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ABSTRACT
Wirelessconnectivity for vehiclesis a fast-growing market,with a
plethoraof different networktechnologiesalreadyin use.Surveys
of the numbersof IEEE 802.11b/gaccesspointsin cities point to
hundredsto thousandsof networkswithin eachsquarekilometre,
with coverage areasthat arenot easilypredicted dueto the com-
plexities of the urbanenvironment.In orderto take advantageof
thediversityin wirelessnetworksavailable,weneed dataconcern-
ing theircoverage.Methodsof generatingsuchcoveragemapsthat
are accurate, space-efficient andeasyto queryarenot a well ad-
dressedarea. Inthis paper,we presentandevaluate,usinga large
corpusof real-world data,novel algorithms forprocessinglarge
quantitiesof signalstrengthvaluesinto coveragemapsthatsatisfy
suchrequirements.

Categoriesand SubjectDescriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless

GeneralTerms
Algorithms,Measurement

Keywords
Wireless,vehicles,coveragemaps

1. INTRODUCTION
ProvidingInternetaccessto vehicleson the move is a growing

market and areaof research[19]. There aremany applications,
from simple ones suchas web browsingand e-mail to more de-
mandingtasks suchasvoice-over-IPconversations. Inaddition,we
arelikely toseevehiclesbeing usedasmobilesensorplatformsthat
uploadtheir sensordatafor furtherprocessing[14], suchasin the
generation ofpollution mapsor for congestion-awaretraffic rout-
ing. Many applicationswill require aguaranteed minimum quality
of service(QoS),particularlytwo-way, real-time applications such
asvideo calling. Others, suchasthe background downloading of
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updatedcity mapswill bemoretolerant ofdisconnections,but will
require ashigha throughputaspossible.

Today, many different wirelessnetwork technologiesexist that
could be usedtogetherto providenear-ubiquitousconnectivity to
vehicles.For themajority (includingIEEE 802.11x,UMTS cellu-
lar, and WiMax), the throughputachievable is dependent onthe
signal strengthexperienced bythe mobile terminal. As a con-
sequence,the coverage areasof the highestthroughput networks
arebecomingever smaller (e.g.UMTS HSPAcell coverageis less
than that of GSM GPRS,whilst 802.11g hasa lower rangethan
802.11b). There is vast diversity in the networksavailable: the
CarTel project[3] recorded over 32,000 distinctWiFi networksin
Cambridge,USA, whilst otherwork found some cityAPs whose
coverageoverlapped withthat ofup to 85 others [1].

The main problem using multipleheterogeneouswirelessnet-
worksovertimeis selecting when,andto what network,to perform
a handover to. Handover schemesmay bereactive,wherethe tar-
get networkis selected oninstantaneousmeasures suchas signal
strength,or proactive,where extrinsic informationconcerningthe
networksis used. In particular,knowledgeof the coverage areasof
themany networksavailablecanenablemobileclientsto increase
their QoSsignificantly. In this work, we look at howto construct
suchcoveragemaps.

Coveragemapsenableclientsthatarelocation-awareto prepare
for a network handover beforethefirst beaconfor sucha network
is encountered,e.g.by beginningto decreasetheir TCPadvertised
windowsizetowardszero.Clientsare alsofreeto settheirstabilisa-
tion threshold tobe asinglebeacon,asthe coveragemapindicates
how long the network will be available (and henceif it is worth
connectingto). Finally, becausedevicesare awareof the sizesof
the regionsof radioshadow(i.e. how long a networkis not avail-
able for) they are ableto decidewhethera handover to another
overlapping networkshouldbe performed,or whetherthe disrup-
tion caused bythetemporaryradioshadowis lessthanthat which
wouldbe caused bythehandover.

We focuson the constrained problem domainof vehicles, rather
than on unconstrained pedestrian mobility. The rationalebehind
this choiceis that mostlong distanceor high speed mobilitytakes
placeon vehicles,and henceit is herethat optimising handovers
will be mostchallenging.The vast majorityof vehiclesmove on
well-definedroutes, suchastheroad network, railway lines,or air
corridors

2. RELATED W ORK
Variousauthorshave proposed proactive handover algorithms

thatassume coveragemapsare available. One approachcompiled
a databaseof signalstrengthsto predict handovers [24],whilst an-
otherused knowledgeof the motion of a vehicleto reserve band-
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width on networksthat wouldcomeinto range,implicitly assum-
ing suchcoveragewasknown [13]. Most recently, the Mobisteer
project[18] usedasteerable-beamantennato record, foreachroad
segment,thewirelessnetwork withthelowest packet droprate.On
subsequentjourneys, this network wasautomaticallyconnectedto
oncemore. The approach weproposeinvolvesmappingthe cov-
erageof all wirelessnetworks,andthenallowing a mobilenodeto
select whichto connectto, based onits current needs (e.g.highest
throughput,or fewest handovers), ratherthan choosing onlyone
networkasbeingthe “best”for eachroad.

A varietyof techniqueshavebeensuggestedfor generatingcov-
eragemapsthataremoredetailedthanthoseproduced bythewar-
driving community. In mostcases,the RSSand/orthroughputis
surveyedatanumberof locations,andthese arethen usedtopredict
the coverage at nearbylocationswhich werenotincludedin thesur-
vey. Kamakarisand Nickerson[10] exhibit human-readablecon-
tourmapsof auniversitycampusgenerated bylinearinterpolation.
However, they do not go onto evaluatethis method’saccuracy, or
whetherit wouldscaleto thousandsof input points.Otherwork on
contourmap generationandcontour simplification[15] hasbeen
carried out bysimulationratherthan measurement:a wirelessac-
cesspoint is consideredto have aboundary withinwhich it pro-
vides service,and outsidewhich it is unusable.Suchapproaches
neglectthefactthattheRSS valueis perturbed by noise,implicitly
assumingthatasinglemeasurementis representative.

Anotherapproach used gridsof cells,each withits own associ-
atedRSS value,ascoveragemaps.These cellscouldbeof fixed or
variablesize,andtheir valueswereupdated whenever a new read-
ing wasobtained.Radiopropagation path lossmodelswereusedto
estimatefrom areadingin one cellwhatthoseof its neighbourings
wouldbe[12]. However, these approachesassumethat wehave all
necessary geographicaltopologyinformationto provideto thepath
lossmodels;this isunlikely to bethe casein cities,wherewireless
propagationis complex.

Several projectshave collectedlargequantitiesof RSS orthrough-
put data.TheCarTel projectcarried outa large-scalesurvey of the
performanceof thewirelessaccesspoints(APs) foundin a city [3].
The aim wasto ascertainwhatconnection qualitysuch APscould
provide, ratherthan mapthem. Similarly, measurementscarried
out byMicrosoftResearchinvestigated how wellbeacons from APs
werereceived by vehicles,and detailed howthe locationsof areas
of good orbadcoveragewerefixed[16], but didnot set outto pro-
cesslarge amountsof raw input datainto coveragemapsthatcould
be easilyqueried.

Wirelesspositioningsystemsare anotherdomainfor whichlarge
quantitiesof RSS datais collected,RADAR [2] andIntel’s Place
Lab[11] being two wellknownexamples.Theprincipal difference
between ourwork andthat in wirelesspositioningsystemsis that
we seekto createhighly space-efficientrepresentationsof theRSS
datarecorded duringthe collection phase, ratherthanstore allof
thedatabaseon a user’sdevice. We alsoseekto make this space-
efficient representationin sucha way that it is usefulfor proactive
handover algorithms,i.e. to be ableto efficiently answerquestions
suchas“what is the coverage areaof networkx?”. Clearly, thedata
setsusedin PlaceLab (andsimilar systems)couldbeprocessedto
answer such queries:the crucial questionis how such processing
is done,and howefficient this is. Inthis paper,we aimto answer
thesequestions.

2.1 Contributions
In this paperwe focus solelyon the techniquesusedto pro-

cessthe raw RSS datainto coveragemaps,and do not gointo
detail about the mechanismsbehind the usesof coveragemaps.

Our contributionsare therefore: outliningthe needsandrequire-
mentsfor coveragemaps;adaptingexisting algorithms from other
fields to theproblem of smoothinglarge quantitiesof irregularly-
spaced,noisy receivedsignalstrength(RSS)datafor bothUMTS
and 802.11b/g; usingsyntheticdatato optimiseour proposedal-
gorithms;and,evaluatingthe algorithmsin termsof their accuracy
andcompactnessof result,usinga corpusof real-worlddatacol-
lected over3 years.

3. DATA COLLECTION
As part of the Sentient Vehiclesproject[5] at theUniversity of

CambridgeComputerLaboratory wehave collecteda largequan-
tity of sensordatafrom a vehiclewhich is driven by many mem-
bersof our research groupfor their day-to-dayactivities. Sensors
includevehicleparameters suchas speed,coolanttemperature,and
enginerevs, environmentalaspectssuchas humidity and carbon
dioxide concentration,andreceived signalstrength(RSS) fordif-
ferent wirelessnetworks.

We utilise an Orinoco PCMCIAIEEE 802.11b/gwirelesscard
in conjunction withthewireless-toolsutilities underLinux to scan
for wirelessnetworksasthevehicleis driven.Similarly, an Option
GlobeTrotter 3G PCMCIA cardconnectedto Vodafone’scellular
networkis regularlyprobedto ascertainUMTS signalstrength.We
deliberatelydo notattemptto recordthebasestation being used,as
cellularnetworksdo notallow clientsto choosewhichto use.Some
areaswill exist where a client obtains servicefrom different base
stationsat different times: wehavenotfoundthisto pose aproblem
in our work. Both cardsutilise externalantennas.RSSreadings
are obtained onaverage every 1.5seconds fromthe 802.11card
andevery 4seconds fromtheUMTS card. These areloggedfully
autonomouslywhilst the vehicle is driven. Location information
is obtainedfrom an onboard GPSreceiver (based onthe highly
accurateSiRFstar III chip)every twoseconds.This isthenlinearly
interpolatedin order to obtain theposition ofeach wirelessRSS
reading.

3.1 Hardware Specificity
Both theUMTS and 802.11b/gcardsgivehardware-specificRSS

measurements,i.e. thesewould be different for a different hard-
ware configuration.Previouswork by Haeberlenet al. has shown
that therelationshipbetweentheRSS values reported by different
802.11b/gcardsis linearand moreover is simpleto determine[9],
whilst the 3GPPTS 27.007standard providesa conversionfrom
unitlessUMTS RSSto valuesof signal powerin units of dBm.
RSSreadings from different HSDPA modems should thereforebe
approximatelyconsistent. Hence,in our scheme,all valuesin a
coveragemapthat wascollected withahardware configurationthat
wasdifferentto that withwhich themap wasbeing usedcouldbe
easilyadjusted withaone-timeoperation.

By collecting RSS data(as opposedto recordingthe instanta-
neousthroughputs),wedo not limit theutility of the coveragemaps
to a particularhardware configurationthat is capableof a particu-
lar throughputfor a given RSS value. Inaddition, a throughput
(ratherthanRSS)map wouldbespecificto aparticularprotocol(in
particularTCP orUDP), packet size,andforwarderrorcorrection
rate,and hencewould not be asgenerallyapplicable. Incontrast,
RSS datais only subjectto thephysicaleffectson theradiochan-
nel, suchasattenuationandinterference,which will bepresent no
matterwhich higher-layerprotocol utilisesthe channel.

3.2 Our Dataset
Over the courseof the last 3 yearswe have collectedin excess

of 820,000 UMTSand 9.5 millionIEEE802.11RSS datapointsin
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and aroundthe cityof Cambridge,UK, a subset ofwhich is shown
in Figure1. This hasallowed usto build up a comprehensive data
setthatcan beusedto examinehow wirelesscoveragevariesin a
real urbanenvironment overa long period oftime.
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−113

−93

−83

−73

(dBm)

Figure 1: Map of UMTS cellular RSS(darker implies higher
RSS) and basestation sites (greencircles) around the city of
Cambridge, UK.

4. SIGNAL STRENGTH VARIABILITY
Coveragemapsimplicitly assumethat RSSreadingsarestable

(or vary deterministically)over time. In orderto validatethis as-
sumption werecordedlarge numbersof RSS valuesin two loca-
tions,collecting 1.34 million UMTSRSSreadingsover2.5 months
(continuouslysamplingevery 4seconds),and 1.27 million 802.11b/g
RSSreadingsover7 months (notcontinuous,but including dayand
night periods).We found nocorrelation withtime of day, or tem-
perature,absolutehumidity, pressure and windspeed,as recorded
by our weather station.Other researchsuchas Intel’s PlaceLab
project hasalsoreachedsimilar conclusionsconcerningthestabil-
ity of RSSreadings fora given location for IEEE 802.11b/g[4,
16].

Our resultsshowedthat bothUMTS and 802.11b/gRSS values
for a given locationcan be approximated by normal distributions,
having standard deviations of 3 dBm and 3.5 dBmrespectively
(hence90%of valueswill bewithin 6 dBmand 7 dBm ofthemean,
respectively). Therefore,we make the assumptionthat at a given
location,RSS hasasingle“true” value,whichis perturbed by noise
taken from a distribution with zero meanand withthe relevant of
the abovestandard deviations.

It is importantto notethatRSScan be affected byenvironmental
factors suchascell breathing. Inan urbanenvironment,moving
objectssuchasvehicleswill alsocauseRSSto vary [8]. We hy-
pothesisethat thevariationin theRSS valueswe have recordedis
dueto these environmentaleffects.

4.1 Relationshipof Thr oughput to RSS
Finally, anotherassumptionthat must bevalidatedis therelation-

shipbetweenthroughputandRSS.This link hasbeenexperimen-
tally shownfor IEEE 802.11b/g[17]. For cellular networksthis
is not generallyevident with robust modulationschemes,asused
for GSM/GPRS.However, third generationcellular networksus-
ing HSPA orEDGE do showsuch dependence[6], and wehave
carried outqualitative experimentsto ascertain the approximate
TCPthroughputsachievableona live cellularnetwork.Our results
aregiven in Table1. The relationshipis relatively intuitive, since
higherordermodulationandcodingschemes (whichallow higher

throughputs)can onlybeused whenthesignalto noiseratio is high
enough.Weomit asimilar tablefor 802.11gfor spacereasons.

UMTS RSS(dBm) TCP Thr oughput (Mbit/s)
-63 1.28
-75 1.20
-93 1.08
-111 0.32

<-111 0

Table1: Measured valuesof UMTS RSS& TCP thr oughput.

5. COVERAGE MAPPING ALGORITHMS
Theinput valuesto a coveragemappingalgorithmarein general

not equally spaced,and are subjectto random noise.Therefore,
an algorithmshouldcopewith such data,whilst producing maps
thatallow RSSto bepredicted withlow error,andthatarespace-
efficient.

Linked to thesecondrequirementis the idea that the raw sen-
sordatafrom vehicleswill beuploadedto a centralauthority, and
combined bythat entity using the algorithmswe describein this
paper.Theresultingcoveragemapswould then bedistributed back
to thevehicles.Hence,vehiclesarenot requiredto havesignificant
computingresources.

In contrastto otherwork oncoveragemapping,we focus specif-
ically on mappingRSS onroads.Thisconstraintallowsusto space
efficiently representthesemapsby representingthe coverage along
eachroadasa line, ratherthana surface. By reducingthe prob-
lem to oneof line simplification we can produce coverageextents.
These consist ofa tuple(vstart, vend, lstart, lend, t) which consists
of a start value(RSS),anend value,a startco-ordinate,anendco-
ordinate(measuredasthe proportionalongthe total lengthof the
road),andthetimestamp ofthemostrecent datapoint usedto cre-
ate the extent. An extent signifiesthat betweenthe startandend
pointsthe valueof the sensorconcerned(RSSin the caseof cov-
eragemaps)variesin a linear fashionfrom the start value to the
end value. Hence,the output ofany coveragemappingalgorithm
shouldbe asmallnumberof contiguousextentsspanningtheroad’s
length.

In order to satisfy the above criteria,we have adaptedfour al-
gorithmswhich have not beentraditionallyappliedto thisproblem
domain. Eachalgorithmis briefly describedin turn, followed by
our adaptationsto it. We alsocompareour resultswith an estab-
lishedalgorithmin thefield.

5.1 NearestNeighbour Interpolation
Thesimplest(but most processingintensive) techniquefor con-

structingcoveragemapsis to pick samplepoints along the road
in question,estimatethe valueof the quantityunderinvestigation
at the samplepoint, andthen generateextentsfrom thosesample
points. We carrythis out using nearest neighbourinverse-distance
weightedinterpolation,asproposed by Shepard[23]. This is one
of thefew interpolationalgorithmsthatis ableto utilise irregularly
spacedinput data,and doesnot snapit to a regulargrid prior to in-
terpolation.Thetechniquehasbeen used beforefor coveragemap-
ping [10], and hencewe includeit herefor comparison purposes.
Ouradaptationsareonly tomake it suitablefor generatingextents.

5.1.1 Original Algorithm
Firstly, we pick samplepointsseparated bya particularinterval,

λ, alongtheroad’slength, suchasevery 100 metres.Regardlessof
thelengthof theroadasamplepoint is pickedat l = 0 andanother

Digital Object Identifier: 10.4108/ICST.WICON2008.4901 
http://dx.doi.org/10.4108/ICST.WICON2008.4901 



at l = roadLength. For eachsamplepoint wequerythedatabase
to find theset ofdatapoints,S thatarewithin a certainmaximum
distanceα (currentlyapproximately10 metres),above which they
are consideredtoo farawayto be correlated withthissamplepoint.
Thevalue,vj , of thejth samplepoint (ordered bylengthalongthe
road)is thencalculatedas:

vj =

8

<

:

P|S|
i=0

si

d2
i

if di > ε
P|E|

i=0
si

|E|
E = {si ∈ S|di ≤ ε} and |E| 6= 0

wheredi is thedistancefrom datapoint i to thesamplepoint under
consideration,andsi is thevalue at datapoint i. Thesecondcon-
dition assumesthat all datapointsat a distancelessthan orequal
to ε (setto approximately1 metre)are consideredto be atthe lo-
cation of the samplepoint, andarehence averagedin preference
to weightingthe valuesof nearby neighbours. Itshouldbe noted
thatthishasthepossibledrawbackthatthevalueof asamplepoint
couldbesetto that ofanearby datapoint that wasan outlier.How-
ever, it can be arguedthat this datapoint is at (or is very nearto)
thesamplepoint,and henceshouldberegardedasthe authoritative
value.

5.1.2 Adaptations
Having calculated valuesusing nearest neighbourinterpolation

for all the samplepointsalonga road,we thenamalgamatethem
into extentson thebasisof how differenttheir valuesare. Initially,
thefirst extentrepresentsonly thefirst samplepoint,v0. To amalga-
matefurther samplepointsinto it, we take themean ofthesample
pointscurrentlyrepresented bythe extent,v0..j (wherein this case
j = 0), andcomparethis to thenext samplepoint to be amalga-
mated,vj+1 (in this casev1). If v0..jγ ≥ |vj+1 − v0..j |, where
γ is in the range[0,1], thenvj+1 is amalgamatedinto the current
extent.Thehigherthevalueof γ thegreaterthe allowed difference
betweenthe current mean valueof the extentandthenext sample
point that may be averagedtogether. Inthis implementationγ is set
to 0.2.Theresultingextent’s start pointis lstart = max(lj −

λ
2
, 0),

wherelj is theposition ofthejth samplepoint asa fraction ofthe
roadlength. Itsend pointis lend = min(lj+1 + λ

2
, roadLength).

Theamalgamation processcontinuesuntil there arenofurther sam-
ple pointsor γ is exceeded,in which case anew extent is begun,
andamalgamationrestartsfrom thatsamplepoint. A specialcase
occursif roadLength < λ, in which casethe valueof a sample
point at the mid-point of the roadis obtained,andthenthe mean
of the start,endand mid-pointsamplevaluesis deemedto be the
valuefor anextentspanningthe entireroad.

Theresultingextentsarepairsof startandendlengthsalongthe
road,with a singleassociatedsensorvalue.Hence,whenstoredin
thedatabase,the extentis (v, v, lstart, lend, t).

There aretwo problemswith this approach; firstly, theremay be
a large numberof pointswithin distanceα of a samplepoint that
make the above processvery time consuming.Secondly, picking
samplepointsat a regulardistanceλ risks smoothing outfeatures
that may besignificantthatexist betweenthesamplepoints.Whilst
λ couldbedynamicallyvaried,this would require aknowledgeof
thesurfaceto besampled,whichis in essencewhat we are attempt-
ing to achieve with this algorithm.

5.2 Dominant Point Detection
Corner,or dominant point,detection was originally developed

in order to derive simplified representationsof two-dimensional
closedcurves. We examined whetherthesetechniquescould be
appliedinsteadto find the “dominant”points of a graph ofRSS
valuesover thelengthof a road.

5.2.1 Original Algorithm
We define an open digitalcurve S as an orderedsequenceof

pointsS = {p1, · · · , pn} where eachpi = (xi, yi), andthe xis
aremonotonicallyincreasing. Inthe caseof a closedcurve, p1 is
a neighbourof pn, as the start and end point ofthe curve must
be identical(and hencethexis arenot monotonicallyincreasing).
Whenanalysingthe curve to find its “corners”, the aimis to find
the local curvaturemaxima,i.e. thosepointsat whichthe rateof
changeof gradient withlengthis greatest.These areknownasthe
dominant points.

Thefirst stageis to calculatetheFreemanChaincodes forall the
points,andeliminatethosethatare collinear,asdescribedin [7].

Next, we calculatethe region of support,ki for eachpi. The
larger theregion of supportthegreaterthenumberof input points
supportthe hypothesisthat pi is a dominant point. We briefly
overview TehandChin’smethod[25].

We definelik = |pi−kpi+k| to bethelength of a chord between
two points,and dik to be the perpendiculardistanceof pi from
pi−kpi+k Weinitially setk = 1, and increaseit until the condition

dik

lik

≥
dik+1

lik+1
for dik > 0

dik

lik

≤
dik+1

lik+1
for dik < 0

falsefor dik = 0
yields true. Thefinal valueof k is storedin ki, indicatingthat the
pointsin theregion of supportfor pi areDi = {pi−k, · · · , pi, · · · , pi+k}.

We now calculatethe k-cosine curvature,ci, the anglethat the
curve turns throughas we traverse eachDi, as ci = aik·bik

|aik||bik|

Whereaik = pipi+k and bik = pipi−k. This impliesthatci will
benearerto 1 if the angleturnedthrough byDi is small,andtend
to -1 as the angleapproachesπ radians. We then performthree
furthereliminationsteps:

k-Cosinediscard threshold: For eachpi, if ci > µ, eliminate
pi from consideration.Thiseliminatespointsat the centersof very
broadangles,which areunlikely to bedominant points([26], step
4).

Suppress smallregions of support that are overlapped by
neighbours: For eachpi, if ki < ki+1 or ki < ki−1, eliminate
pi from consideration([26], step 5).

Discard largeangled pointsif adjacent to asmall angled point:
For eachpi that hasnot yet beeneliminated,if ki = 1 and

pi+1 hasnot beeneliminated∧ ci ≤ ci+1∨
pi−1 hasnot beeneliminated∧ ci ≤ ci−1

theneliminatepi from consideration([25], step 3c).
As a developmentto theTeh-Chinmethod ofcalculatingthere-

gion of support,Wu proposeda dynamicmethodfor determining
thevalueof k [26] that involvesassumingthatki is closein mag-
nitudeto ki−1. In this method,we start withk = ki−1, and onthe
jth iterationtry a valueof k that is j morethanki−1 andanother
that is j lessthanki−1. We therefore alsoevaluatedthis method
for generatingcoveragemaps.

5.2.2 Adaptations
Theoriginal dominant point detectionalgorithmswereonly in-

tendedfor thesimplification ofclosedcurves (polygons). In order
to apply themto non-closedcurves suchasour graphsof RSS,we
trialled twoapproaches. Initiallythe algorithm’siterationthrough
different valuesof k wasconstrainedin orderthati+k ≤ n andi−
k ≥ 0. Thismeantthatat thebeginningandend ofthe curve incor-
rect decisionsweremadeoverwhetherpointsshouldbediscarded.
To correctthis we reflectedthe curve in the y-axis at bothends,
suchthat if the valueof k exceededthe first bound given above,
dik wascalculated betweenpi andthe chordpi−kpn−(i+k−n), and
similarly for the caseof i − k < 0.
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A furtherobservation wemadewasthattheTeh-Chinalgorithm
performsbetteron sparsedata(i.e. few pointsper metreof road)
than doesWu’s algorithm,and vice-versafor densedata.Wethere-
fore implementeda dynamicalgorithmthat segmentedinput data
into regionsof highandlow density, andappliedtheTeh-Chinand
Wu algorithmsto therelevantsections.We termthis theDensity-
Dependentalgorithm.

When usingWu’s algorithm withdensedata,agreaterdegreeof
smoothing wasneeded.Consequently, a secondk-cosinediscard
thresholdwas added,µ2. Hence,the first stepafter calculating
cosine curvaturesis modifiedto eliminatepi if ci > µ or ci < µ2.

Taking advantageof the knowledgeof the region of support of
each point,wesmoothedtheoutput ofthedominant point detection
algorithmsby discardingany pointswith a ki < κ, whereκ > 1,
andis chosen byexperimentation.This isbecausepointswith few
others“supporting” have less raw datato supportthe hypothesis
thatthiscornerin the curveis dueto real dataratherthanafew out-
liers. However, with sparsedata, regionsof support willevidently
besmaller (dueto fewer pointsperunit lengthof road)thanthose
of high density. Hence,in our dynamicalgorithm we also vary κ

depending onthe densityof the input data,usingκ = 2 for high
densities,andκ = 0 for low densities.

Finally, we further smooth theoutput byremovingextentsthat
arevery short. For all remaining pointspi we comparethe length
of pipi+1 to athreshold ζ. If it is smallerthanζ weremovepi from
consideration.We loop over theset ofcandidatepointsuntil there
areno extentsbelow the threshold.This ensuresthat extentsthat
concern very smalldistancesareignored.Hence,ζ must besetto
reflect the minimum distanceover which a vehicletravelling at a
plausiblespeed wouldhave time to adaptits networkconnections
in order to take advantage/copewith the changein network per-
formance.We empiricallydeterminedζ to be 10 metres forhigh
densities,and 9 metres forlow densities.

5.3 Savitzky-Golay Smoothing
Although the dominant point detectionalgorithmsdescribedin

theprevious section work wellon their own, for largequantitiesof
noisy datathey arestill proneto outputtingeithera large number
of dominant points,or, if κ andµ aretoo high ortoo low respec-
tively, too few to be representative of the inputs. Therefore,we
investigatedtheuseof a filtering step priorto executinga dynamic
dominant pointsalgorithm.

5.3.1 Original Algorithm
Savitzky-Golay smoothing[22] is a windowed low-passfilter

originally usedfor analysingchemicalspectroscopy data.Foreach
input pointpi a high-orderpolynomial is fitted to thedatawithin
thewindowcentred onpi usingtheleastsquaresmethod.Thevalue
correspondingto pi that is outputis thevalueof thefitted polyno-
mial at thex co-ordinateof pi. Thewindowis then movedto pi+1,
andan entirely separate leastsquaresprocedureis executed.The
useof a polynomial fit preserveslocal maxima and minimabetter
than otherwindow-basedsmoothing filters [20].

We have thereforeimplementedthe algorithmasgiven by Press
et al. [20], which involves straightforward matrixoperations.The
algorithmassumesequallyspaced data,which wein general do not
have. However, with densedata,this constraintcan berelaxed to
onewhereprovidedthatthe changein they valueof theinput data
over thewindowlengthis small(i.e. themajorityof thepointshave
similar values),the algorithmcan beused.Hence,the algorithmis
only of usewherewe have denseinput data. Inaddition,we use
a window sizeof 101 points(empirically determinedto be large
enoughto achieve the necessary degreeof smoothing),hencethe

input must have at leastthis many datapointsin order forthe al-
gorithmto berun over it, thusexcluding roadsthat have not been
drivenalong multipletimes.

5.3.2 Adaptations
The numberof output pointsof the Savitzky-Golay smoothing

stepis equalto thenumberof input points,but the output graph
now hasa muchsmootherprofile. To reducethenumberof points,
we passthedatainto thedensity-dependent dominant pointsalgo-
rithm describedin Section 5.2.2to obtain a more space-efficient
representation.Hence,whilst our implementation oftheSavitzky-
Golay algorithmis not innovative, coupling it with the dominant
point detectionalgorithmis, to thebest ofour knowledge,a tech-
niquethat hasnot been previouslyused.

6. SIMULATION RESUL TS
Apart from thenearest neighbourinterpolationalgorithm,none

the algorithmsproposedin this paperhave previously been used
for processingRSS data. Therefore, syntheticdatawere gener-
ated,processed bythe algorithms,andtheresultscomparedto the
known valuesusedto generatethe syntheticdata. This proof of
conceptstage alsoallowed usto optimisethe algorithms’parame-
ters in preparationfor their useon real data,asdescribedin Sec-
tion 7.

6.1 SyntheticData
To generatesyntheticdata,we examinedtraces recorded by our

vehicle,andcreated twotraceseachfor UMTS and 802.11b/g that
providedasinglevaluefor anylengthalongtheroad.Thedataused
for the linesmimicked thepattern qualitatively inferredfrom data
for realroadsas recorded by ourvehicle.We termthesethesource
curves.

Pointsweregeneratedfrom the source curvesby picking loca-
tionsalongthe lengthof the (synthetic) roadat random.We term
the set of suchlocationsX. The numberof pointsin X wasvar-
ied to simulatedifferent densitiesof sourcedata.Thevalueof the
source curve (denoteds) at each oftheselocationswascalculated,
i.e. s(x), x ∈ X, andthen perturbed byadding noise,nx sampled
from aNormal distribution withzero meanandastandard deviation
of the appropriatevalue(3 dBmfor UMTS,3.5 dBmfor 802.11b/g,
seeSection 4),giving p(x) = s(x) + nx astheperturbed value. In
thisway, syntheticcurveswereproducedthat weresimilar to those
curves seen onreal test drives,but for which the truevalueswere
known. For each ofthe four source curves,40 differentsynthetic
datasetsweregenerated,10ateach of fourdifferent point densities
(102,250,500 and 1000 pointsper 100 metres),andeach having
its own uniqueset of (random)perturbationsto thesource curve.

6.2 Evaluation Criteria
Each ofthe160syntheticdatasetswereprocessed usingeach of

theproposedalgorithms from Section 5(bartheNearest Neighbour
Interpolationalgorithm,asthis hasbeen used previously by others
for generating maps forwirelesspositioningalgorithms),andthe
dominant pointsrecorded(resultingin a function wetermd). The
truevalue ateach pointin X, s(x), wasthencomparedto thevalue
at that location onthe dominant pointscurve output bythe algo-
rithms,d(x). Themeansquare error (MSE)of all thepointsin X

wascalculated,i.e.
P

X
(s(x)−d(x))2

|X|
. The mean of the MSEs for

eachalgorithm overall thesyntheticdataderivedfrom eachsource
curvewasthencalculated.

In a similar fashion,the compressionratio (CR) wasalsoevalu-
atedfor eachalgorithm.This metric is commonlyusedto evaluate
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dominant point algorithms’ability to approximatean input shape
with as few pointsaspossible. Itis calculated by dividingthenum-
berof dominant pointsoutputted byeachalgorithm bythenumber
of syntheticdatainput points(and henceshouldbe< 1). Thispro-
videsan indication ofwhatcompression hasbeenachieved in the
representation.To a certainextent, therewill exist a trade-offbe-
tween howcompactthe resultis and howaccuratethepredictions
thatcan bemadeusingit are.

6.3 Simulation Results
The resultsof usingthis syntheticdataareshownin Figures2

and 3.Severalconclusionscan bedrawn from them.
On synthetic data, theMSE is acceptably low. Giventhat the

standard deviation of the noise addedto the source curve was 3
dBm for UMTS and 3.5 dB802.11b/g,MSEsof lessthan 4 dBm
(UMTS) or 5 dBm(802.11b/g) suggestthat the approximational-
gorithmsperform well.

Compressioncan be more than a factor 50. The compres-
sionratios forWu’s andtheSavitzky-Golaysmoothingalgorithms
arevery low, suggestinga very compactresult. Compressionra-
tios decreasewith increasinginput point density, showingthat the
algorithmsperform wellon largequantitiesof data.

Wu’s algorithm haspoor MSE at low point densities.This is
most probablyduethefactthatat low densitiestheregionsof sup-
port of neighbouring pointsareunlikely to be correlated,which is
anassumption madeby the algorithm.However, at high densities,
this algorithm’sMSE is comparableto that of the others,andthe
standard deviation of its MSE is also muchreduced.

Savitzky-Golaysmoothing hasconsistently low MSE and CR.
Theresultssuggestthat (on syntheticdataat least),this algorithm
performsconsistentlywell.

The Teh-Chin and Density-Dependentalgorithms have con-
sistently poor CRs. At low point densitiesthis is offset bytheir
betterMSE thanWu’s algorithm.However,at high densities, such
highCRsmeanWu’s algorithmis (overall)moresuitable.

The Density-Dependentalgorithm combines thebestof Teh-
Chin and Wu. At densitieslower than 1000 pointsper100 metres,
the Density-Dependentalgorithm hasan MSE comparableto the
Teh-Chinalgorithm, (andsimilarly high CRs).At higherdensities
it retainsits very goodMSE,whilst achieving CRslowerthanthose
of theTeh-Chinalgorithm.

6.4 Parameter Optimisation
In addition to the above, experimentswere alsoconductedto

ascertain thebest value of the k-cosinethreshold thatshouldbe
used. The distribution of k-cosinesover the input datais surpris-
ingly non-uniform. Instead,most valuesare eithervery closeto 1
(implying anangleof closeto zero),or closeto 0 (implying a right
angle). This distribution (particularlyat high densities)is due to
to theinput pointsbeingrelatively closetogether,and hencewith
noisy datathe angleswill beverysharp.

Becauseof this quitebimodal distribution of cosine curvatures,
it was foundthat the MSE andCR performanceof the dominant
pointalgorithmsasthe cosine curvaturediscardthresholdwasvar-
ied between−1 < µ < 1 wasa stepfunction, the discontinuity
occurringat zero,i.e. whenthe angleis 90 degrees.At µ = −1 or
µ = 1, bothMSE andCR werevery high, reflectingthatat these
discardthresholds,nearlyall and none, respectively, of the input
pointswould bediscarded.A valueof µ = −0.9 waschosenfor
regionsof low point density, in order that only thosepointswith
very large angleswould be discarded,as they are unlikely to be
important. Pointswith smalleranglesareretained. Incontrast,at
high point densities,µ = −0.1, andthehigh discardthreshold,µ2,

is chosento be0.1, to provide adegreeof smoothing ofthe input
data,giventhatthere arelarge amounts.

7. EXPERIMENT AL EVALUATION
Havingshownthat ourproposedalgorithmsperform wellonsyn-

theticdata, (wheretheir resultscouldbe comparedagainstaknown
value)and optimisedtheir parameters,we proceededto test their
performanceonreal datacollected by ourvehicle. In orderto eval-
uatethe algorithmson a real-life dataset,we executedeach dif-
ferentalgorithm onthe corpusof datacollected by ourvehicleto
generatea coveragemap.Wethen usedsensor records fromseveral
randomlyselectedjourneys that werenot in theinput corpusin or-
derto evaluatehow accuratethepredictionsmadeby the coverage
map werewhencomparedto thereal RSS valuesexperienced on
thesamplejourneys. We alsoanalysedthespace-efficiency of the
resultingextents.

For eachsamplejourney, eachinput tuple of 2-D positionand
sensorvalue(li, vi) was snappedto the closest point onthe rele-
vant road’scentreline, becoming(xi, vi). Thedatabasewasthen
queriedfor the coveragemap’s stored valuesi at lengthxi along
theroad. For all the input points,di = vi − si wascalculated,as
well asthemeanandstandard deviation of thosedifferences.Each
algorithm’sextentswere evaluated usingeachsamplejourney, in
orderto comparetheir accuracy.

Thetwo metricsthatareimportantin evaluatingtheperformance
of coveragemappingalgorithmsare the differencebetween pre-
dicted and actual values,and the space-efficiency of the extents.
We nowconsidereachin turn.

7.1 Prediction Err or
In orderto besuccessful,a coveragemap’spredictionfor agiven

location must besimilar enoughto a valuesubsequentlyrecorded
at that location to be useful. The differencebetweenthesetwo
valueswill in part bedueto thenatural variationin RSS values,as
explainedin Section 4.

Tables2 and 3showthedifferentalgorithmscomparefor UMTS
and 802.11b/g,whilst Figures5(a) and 5(c)are the correspond-
ing CDFs. Theseshow that for UMTS prediction,the Density-
DependentandWu’s algorithmsperform best,with the Savitzky-
Golaysmoothingalgorithmalso havingalow predictionerror (90%
confidenceinterval of 12 dBm).For802.11b/g,theSavitzky-Golay
algorithm is by far the most accurate,with a confidenceinterval
of only 10.40 dBm. Figures4(a) and 4(b) showthe spread of
predictionerrors. Significantly, the Savitzky-Golay algorithm has
only oneoutlier (circleson thegraph) forUMTS predictionerrors,
showingthat its predictionsare consistentlygood. The Density-
DependentandWu’s algorithmsdo have outliers, suggestingthat
their performance cansometimesbevery poor.

An important questionis whetherthesevaluesare significant,
e.g.doesa 90% confidenceinterval of 12.00 dBm impacta user
far morethan oneof 14.00 dBm?Table1 showsthat for UMTS
therelationshipbetweenTCPthroughputandRSS doesnotappear
to be linear: errorsin RSS prediction willbe moresignificantin
areasof poorcoverage.We posit thatthat this becausein areasof
poorcoveragepacket losseswill bemorefrequent,each ofwhich
will causeTCP’s congestion windowto fall to nearzero. Hence,
the window sizewill never be allowed to increaseto large values
that wouldallow high throughputs.Giventhis,we estimatethatfor
RSS valuesbelow -90 dBm,an error of 1 dBm is approximately
equivalentto 40 Kb/s,whilst the same errorat an RSSabove -90
dBm wouldbefar less (7 Kb/s).Hence,in areasof poorcoverage,a
90%confidenceinterval of 12.00in RSStranslatesinto aTCPesti-
matethatis approximately80 Kb/smore accuratethan oneof 14.00
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Figure 2: Comparison ofMean SquaredErr ors (lower is better) in representation achieved atdifferent point densities,by algorithm,
of syntheticdata generatedfr om two different source curves for each ofUMTS and 802.11b/g.
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Figure 3: Comparison of Compression Ratios (lower is better) achieved at different point densities,by algorithm, of synthetic data
generatedfr om two different source curves for each ofUMTS and 802.11b/g.

dBm. Hence,thedifferencein algorithm prediction performanceis
significantfor anend user.

Overall,the algorithms’performancein thevery worstcasewould
be anerror of 480 Kb/s(poor coverage),or 84 Kb/s(goodcover-
age).These are acceptably low comparedto themaximumthrough-
putsachievable,and henceshowthe utility of the coveragemaps
generated by ouralgorithms.

Similarly, we estimatethata worstcase errorof 10.00 dBmfor
802.11g wouldcorrespondto a throughput differenceof 4-5 Mb/s.
Whilst this isa largevalue,it shouldbebornin mindthatthemaxi-
mumTCPthroughputachievablewith 802.11gis 20 Mb/s. Hence,
a userwill still derive utility from a predictionthat is subjectto
sucherror.

Overall, we concludethat Savitzky-Golay smoothingfollowed
by the anapplication ofthedensity-dependent dominant pointsal-
gorithm, performsbest,as it combinesa low 90% confidencein-
terval in predictionerrors forbothUMTS and 802.11b/gwith few
severepredictionerrors (outliers).

Algorithm d σd 90% C.I. |d| Tests
Nearest Neighbour -9.64 4.40 14.64 9.74 748

Teh-Chin -7.94 4.34 13.30 8.20 748
Wu -7.72 3.84 12.00 7.92 748

Density-Dependent -6.86 4.40 12.00 7.08 748
Savitzky-Golay -7.90 3.56 12.26 8.02 748

Table2: Prediction errors for UMTS (d), all in dBm.

7.2 Extent Density
Ideally, ouralgorithms shouldproduce as few extentsaspossible

perunit lengthof road(i.e. a low extent density, ED), in orderthat
the coveragedatabasedistributedto a vehiclebesmallandcan be
efficiently queried. Tables4 and 5show howthe Nearest Neigh-
bourandWu’s algorithmsperform well,with few extentsproduced
permetreof roadfor bothUMTS and 802.11b/g.Meanwhile,the
Density-Dependentand Teh-Chin’salgorithm perform poorly(a

Algorithm d σd 90% C.I. |d| Tests
Nearest Neighbour -7.16 4.86 13.00 7.39 83

Teh-Chin -5.87 6.41 13.61 7.34 79
Wu -4.65 6.61 13.57 6.44 65

Density-Dependent -7.71 6.32 14.00 8.91 59
Savitzky-Golay -5.07 4.39 10.40 5.71 72

Table3: Prediction errors for 802.1b/g(d), all in dBm.

low valueof ED−1 showshowfew metreseachextentcovers),with
theSavitzky-Golayalgorithm being betweenthesetwo groups,as
shownin theCDFsin Figures5(b) and 5(d).Figures4(c) and 4(d)
showthedistributionsof extent densities.Significantly, for UMTS
theNearest Neighbouralgorithm has several outlierswhich arein-
dicativeoccasional very poorperformance(manyextentsgenerated
permetre). Incontrast,Wu’s andtheSavitzky-Golayalgorithm do
not have significant outliers.Thesethree algorithmshave similar
distributions for802.11b/g.

Giventhe above,we canconcludethatWu’salgorithm,and Savitzky-
Golaysmoothingfollowed byanapplication ofthedynamicdensity-
dependentalgorithm,perform wellas regardsthenumberof extents
generated permetre,and hence arespace-efficient. As anexample,
a typical WiFi hotspotcovering 200 metresof road wouldrequire
only 6 extentsin orderto representits coverage,

Overall, we concludethat the Savitzky-Golay smoothingfol-
lowed by an application ofthe dynamicdensity-dependentalgo-
rithm performsbest out ofthe algorithmswepropose,givenits low
predictionerror and goodspace efficiency. In addition, we note
its benefitsover theNearest Neighbourinterpolationalgorithmthat
hasbeen usedfor coveragemappingeffortsin thepast.

8. SCALABILITY
The requirementsfor computingresources requiredto produce

coveragemapsare not onerous. We tested ouralgorithmson a
PentiumIV 3.2 GHz processorwith 1 GB of RAM. The system
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Figure 4: Box plots of prediction errors and extent densitiesby algorithm (Key: 1 NearestNeighbour, 2 Teh-Chin, 3 Wu, 4 Density-
dependent,5 Savitzky-Golay).

Algorithm ED ED−1 Num. of Roads
Nearest Neighbour 0.030 33.409 1380

Teh-Chin 0.086 11.607 234
Wu 0.028 36.362 234

Density-Dependent 0.068 14.615 234
Savitzky-Golay 0.039 25.756 107

Table4: Mean Extent Density (ED) (extents/m) for UMTS.

Algorithm ED ED−1 Num. of Roads
Nearest Neighbour 0.019 53.383 178

Teh-Chin 0.068 14.610 178
Wu 0.019 52.245 161

Density-Dependent 0.052 19.357 170
Savitzky-Golay 0.027 36.577 83

Table5: Mean Extent Density (ED) (extents/m) for 802.11b/g.

analysed 2,444roadsin the Cambridge area,finding 1,380roads
that hada enoughRSS datapoints to constructa coveragemap,
and 115 withoneor more802.11b/gnetworkswith theminimum
numberof pointsnecessary.

Thefive algorithmswere eachrun oneachcandidateroad,pro-
cessingatotal ofover765,000 UMTSand over1.2 million 802.11b/g
datapoints.5,879 UMTSextentsand 2,396 802.11b/gextentswere
generatedandaddedto thedatabase.The entireprocesstook 4,714
seconds.The running timeincludesthe printing of a significant
amount ofdebug output,andtherefore couldbefurtherdecreased.
In addition,we notethat this figure involvesprocessingeachroad
up to 5 times,whereasin a real deployment onlyone algorithm
wouldbeused.

As we and othershave seen,the numberof 802.11b/gAPs in
a city can bethousands [1,3]. Whilst a coveragemapcould be
madeto include coverageinformationfor each oftheseAPs,i.e.the
many ofthem will not havesufficientcoverageto make theirusage
by a vehicleworthwhile,or will not permitsuch usage.Hence,a
coveragemap onlyneedinclude thoseAPs that could be useful.
This might include all thehotspotsfor a particularproviderthata
userhasa subscriptionto, or all thosebelongingto a community
WiFi schemesuchasFon(http://www.fon.com/).

Finally, we notethedistinction betweenthe (very large)corpus
of RSS datathatis collectedandthe(compact)coveragemap.The
raw readingsareuploadedto a server, which then usesour algo-
rithmsto generatea coveragemap,and distributesthis to thevehi-
cles.Hence,vehiclesneed not havevastcomputingresources.

9. SENSITIVITY T O CHANGE
A key questionconcernshow frequentlya coveragemap needs

to be updated.Our experiencein Cambridgehas shownthat cel-
lular network deploymentsappearto be relatively staticover long
periodsof time(seeFigure1), asmight be expected,giventhe cost
of installing new basestations. Incontrast,user-managed wireless
LANs arelikely to (dis)appearmuch morefrequently. We suggest
thatthemoreinvestmentrequiredin anetwork deploymenttheless
likely it is to frequentlychangein coverage. Fortuitously, it ap-
pearsthat usersaremorelikely to usesuch networksdueto their
greaterubiquity, ratherthanconnectingto wirelessLANs belong-
ing to privatedwellings,in part becauseof thebilling andsecurity
infrastructurerequiredfor public accessto a network. Hence,we
believe that theprincipal networksthat will bepresentin a cover-
agemapswill not requirevery frequent updates.Based on ourdata
collected over 3 years,it appearsthata survey would beneededat
least yearly. This islikely tobedueto thelargenumberof students
living in our city, and hencethereis a high degreeof population
churn; otherareasarelikely todiffer.

10. CONCLUSION
Wirelessnetworkaccess forvehiclesis increasingly indemand,

thoughits deploymentis not ubiquitousand henceis unpredictable.
Proactive handover algorithmshave been proposedthat depend on
the existenceof coveragemapsto perform optimal networkse-
lection. This paperhaspresentedandevaluatedfour novel algo-
rithms for generatingcoveragemaps,and comparedthem to the
Nearest Neighbourinterpolationalgorithm usedin otherwork. We
havefoundthat usingtheSavitzky-Golaysmoothingalgorithm, fol-
lowed byanapplication ofour density-dependent dominant points
algorithm, has the lowest predictionerrors for both UMTS and
IEEE802.11b/g,whilst maintainingadequatespace-efficiency.
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