policy stated in Lemma 3 to reduce the number of
computations. Let node d be the destination. The procedure
starts with W = Ω and A = {1, · · · , 1}. Its optimal action
and reward value are straight-forward, which are

V (Ω, A) = Rd and π(Ω, A) = rd.

From the properties 1 and 2 in Lemma 3, we know

V (Ω − {j}, A) = Rd and π(Ω − {j}, A) = d,

for ∀A ∈ F (Ω−{j}) if j 6= d. Thus, we only need to calculate
V (Ω − {d}, A) for ∀A ∈ F (Ω − {d}).

By solving the associated set of linear equations, we obtain
π(Ω−{d}, A) for ∀A ∈ F (Ω−{d}). Suppose π(Ω−{d}, Ai) =
ni for each i s.t. Ai ∈ F (Ω−{d}). Let us denote by D(Ω−
{d}) = ∪i{ni} the set of highest priority nodes in W . Again,
by the properties Lemma 3, we have

π(S ∪ D(Ω − {d}), A) = ni,

∀S ⊂ Ω − {d}, A ∈ F (S ∪ D(Ω − {d})|Ω − {d}, Ai).

Queue M

W

�

Mb ∪ {ik}

Mb ∪ {i1}
k new entries

remove
MbΩ / Mb

Queue M

F(W)

A1

A|F(W)|

�

Optimal decision for e

ach Ai and generate

NW ={i1, � , ik}

Figure 2: The diagram of Algorithm 1.

Therefore, the reward functions that need to be calculated
are V (Ω−{d}− {ni}, A), for ∀A ∈ F (Ω−{d}− {ni}). The
subsequent steps are done similarly as above.

We now formally describe the above procedure in Algo-
rithm 1. Figure 2 illustrates how Algorithm 1 works. Note
that this algorithm is presented for a single destination, but
can be easily extended to the case of multiple destinations.

Algorithm 1. Define sets W , F (W), NW and a queue M ,
as follows.

Each entry in queue M contains the set of nodes S ∈ Ω
which have not received the packet. Specially, denote by
Mb the head of line of M . W is the complement of Mb with
respect to Ω, which is W = Ω−Mb meaning the set of nodes
which have received packet. F (W) is the set of all feasible
active(1)/sleep(0) states of the nodes in Mb and all ones for
the nodes in W . That is, F (W) = {A1, A2, ..., Ak} where

k = 2|Mb|. NW is the set of highest priority nodes in W for
every Ai ∈ F (W).

Since the case where W = Ω is trivial, we start with W =
Ω−{d}. Initially, the queue M = {Mb} = {{d}} contains a
destination d; the action taken by an optimal G-index policy
π on the destination d is to retire and receive Rd regardless
of sleep states. F (W) contains two sets which include ones
for all nodes except for d which is zero in one set and one in
the other. NW is initially empty.

The algorithm proceeds as follows.

1. For each i ∈ W and each Aj ∈ F (W), let πj
i be an

G-index policy with the same priority list as π for the
nodes in Mb, with i as the next highest priority node
after Mb, and with the priority of the nodes, W - {i}

arbitrary, but lower than i. Compute V
π

j
i

i (W, Aj) for
all j, 1 ≤ j ≤ k from

V
π

j
i

i (W, Aj) = max{−ci+
∑

W ′⊇W

∑

A′∈F (W ′)

P i(W ′, A′|W, Aj)V
π

j
i

π
j
i
(W ′,A′)

(W ′, A′), Ri}.

2. For an idle node I to choose, let πI be an index policy
which is similarly defined as in step 1 except no actual

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

transmission to take place. Thus,

V
π

j
I

i (W, Aj) = max{−α+
∑

A′∈F (W ′)

P I(W, A′|W, Aj)V
π

j
I

π
j
I
(W,A′)

(W, A′), Ri}.

3. For each set of choices of a node ij ∈ W
⋃

{I} for Aj ,

1 ≤ j ≤ k, denoted by i = {i1, i2, ..., ik}, V
π

j
ij

ij
(W, Aj)

are solved by k linear equations. Choose i with the

highest values of V
π

j
ij

ij
(W, Aj)’s. Ties are broken with

more Is in i, otherwise arbitrarily.

4. NW includes all distinct y ∈ i, which is not equal to
I. For each node in NW , append it to the set Mb and
place the resulting set on top of the queue M .

5. Finally, remove Mb from the bottom of the queue M .
If M is empty, stop. Otherwise, go to step 1).

We now prove the optimality of Algorithm 1 for Problem
1 in the following theorem. But its proof is omitted due to
the space limit, which can also be found in [7].

Theorem 2 For Problem 1, Algorithm 1 produces an opti-
mal G-index policy.

It is worth noting that utilizing the structure of an opti-
mal Markov policy reduces the computational complexity re-
quired in finding an optimal policy for Problem 1. Whereas
the computational complexity of directly using stochastic
dynamic programming is given by Eqn. (1), the complexity
of Algorithm 1 is upper bounded by

N
∑

n=1

(n + 1)2
N−n

N
∏

m=n

min(2N−m, m).

In above equation,
∏N

m=n min(2N−m, m) ≤ N !/n!(N − n)!.
As you can see, its complexity is still too high.

5.2 A Sub-Optimal Algorithm
Algorithm 1 is not very scalable. In this section we mod-

ify Model (M) to maintain a simpler state of the system
(i.e., W only) rather than (W, A). Accordingly, a change
to the assumptions in Subsection 2.2 is made with respect
to the information available to the decision-maker. In this
section, it is thus assumed that the decision-maker has the
knowledge of the nodes which received a message and time-
invariant transition probabilities but no information on the
sleep/wake status of all nodes. In the following, we redefine
some notations for Model (M) while others remain the same
as given in 2.2.

The state of the system is determined by W only.
P i(W ′|W, A) indicates the probability of state W ′ reached

from state W by choosing i ∈ W for transmission, when
nodes’ sleep/wake status is A at the moment.

If a node i is chosen for transmission, the transition prob-

ability is defined as

P i(W ′|W, A)

=





∏

∀j:wj=0,aj=1,w′

j
=1

qij



 ·





∏

∀j:wj=0,aj=1,w′

j
=0

1 − qij





·





∏

∀j:aj=0,w′

j
=1

0



 , for ∀i ∈ W,

where qij is the probability that j receives the message from
i if both awake and Iw′ is the number of 1’s in T (W ′). Note
that the idle node I is never be chosen.

π is a Markov policy such that π depends only on the
current state W . We write π(W) = i to indicate policy π
transmits at node i when in state W , i ∈ W . We write
π(W) = r to indicate policy π retires and receives reward
R(W) when in state W . π(W) = ri is written as shorthand
that policy π retires and receives reward Ri(W), i ∈ W .

V π(W) is the expected reward when starting in state W
under policy π.

Given the modified model described above (i.e., without
nodes’ active/sleep information), the problem is reduced
to the one studied in [8] with a modification to the state
transition probability. This is because under the above
assumptions the decision-maker cannot differentiate trans-
mission failures caused by channel errors from the ones by
duty-cycling. Hence, sleep/wake activity of nodes is re-
flected in transition probability measured on average, i.e.,
P i(W ′|W) =

∑

A∈F (W) P i(W ′|W, A)P (A). Given such

transition probabilities, [8] presented an algorithm which
produces an optimal index policy under this model. In other
words, the algorithm, referred in this paper as Lott’s Algo-
rithm, is optimal in the case where the sleep/wake states
of nodes are unobservable. However, it is not hard to see
that Lott’s algorithm may not be optimal for Problem 1 be-
cause it uses less information. This was also demonstrated
in Example 1 which highlights the possibility that a priority
policy cannot be optimal for our problem (Note that Lott’s
algorithm produces an index policy which is a priority pol-
icy as well). Under Lott’s Algorithms, the expected reward
given W when i is transmitting is calculated by

V πi
i (W) = max{−ci+

∑

W ′⊇W





∑

A∈F (W)

P i(W ′|W, A)P (A)



 V πi

πi(W ′)(W
′)}, Ri}.

In the following, we present an algorithm that outperforms
Lott’s Algorithm for our problem while maintaining the sim-
ple state W (compared to (W, A)) as in Lott’s Algorithm.
Specifically, the decision maker has access to the sleep/wake
states A at the time of transmission, but its calculation of
the expected reward is based only on W . This significantly
simplifies the computation.

Algorithm 2. The sets W , F (W) = {A1, A2, ..., Ak}, NW ,
Mb and a queue M are defined the same as in Algorithm 1.

The algorithm consists of two parts: an off-line part and
an on-line part. The off-line part obtains the expected re-
ward values Ṽ (W) for all W ⊆ Ω by Lott’s Algorithm. The
on-line part of the algorithm proceeds as follows.

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

1. For each i ∈ W , let π be a policy with the same priority
list as the policy generated by Lott’s Algorithm for the
nodes of Mb with i as the next highest priority node
after Mb, W - {i} arbitrary, but lower than i. Compute
V π

i (W, Aj) for all j, 1 ≤ j ≤ k from

V π
i (W, Aj)

= max{−ci +
∑

W ′⊇W

P i(W ′|W, Aj)Ṽ (W ′), Ri}.

2. When selecting the idle action its value is computed
as:

V π
I (W, Aj) = max{−α + P I(W |W, Aj)Ṽ (W ′), RI}.

3. For Aj , choose a node ij ∈ W
⋃

{I} with highest values
of V π

i (W, Aj), 1 ≤ j ≤ k, denoted by i = {i1, i2, ..., ik}.
Ties are broken arbitrarily.

4. For each distinct y ∈ i, which is not equal to I, ap-
pend {y}

⋃

Mb at the top of M . Remove Mb from the
bottom of M .

5. If M is empty, stop. If not, go to step 1.

Unlike Lott’s Algorithm, Algorithm 2 takes an action de-
pendent on A. It recomputes the priorities of nodes in W
with consideration of sleep/wake status at the time of trans-
mission and chooses a node with highest modified priority
for the next transmission. This algorithm cannot perform
better than Algorithm 1 by definition. However, below we
show it does at least as good as Lott’s Algorithm in the fol-
lowing corollary. Its proof is omitted due to the space limit,
which can be found in [7].

Corollary 1 Algorithm 2 performs at least as good as Lott’s
Algorithm for Problem 1.

6. DISTRIBUTED IMPLEMENTATION
In this section, we develop a practical routing protocol

that implements Algorithm 2 in a distributed way. We will
adopt opportunistic-like forwarding used in [2] in our algo-
rithm where nodes are not assumed to have perfect informa-
tion on W and A. Specifically, nodes periodically exchange
a HELLO (also referred to as a beacon packet in the sequel)
packet when they are awake. From these exchanges nodes
infer about their neighbors’ sleep status when making a de-
cision on whether they should forward a received packet.

Our stochastic routing protocol, referred to as SRP be-
low, consists of two elements: priority update and forwarder
selection. In priority update a node has the option of recal-
culating the priorities of its neighbors. Recall that in Algo-
rithm 2 we first compute the nodes’ priorities off-line, ignor-
ing the current sleep state, using Lott’s algorithm. These
will be referred to as the off-line priorities. In SRP, nodes
can choose to update these off-line priorities and recalculate
as they obtain their neighbors’ sleep state via the HELLO
packets. In the forwarder selection step a node decides for
itself whether it should become a forward and retransmit
the packet it received based on current priorities. Below we
present these two elements in more detail.

6.1 Priority Update Procedure
In this subsection, we describe how the off-line priorities

are set and updated in SRP.
An active node i transmits a short HELLO packet peri-

odically1. This HELLO packet contains explicit information
on measured channel quality and implicitly conveys the fact
that the sender of the HELLO packet is active. In addi-
tion, it contains an updated value of node i’s priority V n(i),
calculated as follows.

Initially, V 0(i) for all i is obtained based on Lott’s Algo-
rithm off-line. Recall that the optimal policy obtained by
Lott’s Algorithm is an index policy (i.e., Ṽ π(W) = Ṽ π({i})
if i is the highest priority node under π in W). As part of

initialization, we assign V 0(i) = Ṽ π({i}) to node i at the

start of the algorithm; Ṽ π({i}) is also written as Ṽ π
i below

for simplicity.
This quantity is then updated before node i sends out

each beacon within a single wake period, and is reset to
V 0(i) = Ṽ π({i}) upon waking up from a sleep period.
Specifically, right before the n-th beacon transmission at
time ti

n, node i updates V n(i) and includes its value in the
beacon packet. Note that the transmission times of the bea-
con packets are unsynchronized among nodes in the network;
a node’s beacon transmission times are only relevant to its
latest wake-up time. Thus, ti

n for node i might be differ-
ent from tj

n for node j. Node i recalculates V n(i) based on
updates received from active neighbors during the time in-
terval [ti

n−1, t
i
n]. In addition, node i maintains a candidate

set denoted as Ci, which is a subset of neighbors of node i
that contains all possible forwarders, e.g., nodes whose cur-
rent priorities are higher than i’s. Initially, Ci contains the
nodes with higher initial priorities (determined by V 0(·))
than i’s. This set may change over time depending on the
priority updates.

The more precise details are given in the following de-
scription of the priority update procedure, followed by a
particular node i. We will assume that the off-line compu-
tation of {Ṽ π

i } by Lott’s Algorithm is completed, such that

each nodes has its own Ṽ π
i as well as Ṽ π

j for all nodes j
in its neighbor set Ni. This can be accomplished using the
Dijkstra-like distributed algorithm proposed in [8], in which
case this computation is off-line only in the sense that this
computation is done prior to the execution of SRP.

1. When node i goes to sleep, it turns off the radio and
does nothing.

2. Upon waking up, node i sets the beacon counter n to
zero, the beacon transmission time ti

0 to current time,
and immediately transmits a beacon packet containing
value V 0(i) which is set to Ṽ π

i . V 0
i (j) is initialized to

Ṽ π
j for all j ∈ Ni; the set Ai that contains all active

neighbors is initialized to be an empty set. The set Ci

of forwarder candidates contains the set of neighbors
j’s who have Ṽ π

j > Ṽ π
i .

3. Node i then increments n by one, and set the next

1HELLO packets are commonly used for neighborhood dis-
covery, a mechanism employed by virtually all routing proto-
cols to maintain fresh information on which nodes are one’s
neighbors. In this sense our protocol simply utilizes an ex-
isting mechanism and the exchanged state information gets
a free ride.

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

beacon transmission time ti
n to ti

n−1 + T , where T is
the (constant) beacon interval.

4. Between ti
n−1 and ti

n, if node i receives a beacon packet
from some neighbor j, it updates V n−1

i (j) with the new
value contained in the packet and records its update
time. Also, node j is added to Ai if it is not already
in the set.

5. Right before the n-th beacon transmission, at time ti
n,

node i recalculates the priorities as follows. If a beacon
packet from node j was last received at a time earlier
than ti

n − βT , where β a constant multiplier and βT
sets a threshold on how long a neighbor has not been
heard from before assuming it’s asleep, then node j is
assumed to be in sleep mode and is removed from Ai.
For those nodes in Ai, set V n

i (j) = V n−1
i (j). Other-

wise, set V n
i (j) = Ṽ π

j for a sleep node j. Include in Ci

all neighbors that qualify as a possible forwarder and
their current priorities. Denote by q∗ij|Ci,Ai

the proba-
bility that node j receives successfully while nodes with
higher priorities in Ai

⋂

Ci fail. Denote nodes with
higher priorities than node j by {Ai

⋂

Ci}
+
j ⊂ Ai

⋂

Ci.
Then,

q∗ij|Ci,Ai
= qij

∏

k∈{Ai

⋂

Ci}
+
j

(1 − qik).

Using this probability, node i updates V n(i) as follows.

V n(i) =
−ci +

∑

j∈Ai

⋂

Ci
q∗ij|Ci,Ai

V n
i (j)

1 −
∑

j∈Ai

⋂

Ci
(1 − qij)

.

Node i then transmits a beacon packet with V n(i) to
its neighbors.

6. While node i continues to be awake, repeat steps 3-5.

Remark 2 Relationship between T and an “on” duration:
We assume that an on duration is larger than a beacon in-
terval T . The length of an on duration obviously affects the
accuracy of recalculation of V n(i).

6.2 Forwarder Selection Procedure
When an upstream forwarder or relay, say node k, sends

out the message, it contains a list of potential forwarders Ck.
When node i receives the message within its n-th beacon
interval, [ti

n−1, t
i
n], it first checks to see if it is included in

the set Ck. If it is, it waits for a certain time period to
see if it hears any ACKs from higher priority nodes. This
time period is randomly chosen but inversely related to its
own priority position in Ci. If it does, then node i will not
transmit the message. If it fails to get any ACK from higher
priority nodes during the period, it transmits the message
containing the list of candidates as the next forwarders in the
message. The details of this forwarder selection procedure
are provided in the following. This algorithm is performed
whenever node i generates a message or receives it from one
of its neighbors.

1. Recall that V (i) and {Vi(j)}j∈Ni
are set to current

priority values calculated by the priority update pro-
cedure. The current active neighbors of node i, Ai, is
also given in priority update.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
m

=0.3

Distance b.w. nodes (in feet)

S
uc

ce
ss

fu
l r

ec
ep

tio
n

pr
ob

ab
ili

ty

Figure 3: Delivery success probability w.r.t. dis-
tance.

2. When node i receives a message, it obtains the list of
candidate forwarders. If it is on the list, go to step
3. Otherwise, it does not forward the message and
returns to the receiving mode.

3. If node i is listed as a potential forwarder, it calculates
a time period D based on its priority on the list. If
it is the k-th highest priority node on the list with a
total of M nodes on the list, it randomly selects D as
proportional to k − 1. Or an ACK is repeated like the
multiple duplicated ACKs as robust acknowledgement
introduced by [13].

4. If node i receives ACKs from higher priority nodes, it
transmits an ACK with the identity (ID) of the highest
priority node, and it does not forward the message.
During the period D, if node i does not receive an
ACK from any of the higher priority nodes, node i
decides to forward and transmits an ACK with its own
ID. The message contains the priority list of the next
forwarders according to V (i), {Vi(j)}j∈Ni

, Ai.

5. If node i decides not to forward under the policy π and
receives no ACK during M · Ts period, it goes to step
3, unless it was already repeated for R times. If so,
the message is removed.

6. If node i has transmitted the message, it waits ACKs
from neighbors for at most R · Ts. If it receives no
ACK, it retransmits the message.

7. PERFORMANCE EVALUATION
We have performed extensive MATLAB simulation to

evaluate the performance of the proposed algorithms. The
simulated system closely follows the set of assumptions listed
earlier in this paper. Here we reiterate some of the more
relevant ones. The lossy channel model we adopted in the
simulation is based on pair-wise distance. Specifically, we
assume that the success probability that a node receives a
message from any node is given by a linear function of the
distance between the nodes as shown in Figure 3. This dis-
tribution is based on the measurements on Rene Motes using
medium transmission power reported by Ganesan et al in [4].
In general, a node with non zero reception probability is re-
garded as a neighbor. However, we also eliminate nodes with
poor reception probability (those lower than a threshold pm)

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

from a neighboring set. Each sensor node is duty-cycled
with a sleep probability ps, and the discrete time unit is
chosen large enough for a transmission and ACKs to occur.
A source and a destination are randomly selected among
nodes in the network. A node that has received a message
does not go back to sleep again till the simulation ends. We
assume that the network is connected when all nodes are
awake, thus in time any destination may be reached from
any source.

Throughout this section, we consider three different sce-
narios depending on how the transmission cost and idle
penalty are determined.

1. Unit cost for both transmission and idle action : Under
this scenario the problem reduces to finding a delay-
optimal path from a source to a destination. Note that
the term delay used in this paper accounts for the
number of time units taken to reach the destination
considering hop counts and retransmissions caused by
channel errors. With this cost scenario we may also
find a path that minimizes energy consumption, given
that the normalized energy consumption in transmis-
sion is roughly the same as that in idle waiting.

2. Random cost for transmission and nonzero cost for
idle action: With this cost scenario the problem finds
a path that minimizes the total cost. Because both
transmissions and waiting are costly, there may be
a tradeoff between minimizing the number of trans-
missions and minimizing delay. The tradeoff between
transmission energy consumption and delay can be ad-
justed through setting the respective costs. The inten-
tion of using a random transmission cost is so that this
cost may represent the fact that some transmissions
are more costly if the transmitting node has relatively
low residual energy, or if all its neighbors are located
far away thereby physically requiring more energy.

3. Random cost for transmission and zero cost for idle ac-
tion: In this case the problem looks for a cost-efficient
path without having to worry about penalty on wait-
ing. Since there is no penalty on waiting, there is no
loss of optimality for a policy to simply wait till all
nodes are awake and then make the decision on who
is to relay. In this sense Lott’s Algorithm would be an
optimal algorithm for this case.

7.1 The effect of sleep information on opti-
mality

In the previous sections, it was shown that Algorithm 1,
referred to as the Optimal Algorithm in the remainder of
this section, generates an optimal G-index policy for Prob-
lem 1. Unfortunately, its computational complexity is ex-
tremely high and thus is not really usable even for a small
network. We did manage for sizes up to N = 6. The net-
work topology under consideration is a small network of 6
sensor nodes with average node degree 4.6 and pm = 0.3,
referred as Topology 1. Based on this topology, we first ex-
amine how much performance degradation will result if we
ignore sleep information. In Figure 4 we compare Algorithm
1, Lott’s Algorithm which requires no sleep information, and
Algorithm 2 (also referred to as the sub-optimal algorithm in
the remainder of this section) that utilizes the current sleep
state in making forwarding decisions. In the second cost sce-
nario, nodes’ costs are uniformly generated over [1, 7] while

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
20

30

40

50

60

70

80

90

100

110

Sleep probabilty p

A
ve

ra
ge

 c
os

t

Optimal algo.
Sub−optimal Algo.
Lott’s Algo.

Figure 4: Performance comparison of the centralized
algorithms on Topology 1 (Scenario 2).

idle cost is fixed at 4. As shown in Figure 4, it is remarkable
that the Sub-optimal Algorithm performs as good as the op-
timal one. This indicates that the Sub-optimal Algorithm
which is much simpler and requires only local sleep/wake in-
formation than the optimal algorithm works sufficiently well
in such a small network. In the third cost scenario, nodes’
transmission costs are generated by the same distribution as
above but no costs are imposed on the idle action.

7.2 The effect of node degree
If a node has more neighbors, given a sleep probability it

is more likely to have more wake neighbors. However, even
in a highly connected network, a best neighbor is not always
on. Thus, whether to transmit now or wait for better neigh-
bors to be on is not straight-forward depending on which
neighbors are awake at the time of transmission. We fo-
cus on the performance comparison of Lott’s Algorithm and
Sub-optimal Algorithm when increasing the average node
degree in the next set of results. We consider three network
topologies where N = 30 sensor nodes are deployed with dif-
ferent pm = {0, 0.3, 0.5}. pm determines the set of neighbors
and so does node degree. The first topology called Topology
2 has 12.33 average node degree when pm = 0. The sec-
ond, namely Topology 3, has less average node degree, 7.13,
by increasing pm into 0.3. The last one, Topology 4, has
4.13 average node degree as pm becomes 0.5, which is least
connected.

Using the third cost scenario, as the degree of nodes in-
creases, Figure 5 shows Sub-optimal Algorithm improves av-
erage costs significantly compared to Lott’s Algorithm, and
their gaps are even bigger as p increases. Notice that Sub-
optimal Algorithm is less effective on decision making proce-
dure unless duty-cycling is heavy. This is because there are
sufficient number of wake neighbors around, which makes
idle action unnecessary. In particular, idle cost is given
by nonzero value in order to improve delay as well as cost.
Though not shown in this paper due to space limit, simula-
tion results have shown that the delay performance of Sub-
optimal Algorithm is slightly better than one of Lott’s Algo-
rithm, which is desirable in many applications. In addition,
Lott’s Algorithm takes no idle action while Sub-optimal Al-
gorithm takes more idle actions as p increases or node degree
reduces. That is, Lott’s Algorithm took more hops to reach
the destination whereas Sub-optimal Algorithm waited for
better neighborhood to wake up but not too long while tak-

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

100

200

300

400

500

600

Sleep probabilty p

A
ve

ra
ge

 c
os

t

Lott’ Algo., Topology 2
Sub−optimal Algo., Topology 2
Lott’ Algo., Topology 3
Sub−optimal Algo., Topology 3
Lott’ Algo., Topology 4
Sub−optimal Algo., Topology 4

Figure 5: The effect of average degree of nodes on
the performance of Sub-optimal and Lott’s Algo-
rithms (scenario 3).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
20

40

60

80

100

120

140

160

180

200

220

Sleep probabilty

A
ve

ra
ge

 c
os

t

SRP
Opportunistic Rouring
ExOR:ETX−based
ExOR:EAX−based

Figure 6: Performance comparison between the de-
centralized algorithms and ExORs (scenario 3).

ing less hops instead.

7.3 The performance of the distributed proto-
col SRP

We evaluate the performance of SRP on Topology 3 with
30 nodes and pm = 0.3. As described in Section 6, the
distributed algorithm’s access to sleep state is limited to
a node’s 1-hop neighbors, which is obtained from the bea-
cons broadcasted by neighbors every T time unit. In our
simulation, T is set to 2. Each node’s sleep schedule is gen-
erated by a geometric distribution with mean length of on
periods of 4. Given the scenarios of cost distributions intro-
duced earlier, we examine the performance of SRP described
in Section 6 comparing with one of the most promising al-
gorithms in the literature. Specifically, we consider a few
variations of ExOR with different forwarder selection met-
rics: 1) the number of hops to best-path and loss rate [1],
2) ETX [2], and 3) EAX [13]. We provide cross-comparison
between our algorithm and three different versions of ExOR.
For the simulation, 300 packets are randomly generated in
the network during 3000 time units. Each node has a finite
queue so that the total delay takes into account queueing
delay in addition to hop counts and the number of waiting
decisions.

Figure 6 depicts the average cost of these algorithms when
nodes’ costs are distributed uniformly with a mean 4 and

idle cost is zero. ExOR, which is known to outperform tra-
ditional routing where packets are sent to the pre-computed
path with the smallest costs, performs the worst among
them in the figure. Other versions of ExOR using ETX
and EAX metrics performs better than the original ExOR.
On the other hand, the average cost of SRP is the minimum
with the largest delay. Overall, our algorithms outperform
ExORs in terms of average cost with reasonable delay per-
formance.

8. CONCLUSION
We studied a routing problem in wireless sensor networks

where sensors are randomly duty-cycled. We developed
an optimal stochastic routing framework in the presence of
duty-cycling as well as unreliable wireless channels. Using
this framework, we presented and analyzed an optimal cen-
tralized stochastic routing algorithm, and then simplified
the algorithm when only local sleep/wake states of neigh-
bors are available. We further developed a distributed al-
gorithm utilizing local sleep/wake states of neighbors which
performs better than some existing distributed algorithms
such as ExOR.

9. REFERENCES

[1] S. Biswas and R. Morris. Opportunistic routing in
multi-hop wireless networks. In Workshop on Hot
Topics in Networks (HotNets-II), Nov. 2003.

[2] S. Biswas and R. Morris. ExOR: Opportunistic
multi-hop routing for wireless networks. In Conference
of the Special Interest Group on Data Communication
(SIGCOMM), Aug. 2005.

[3] D. Ferrara, L. Galluccio, A. Leonardi, G. Morabito,
and S. Palazzo. Macro: An integrated mac/routing
protocol for geographic forwarding in wireless sensor
networks. In Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), Mar.
2005.

[4] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. Complex behavior at scale:
An experimental study of low-power wireless sensor
networks. Technical report ucla/csd-tr 02-0013, Feb.
2002.

[5] C. Intanagonwiwat, R. Govindan, D. Estrin,
J. Heidemann, and F. Silva. Directed diffusion for
wireless sensor networking. IEEE Transactions on
Networking, 11(1), 2003.

[6] D. B. Johnson and D. A. Maltz. Dynamic source
routing in ad hoc wireless networks. Mobile
computing, Kluwer Academic Publishers, 1996.

[7] D. Kim. Low Duty-Cycled Wireless Sensor Networks:
Connectivity and Opportunistic Routing. PhD thesis,
Univ. of Michigan, 2008.

[8] C. Lott and D. Teneketzis. Stochastic routing in
ad-hoc networks. IEEE Transactions on Automatic
Control, 51(1), 2006.

[9] T. Melodia, D. Pompili, and I. F. Akyildiz. Optimal
local topology knowledge for energy efficient
geographical routing in sensor networks. In Joint
Conference of the IEEE Computer and
Communications Societies (INFOCOM), Mar. 2004.

[10] S. Murthy and J. J. Garcia-Luna-Aceves. An efficient

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

routing protocol for wireless networks. ACM Mobile
Networks and Applications Journal, Oct. 1996.

[11] C. E. Perkins and P. Bhagwat. Highly dynamic
destination sequenced distance vector routing (dsdv)
for mobile cmputers. In Conference of the Special
Interest Group on Data Communication (SIGCOMM),
Oct. 1994.

[12] K. Seada, M. Zuniga, A. Helmy, and
B. Krishnamachari. Energy-efficient forwarding
strategies for geographic routing in lossy wireless
sensor networks. In ACM Conference on Embedded
Networked Sensor Systems (SenSys), Nov. 2004.

[13] Z. Zhong and S. Nelakuditi. On the efficacy of
opportunistic routing. In IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), June 2007.

[14] N. Zhou, H. Wu, and A. A. Abouzeid. Reactive
routing overhead in networks with unreliable nodes. In
ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCOM), Aug. 2003.

Digital Object Identifier: 10.4108/ICST.WICON2008.4919
http://dx.doi.org/10.4108/ICST.WICON2008.4919

