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ABSTRACT

Wirelessconnectity for vehiclesis a fast-growing marét, with a
plethoraof different networkechnologieslreadyin use. Suneys
of the numbersof IEEE 802.11b/gaccessointsin cities point to
hundredso thousand®f networkswithin eachsquarekilometre,
with coverage areathat are not easily predicted dudo the com-
plexities of the urbanenvironment.In orderto take adwantageof
thediversityin wirelessnetworksavailable,we need datzoncern-
ing their coverage Methodsof generatinguchcoveragemapsthat
are accurate, spacefiefent and easyto queryare not a well ad-
dressedarea. Inthis paper,we presentandevaluate,usinga large
corpusof real-world data, novel algorithms forprocessingarge
quantitiesof signalstrengthvaluesinto coveragemapsthat satisfy
suchrequirements.
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C.2.1[Computer-Communication Networks]: Network Archi-
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1. INTRODUCTION

Providing Internetaccesgo vehicleson the mowe is a growing
market and areaof researcH19]. There aremany applications,
from simple ones suchasweb browsingand e-mail to more de-
mandingtasks suctasvoice-ower-IP conwersations. Iraddition,we
arelik ely to seevehiclesbeing use@smobilesensoplatformsthat
uploadtheir sensodatafor further processind14], suchasin the
generation opollution mapsor for congestion-aaretraffic rout-
ing. Many applicationswill require aguaranteed minimum quality
of service(QoS),particularlytwo-way, real-time applications such
asvideo calling. Others, suclasthe background downloading of
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updatectity mapswill bemoretolerant ofdisconnectionshut will
require asigh athroughpuiaspossible.

Today many diferent wirelessetworktechnologiesxist that
could be usedtogetherto provide near-ubiquitousonnectity to
vehicles.For the majority (including IEEE 802.11x,UMTS cellu-
lar, and WiMax), the throughputachiezable is dependent orhe
signal strengthexperienced bythe mobile terminal. As a con-
sequencethe cowerage areasf the highestthroughput networks
arebecomingever smaller (e.gUMTS HSPAcell cowerageis less
thanthat of GSM GPRS,whilst 802.11g has lower rangethan
802.11b). Thereis vast diersity in the networksavailable: the
CarTel project[3] recorded oer 32,000 distincWiFi networksin
Cambridge USA, whilst otherwork found some cityAPs whose
cowerageoverlapped withthat ofup to 85 others [1].

The main problem using multipleheterogeneousirelessnet-
worksovertimeis selecting whenandto what networkto perform
ahandoerto. Handower schemesnay bereactive,wherethe tar-
get networkis selected onnstantaneousneasures sucas signal
strength,or proactive,where atrinsic informationconcerninghe
networksis used. In particulaknowledgeof the coverage areasf
the many networksvailablecanenablemobile clientsto increase
their QoSsignificantly In this work, we look at howto construct
suchcowveragemaps.

Coweragemapsenableclientsthatarelocation-avareto prepare
for a network handoer beforethefirst beacorfor sucha network
is encounterede.g.by beginningto decreaseheir TCP adwertised
windowsizetowardszero.Clientsare alsdreeto settheirstabilisa-
tion threshold tdbe asinglebeaconasthe coeragemapindicates
how long the network will be available (and hencef it is worth
connectingto). Finally, becausealevicesare avare of the sizesof
the regionsof radio shadow(i.e. how long a networkis not avail-
able for) they are ableto decidewhethera handoer to another
overlapping networlshouldbe performed,or whetherthe disrup-
tion caused byhe temporaryradio shadowis lessthanthat which
would be caused bthehandoer.

We focuson the constrained problem domaifivehicles, rather
than on unconstrained pedestrian mohilifjhe rationalebehind
this choiceis that mostiong distanceor high speed mobilitytakes
placeon vehicles,and hencst is herethat optimising handars
will be mostchallenging. The vast majorityof vehiclesmowe on
well-definedroutes, suclastheroad network, raiay lines, or air
corridors

2. RELATED W ORK

Various authorshave proposed proacte handoer algorithms
thatassume caeragemapsare aailable. One approaclsompiled
adatabasef signalstrengthgo predict handosrs [24],whilst an-
otherused knowledgef the motion of a vehicleto resere band-



width on networksthat wouldcomeinto range,implicitly assum-
ing suchcoveragewasknown [13]. Most recently the Mobisteer
project[18] useda steerable-beamntenndo record, foreachroad

segmentthewirelessnetwork withthelowest paclkt droprate.On

subsequenjpurneys, this network wasautomaticallyconnectedo

oncemore. The approach weroposeinvolves mappingthe cov-
erageof all wirelessnetworks,andthenallowing a mobile nodeto

select whichto connectto, based onits current needs (e.dpnighest
throughput,or fewest handogrs), ratheithan choosing onlyone
networkasbeingthe “best"for eachroad.

A variety of technique$iave beensuggestedor generatingov-
eragemapsthataremoredetailedthanthoseproduced bythewar-
driving community In mostcasesthe RSSand/orthroughputis
surweyedatanumberof locations andthese aréhen usedo predict
the coerage at nearbipcationswhich werenotincludedin thesur-
vey. Kamakarisand Niclerson[10] exhibit human-readableon-
tour mapsof auniversitycampusgyenerated bjinearinterpolation.
However, they do not go orto evaluatethis method’saccurag, or
whetherit would scaleto thousandsf input points.Otherwork on
contourmap generatiomnd contour simplification{15] hasbeen
carried out bysimulationratherthan measuremens wirelessac-
cesspoint is consideredo have aboundary withinwhich it pro-
vides serviceand outsidewnhich it is unusable.Suchapproaches
neglectthefactthatthe RSS \alueis perturbed by noisemplicitly
assuminghatasinglemeasuremeris representate.

Anotherapproach used gridsf cells, each withits own associ-
atedRSS \alue,ascoveragemaps.These cellgouldbeof fixed or
variablesize,andtheir valueswereupdated whenger a new read-
ing wasobtained Radiopropagtion path lossnodelswereusedto
estimatefrom areadingin one cellwhatthoseof its neighbourings
would be[12]. However, these approach@ssumehat wehave all
necessary geographidapologyinformationto provideto thepath
lossmodels;this isunlikely to bethe casen cities,wherewireless
propagtionis comple.

Several projecthave collectedargequantitieof RSS ortthrough-
put data.The CarTel projectcarried outa large-scalesurwey of the
performancef thewirelessaccespoints(APs) foundin a city [3].
The aim vasto ascertainwhat connection qualitysuch APscould
provide, rathethan mapthem. Similarly, measurementsarried
out byMicrosoftResearclnvestigated how welbeacons from APs
werereceived by \ehicles,and detailed howhe locationsof areas
of good orbadcoweragewerefixed[16], but didnotset outto pro-
cesdarge amount®f raw input datainto coveragemapsthatcould
be easilyqueried.

Wirelesspositioningsystemsare anothedomainfor whichlarge
quantitiesof RSS datds collected,RADAR [2] andIntel’s Place
Lab[11] being two wellknownexamples.Theprincipal diference
between oumork andthatin wirelesspositioningsystemss that
we seekto createhighly space-efficientepresentationsf the RSS
datarecorded durindhe collection phase, rathénanstore allof
the databas®n a user'sdevice. We alsoseekto malke this space-
efficient representatiom suchaway thatit is usefulfor proactve
handoer algorithms,i.e. to be ableto efficiently answerquestions
suchas“whatis the coerage areaf networkz?”. Clearly, thedata
setsusedin PlacelLab (andsimilar systemsgould be processedo
answer such querieshe crucial questiofis how sud processing
is done,and howefficient this is. Inthis paper,we aimto answer
thesequestions.

2.1 Contributions

In this paperwe focus solelyon the techniquesusedto pro-
cessthe raw RSS datainto coveragemaps,and do not gainto
detail aboutthe medanismsbehindthe usesof coveragemaps.
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Our contrikutions are therefore: outliningthe needsand require-
mentsfor coveragemaps;adaptingexisting algorithms from other
fields to the problem of smoothindarge quantitiesof irregularly-
spacednoisy receied signalstrength(RSS)datafor both UMTS
and 802.11b/g; usingyntheticdatato optimiseour proposedal-
gorithms;and,evaluatingthe algorithmsn termsof their accuray
and compactnessf result,usinga corpusof real-world datacol-
lected oer 3 years.

3. DATA COLLECTION

As part ofthe Sentient \éhiclesproject[5] at the University of
CambridgeComputerLaboratory wehave collecteda large quan-
tity of sensodatafrom a vehiclewhich is driven by many mem-
bersof our research groufor their day-to-dayactvities. Sensors
includevehicleparameters suchs speed;oolanttemperatureand
enginerevs, environmentalaspectssuchas humidity and carbon
dioxide concentrationandreceived signalstrength(RSS) fordif-
ferent wireles:etworks.

We utilise an Orinoco PCMCIAEEE 802.11b/gwirelesscard
in conjunction withthe wireless-toolautilities underLinux to scan
for wirelessnetworksasthe vehicleis driven. Similarly, an Option
GlobeTotter 3G PCMCIA card connectedo Vodafone’scellular
networkis regularly probedto ascertairJMTS signalstrength We
deliberatelydo notattemptto recordthebasestation being use@s
cellularnetworksdo notallow clientsto choosevhichto use.Some
areaswill exist where a client obtains serviéem different base
stationsat different times: wénave notfoundthisto pose groblem
in our work. Both cardsutilise externalantennas.RSSreadings
are obtained onaverage gery 1.5seconds fronmthe 802.11card
andevery 4seconds fronthe UMTS card. These ardoggedfully
autonomouslywhilst the vehicleis driven. Locationinformation
is obtainedfrom an onboard GPS$eceiver (based orthe highly
accurateSiRFstar Ill chip) every twosecondsThis isthenlinearly
interpolatedin orderto obtain theposition ofeach wirelesfRSS
reading.

3.1 Hardware Specificity

Both theUMTS and 802.11b/gardsgive hardware-specifitRSS
measurements,e. thesewould be differentfor a different hard-
ware configurationPreviouswork by Haeberleret al. has shown
thatthe relationshipbetweernthe RSS \alues reported by dirent
802.11b/gcardsis linearand moreoer is simpleto determing9],
whilst the 3GPPTS 27.007standard providea conersionfrom
unitlessUMTS RSSto valuesof signal powerin units of dBm.
RSSreadings from dierent HSDPA modems should therefdre
approximatelyconsistent. Hence,in our schemeall valuesin a
coveragemapthat wascollected withahardware configuratiohat
wasdifferentto that withwhich the map wasbeing usectould be
easilyadjusted witha one-timeoperation.

By collecting RSS data(as opposedto recordingthe instanta-
neoughroughputs)we do not limit theutility of the coxeragemaps
to a particularhardware configuratiorthatis capableof a particu-
lar throughputfor a given RSS \alue. Inaddition, a throughput
(ratherthanRSS)map wouldbe specificto a particularprotocol(in
particularTCP orUDP), paclet size,andforward error correction
rate,and hencevould not be agyenerallyapplicable. Incontrast,
RSS datas only subjectto thephysicaleffectson the radio chan-
nel, suchasattenuatiorandinterferencewhich will be present no
matterwhich higher-layeprotocol utiliseghe channel.

3.2 Our Dataset

Over the courseof thelast 3 yearsve have collectedin excess
of 820,000 UMTSand 9.5 millionlEEE 802.11RSS datgointsin



ard aroundthe cityof Cambridge UK, a subset ofvhichis shown
in Figurel. This hasallowed usto build up a comprehense/data
setthatcan beusedto examinehow wirelesscoveragevariesin a
real urbarenvironment oer along period oftime.

Figure 1: Map of UMTS cellular RSS (darker implies higher
RSS) and basestation sites (greencircles) around the city of
Cambridge, UK.

4. SIGNAL STRENGTH VARIABILITY

Cowveragemapsimplicitly assumehat RSSreadingsare stable
(or vary deterministicallypver time. In orderto validatethis as-
sumption werecordedliarge numbersof RSS \aluesin two loca-
tions, collecting 1.34 million UMTSRSSreadingver 2.5 months
(continuouslysamplingevery 4seconds)and 1.27 million 802.11b/g
RSSreadingver 7 months (notontinuousputincluding dayand
night periods).We found nocorrelation withtime of day, or tem-
perature absolutehumidity, pressure and windpeedas recorded
by ourweather station.Other researclsuchas Intels PlacelLab
project hasalsoreachedsimilar conclusiononcerninghe stabil-
ity of RSSreadings fora given location for IEEE 802.11b/g[4,
16].

Our resultsshowedthat bothUMTS and 802.11b/dRSS \alues
for agivenlocationcan be approximated by normal distrifons,
having standard dé@ations of 3 dBm and 3.5 dBmrespectiely
(hence90%of valueswill bewithin 6 dBmand 7 dBm othemean,
respectiely). Therefore we make the assumptiothatat a given
location,RSS hassingle“true” value,whichis perturbed by noise
taken from a distribution with zero mearand withthe relevant of
the aboe standard deations.

It isimportantto notethatRSScan be affected bgnvironmental
factors suctas cell breathing. Inan urbanenvironmentmoving
objectssuchasvehicleswill alsocauseRSSto vary [8]. We hy-
pothesisehatthe variationin the RSS \alueswe have recordeds
dueto these environmentaffects.

4.1 Relationship of Throughput to RSS

Finally, anothemssumptionhat must bevalidateds therelation-
ship betweenthroughputandRSS.This link hasbeenexperimen-
tally shownfor IEEE 802.11b/g[17]. For cellular networksthis
is not generallyevident with robust modulatiorschemesasused
for GSM/GPRS However, third generatiorcellular networksus-
ing HSPA orEDGE do showsuch dependendé], and wehave
carried outqualitative experimentsto ascertain the approximate
TCPthroughputsachiezableonalive cellularnetwork.Our results
aregivenin Tablel. Therelationshipis relatively intuitive, since
higherordermodulationandcodingschemes (whiclallow higher
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throughputsgan onlybeused wherthe signalto noiseratiois high
enough.We omit asimilartablefor 802.11gfor spaceeasons.

[ UMTS RSS(dBm) | TCP Throughput (Mbit/s) |

-63 1.28
-75 1.20
-93 1.08
-111 0.32
<-111 0

Table 1: Measured valuesof UMTS RSS& TCP throughput.

5. COVERAGE MAPPING ALGORITHMS

Theinput valuesto a coveragemappingalgorithmarein general
not equally spaced,and are subjectto random noise.Therefore,
an algorithm shouldcopewith such datawhilst producing maps
thatallow RSSto be predicted withlow error,andthatare space-
efficient.

Linked to the secondrequiremenis the ideathat the raw sen-
sordatafrom vehicleswill be uploadedo a centralauthority and
combined bythat entity using the algorithmswe describein this
paper.Theresultingcoveragemapswould then bedistributed back
to thevehicles.Hence vehiclesarenot requiredto have significant
computingresources.

In contrasto otherwork oncoveragemappingwe focus specif-
ically on mappindRSS orroads.This constrain@llows usto space
efficiently representhesemapsby representinghe coerage along
eachroadasa line, ratherthana surface. By reducingthe prob-
lem to oneof line simplification we can produce cerageextents.
These consist aituple (vstart,; Vend, lstart, lend, t) Which consists
of astart \alue(RSS),anend \alue,a startco-ordinateanendco-
ordinate(measuredsthe proportionalongthe total length of the
road),andthetimestamp othe mostrecent datgoint usedo cre-
atethe etent. An extentsignifiesthat betweerthe startandend
pointsthe value of the sensorconcerned RSSin the caseof cov-
eragemaps)variesin a linear fashionfrom the start \alueto the
end \alue. Hence,the output ofany coveragemappingalgorithm
shouldbe asmallnumberof contiguousextentsspanningheroad’s
length.

In orderto satisfythe aboe criteria,we have adaptedour al-
gorithmswhich have not beertraditionallyappliedto thisproblem
domain. Eachalgorithmis briefly describedn turn, followed by
our adaptationgo it. We alsocompareour resultswith an estab-
lishedalgorithmin thefield.

5.1 NearestNeighbour Interpolation

The simplest(but most processingitensiwe) techniquefor con-
structing coveragemapsis to pick samplepoints along the road
in question,estimatethe value of the quantity underinvestigation
at the samplepoint, andthen generatextentsfrom thosesample
points. We carrythis out using nearest neighboinverse-distance
weightedinterpolation,asproposed by Shepai@3]. This isone
of thefew interpolationalgorithmsthatis ableto utilise irregularly
spacednput dataand doesot snapit to aregulargrid prior to in-
terpolation.Thetechniquehasbeen used beforfer coveragemap-
ping [10], and henceve includeit herefor comparison purposes.
Ouradaptationgreonly to make it suitablefor generatingextents.

5.1.1 Original Algorithm

Firstly, we pick samplepointsseparated bg particularintenal,
A, alongtheroad’slength, suctasevery 100 metresRegardlessof
thelengthof theroada samplepointis pickedat! = 0 andanother



at! = roadLength. For eachsamplepoint wequerythe database
to find the set ofdatapoints, S thatarewithin a certainmaximum
distancex (currentlyapproximatelylO metres)abowe which they
are consideretbo faraway to be correlated wittthis samplepoint.
Thevalue,v;, of the jth samplepoint (ordered bylengthalongthe
road)is thencalculatedas:

S ifd > e
vj = 517 .
":Toll E={87€S|d1§€}am|E|#0

whered; is thedistancdrom datapoint: to thesamplepoint under
considerationands; is thevalue at datgoint:. The secondcon-
dition assumeshatall datapointsat a distancelessthan orequal
to e (setto approximatelyl metre)are consideretb be atthelo-
cation ofthe samplepoint, and are hence &eragedin preference
to weightingthe valuesof nearby neighbours. Ehouldbe noted
thatthis hasthe possibledravbackthatthe valueof a samplepoint
couldbesetto that ofanearby datgointthat wasan outlier.How-
ever, it can be gguedthatthis datapointis at (or is very nearto)
thesamplepoint,and henceshouldberegardedasthe authoritatie
value.

5.1.2 Adaptations

Having calculated wluesusing nearest neighboumterpolation
for all the samplepointsalonga road,we thenamalgmatethem
into extentson the basisof how differenttheir valuesare. Initially,
thefirst extentrepresentsnly thefirst samplepoint,vo. Toamalg-
matefurther samplepointsinto it, we take the mean ofthe sample
pointscurrentlyrepresented bthe extent,vy_; (wherein this case
4 = 0), andcomparethis to the next samplepoint to be amalg-
mated,v;1 (in this casevy). If vg_jv > |vj+1 — vo.4|, where
~ is in therange[0,1], thenv;4, is amal@matednto the current
extent. Thehigherthevalueof v thegreateithe allaved difference
betweerthe current meanalueof the exctentandthe next sample
pointthat may be @eragedogether. Irthisimplementationy is set
t00.2. Theresultingextent’s start points lyzars = max(l; — 3,0),
wherel; is the position ofthe jth samplepoint asafraction ofthe
roadlength. Itsend pointis lena = min(l;41 + 3, roadLength).
Theamalg@mation processontinueauntil there arenofurther sam-
ple pointsor ~ is exceededjn which case anew extentis begun,
andamal@mationrestartsfrom that samplepoint. A specialcase
occursif roadLength < A, in which casethe value of a sample
point at the mid-point ofthe roadis obtained,andthenthe mean
of the start,endand mid-pointsamplevaluesis deemedo be the
valuefor anextentspanninghe entireroad.

Theresultingextentsarepairsof startandendlengthsalongthe
road,with a singleassociatedensownalue. Hence whenstoredin
thedatabasethe etentis (v, v, lstart, lend, £)-

There aréwo problemswith this approach; firstlytheremay be
a large numberof pointswithin distancea of a samplepoint that
male the aboe processvery time consumingSecondly picking
samplepointsat a regular distancel risks smoothing outeatures
that may besignificantthatexist betweerthesamplepoints. Whilst
A could be dynamicallyvaried,this would require aknowledgeof
thesurfaceto besampledwhichis in essencevhat we are attempt-
ing to achieve with this algorithm.

5.2 Dominant Point Detection

Corner,or dominant point,detection vas originally developed
in order to derive simplified representationsf two-dimensional
closedcures. We examined whethethesetechniquescould be
appliedinsteadto find the “dominant”points of a graph ofRSS
valuesover thelengthof aroad.
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5.2.1 Original Algorithm

We define an open digitaturve S asan orderedsequencef
pointsS = {pi1,---,pn} Where eaclp; = (x;,v;), andthe z;s
aremonotonicallyincreasing. Inthe caseof a closedcurve, p; is
a neighbourof p,,, asthe startand end point ofthe cune must
beidentical(and hencehe x;s arenot monotonicallyincreasing).
Whenanalysingthe cune to find its “corners”, the aimis to find
the local cunvaturemaxima,i.e. thosepoints at whichthe rate of
changeof gradient withlengthis greatestThese ar&nownasthe
dominant points.

Thefirst stageis to calculatethe FreemarChaincodes forall the
points,andeliminatethosethatare collinearasdescribedn [7].

Next, we calculatethe region of support, k; for eachp;. The
largertheregion of supporthe greaterthe numberof input points
supportthe hypothesisthat p; is a dominant point. We briefly
overview TehandChin’s method[25].

We definel;,. = |pi—xpi+x| to bethelength of a chord between
two points,and d;; to be the perpendiculadistanceof p; from
Pi—kPi+r Weinitially setk = 1, and increaset until the condition

dik > dikt1 for g, 0

ik = likg1

. dik
die < Lkt for g, < 0
li — likt1

falsefor d;r, =0
yieldstrue. Thefinal valueof & is storedin k;, indicatingthatthe
pointsin theregion of supporfor p; areD; = {p;—k, - ,pi,- -+

We now calculatethe k-cosine curature,c;, the anglethatthe
cune turnsthroughas we traverse eachD;, asc; = m
Wherea;, = pipixr and by, = pipi—r. Thisimpliesthatc; will
benearerto 1 if the angleturnedthrough byD; is small,andtend
to -1 asthe angleapproachesr radians. We then performthree
furthereliminationsteps:

k-Cosinediscard threshold: Foreachp;, if ¢; > p, eliminate
p: from considerationThis eliminatespointsatthe centersf very
broadangleswhich areunlikely to be dominant pointg[26], step
4).

Suppress smallregions of support that are overlapped by
neighbours: For eachp;, if ki < ki41 ork; < ki—1, eliminate
p: from consideratior{[26], step 5).

Discard largeangled pointsif adjacent to asmallangled point:
Foreachp; that hasot yet beereliminated,f k£; = 1 and

pi+1 hasnot beereliminated A ¢; < ¢;+1V
pi—1 hasnot beereliminated A ¢; < ¢;—1
theneliminatep, from consideratior{[25], step 3c).

As a developmento the Teh-Chinmethod ofcalculatingthe re-
gion of supportWu proposeda dynamicmethodfor determining
thevalueof k [26] thatinvolvesassuminghatk; is closein mag-
nitudeto k;_1. In thismethodwe start withk = k;_1, and onthe
jth iterationtry avalueof & thatis j morethank;_, andanother
thatis j lessthank;_.. We therefore alsavaluatedthis method
for generatingcoveragemaps.

5.2.2 Adaptations

The original dominant point detectioalgorithmswereonly in-
tendedfor the simplification ofclosedcurves (polygons). In order
to apply themto non-closecturves suchasour graphsof RSS,we
trialled two approaches. Initiallyhe algorithm’siterationthrough
different \aluesof £ wasconstrainedn orderthat: +k < n and: —

k > 0. Thismeantthatatthebeginningandend ofthe cuneincor-
rect decisionsveremadeover whethemointsshouldbediscarded.
To correctthis we reflectedthe cune in the y-axis at bothends,
suchthatif the valueof k& exceededhe first bound gien abowe,

d;r wascalculated betweep; andthe chordp;—xp,—(i+x—n), ard
similarly for the casef i — k < 0.

,pi+k}-



A furtherobsenation wemadewasthatthe Teh-Chinalgorithm
performsbetteron sparsedata(i.e. fen points per metreof road)
than doedVu’s algorithm,and vice-ersafor densedata.We there-
fore implementeda dynamicalgorithmthat segmentedinput data
into regionsof high andlow density andappliedthe Teh-Chinand
Wu algorithmsto therelevantsections.We termthis the Density-
Dependenalgorithm.

When using/Vu’s algorithm withdensedata,a greaterdegreeof
smoothing vas needed.Consequentlya secondk-cosinediscard
thresholdwas added, 2. Hence,the first step after calculating
cosine curaturess modifiedto eliminatep; if ¢; > pore; < po.

Taking advantageof the knowledgeof the region of support of
each pointyve smoothedheoutput ofthedominant point detection
algorithmsby discardingany pointswith ak; < x, wherex > 1,
andis chosen byexperimentation This isbecauseointswith few
others“supporting” have less rav datato supportthe hypothesis
thatthis cornerin the cuneis dueto real dataatherthanafew out-
liers. However, with sparsedata, rgionsof support will evidently
be smaller (dueo fewer pointsper unit lengthof road)thanthose
of high density Hence,in our dynamicalgorithm we also ary x
depending orthe densityof the input data,usingx = 2 for high
densitiesandx = 0 for low densities.

Finally, we further smooth theutput byremovingextentsthat
arevery short. For all remaining pointg; we comparehe length
of pipiy1 toathrestold €. If it is smallerthan¢ weremowe p; from
considerationWe loop ower the set ofcandidatgpointsuntil there
areno extentsbelow the threshold. This ensureshat extentsthat
concern ery smalldistancesareignored. Hence,{ must besetto
reflectthe minimum distanceover which a vehicletravelling at a
plausiblespeed wouldchave time to adaptits networkconnections
in orderto take adwantage/copevith the changen network per-
formance. We empiricallydetermined, to be 10 metres fohigh
densitiesand 9 metres folow densities.

5.3 Savitzky-Golay Smoothing

Although the dominant point detectioalgorithmsdescribedn
theprevious section work welbn their own, forlarge quantitiesof
noisy datathey arestill proneto outputtingeithera large number
of dominant pointsor, if x andu aretoo high ortoo low respec-
tively, too few to be representatie of the inputs. Therefore,we
investicgatedthe useof afiltering step priorto executinga dynamic
dominant pointslgorithm.

5.3.1 Original Algorithm

Savitzky-Golay smoothing[22] is a windowed low-passfilter
originally usedfor analysingchemicalspectroscopy dat#&oreach
input pointp; a high-orderpolynomialis fitted to the datawithin
thewindowcentred om; usingtheleastsquaresnethod.Thevalue
correspondingo p; thatis outputis the valueof thefitted polyno-
mial atthez co-ordinateof p;. Thewindowis then moedto p;1,
andan entirely separate leastquaresprocedurds executed. The
useof a polynomial fit presergslocal maxima and minimaetter
than othewindow-basedsmoothing filters [20].

We have thereforeimplementedhe algorithmasgiven by Press
et al.[20], which involves straightfonard matrixoperations.The
algorithmassumegquallyspaced datayhich wein general do not
have. However, with densedata,this constraintcan berelaxed to
onewhereprovidedthatthe changén they valueof theinput data
overthewindow lengthis small(i.e. themajority of the pointshave
similar values) the algorithmcan beused.Hence the algorithmis
only of usewherewe have denseinput data. Inaddition, we use
a window size of 101 points(empirically determinedto be large
enoughto achiese the necessary dgeeof smoothing),hencethe
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input must hae atleastthis many datgpointsin order forthe al-
gorithmto berun ower it, thusexcluding roadsthat hae not been
drivenalong multipletimes.

5.3.2 Adaptations

The numberof output pointsof the Savitzky-Golay smoothing
stepis equalto the numberof input points,but the output graph
now hasa muchsmootheprofile. To reducethe numberof points,
we passthe datainto thedensity-dependent dominant poirtgo-
rithm describedn Section 5.2.20 obtaina more space-dfcient
representationHence whilst ourimplementation othe Savitzky-
Golay algorithmis not innovative, couplingit with the dominant
point detectioralgorithmis, to thebest ofour knowledge a tech-
niguethat hasot been preiously used.

6. SIMULATION RESUL TS

Apart from the nearest neighbounterpolationalgorithm,none
the algorithmsproposedn this paperhave previously been used
for processingRSS data. Therefore, syntheticlatawere gener-
ated,processed byhe algorithmsandthe resultscomparedo the
known \aluesusedto generatehe syntheticdata. This proof of
conceptstage als@llowed usto optimisethe algorithmsparame-
tersin preparatiorfor their useon real dataasdescribedn Sec-
tion 7.

6.1 Synthetic Data

To generatesyntheticdata,we examinedtraces recorded by our
vehicle,andcreated twdraceseachfor UMTS and 802.11b/g that
providedasinglevaluefor anylengthalongtheroad. Thedataused
for thelines mimicked the pattern qualitatiely inferredfrom data
for realroadsas recorded by owehicle.We termthesethe source
curves.

Pointswere generatedrom the source curesby picking loca-
tionsalongthelengthof the (synthetic) roadat random. We term
the set of sucHocationsX. The numberof pointsin X wasvar-
ied to simulatedifferent densitie®f sourcedata. The valueof the
source cure (denoteds) ateach oftheselocationswascalculated,
i.e.s(z),z € X, andthen perturbed badding noisen, sampled
fromaNormal distritution with zero mearmndastandard daation
of the appropriatealue(3 dBmfor UMTS, 3.5 dBmfor 802.11b/g,
seeSection 4)giving p(z) = s(z) + n. astheperturbed alue. In
thisway, syntheticcurveswereproducedhat weresimilar to those
curves seen omealtest drives, but for which the true valueswere
known. For each ofthe four source cures, 40 differentsynthetic
datasetsweregenerated]0ateach of foudifferent point densities
(102,250,500and 1000 pointper 100 metres)andeach haing
its own uniqueset of (randomperturbationso thesource cure.

6.2 Evaluation Criteria

Each ofthe 160syntheticdatasetswereprocessed usingach of
theproposedilgorithms from Section artheNearest Neighbour
Interpolationalgorithm,asthis hasbeen used pxgously by others
for generating maps fawirelesspositioningalgorithms),andthe
dominant pointgecordedresultingin afunction wetermd). The
truevalue ateach pointn X, s(x), wasthencomparedo thevalue
at thatlocation onthe dominant pointsurve output bythe algo-
rithms, d(z). Themeansquare error (MSE)f all the pointsin X

was calculated,.e. %W The mean ofthe MSEs for
eachalgorithm oer all the syntheticdataderivedfrom eachsource
curve wasthencalculated.

In asimilar fashionthe compressionatio (CR) wasalsoevalu-

atedfor eachalgorithm. This metricis commonlyusedto evaluate



dominant pint algorithms’ability to approximatean input shape
with as fev pointsaspossible. Itis calculated by dividinghe num-
berof dominant point®utputted byeachalgorithm bythe number
of syntheticdatainput points(and henceshouldbe < 1). This pro-
videsanindication ofwhatcompression haseenachievedin the
representationTo a certainextent, therewill exist a trade-offbe-
tween howcompactthe resultis and howaccuratethe predictions
thatcan bemadeusingit are.

6.3 Simulation Results

The resultsof usingthis syntheticdataare shownin Figures2
and 3.Severalconclusionscan bedravn from them.

On synthetic data, the MSE is acceptably lav. Giventhatthe
standard deation of the noise addedo the source cure was 3
dBm for UMTS and 3.5 dB802.11b/g MSEsof lessthan 4 dBm
(UMTS) or 5 dBm (802.11b/g) suggeshatthe approximatioral-
gorithmsperform well.

Compressioncan be more than a factor 50. The compres-
sionratios forWu'’s andthe Savitzky-Golay smoothingalgorithms
arevery low, suggestinga very compactresult. Compressiona-
tios decreaseavith increasingnput point densityshowingthatthe
algorithmsperform wellon large quantitiesof data.

Wu's algorithm haspoor MSE at low point densities. This is
most probablyduethefactthatatlow densitiegheregionsof sup-
port of neighbouring pointgareunlikely to be correlatedwhichis
anassumption madey the algorithm.However, at high densities,
this algorithm’s MSE is comparabldo that ofthe others,andthe
standard déation ofits MSE is also muchreduced.

Savitzky-Golay smoothing hasconsistently lav MSE and CR.
Theresultssuggesthat (on syntheticdataat least),this algorithm
performsconsistentlywell.

The Teh-Chin and Density-Dependentlgorithms have con-
sistently poor CRs. At low point densitieghis is offset bytheir
betterMSE thanWu's algorithm. However, at high densities, such
high CRsmeanWu'’s algorithmis (overall) moresuitable.

The Density-Dependentalgorithm combines thebestof Teh-
Chin and Wu. At densitiedowerthan 1000 pointper100 metres,
the Density-Dependenalgorithm hasan MSE comparabldo the
Teh-Chinalgorithm, (andsimilarly high CRs). At higherdensities
it retainsits very goodMSE, whilst achieving CRslowerthanthose
of the Teh-Chinalgorithm.

6.4 Parameter Optimisation

In additionto the aboe, experimentswere alsoconductedto
ascertain théest \alue of the k-cosinethreshold thashouldbe
used. The distribution of k-cosinesover the input datais surpris-
ingly non-uniform. Insteadmnost \aluesare eithewery closeto 1
(implying anangleof closeto zero),or closeto 0 (implying aright
angle). This distribution (particularly at high densities)s dueto
to theinput pointsbeingrelatively closetogether,and hencevith
noisy datahe anglesvill bevery sharp.

Becausef this quite bimodal distrilution of cosine curatures,
it was foundthat the MSE and CR performanceof the dominant
pointalgorithmsasthe cosine curaturediscardthresholdvasvar-
ied between-1 < p < 1 wasa stepfunction, the discontinuity
occurringatzero,i.e. whenthe anglds 90 degrees. At = —1 or
n = 1, bothMSE andCR werevery high, reflectinghatat these
discardthresholdsnearlyall and none, respewtly, of the input
pointswould be discarded.A valueof = —0.9 waschosenfor
regions of low point density in orderthat only thosegpoints with
very large angleswvould be discarded asthey are unlikely to be
important. Pointswith smalleranglesareretained. Incontrast,at
high point densitiesy = —0.1, andthehigh discardhreshold u2,
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is chosento be 0.1, to provide adegreeof smoothing ofthe input
data,giventhatthere ardarge amounts.

7. EXPERIMENT AL EVALUATION

Having shownthat ourproposedlgorithmsperform wellonsyn-
theticdata, (whereheirresultscouldbe comparedgainstaknown
value)and optimisedheir parametersye proceededo testtheir
performancen real datecollected by ouwehicle. In ordeto eval-
uatethe algorithmson a real-life dataset, we executedeach dif-
ferentalgorithm onthe corpusof datacollected by ouwnehicleto
generate coweragemap.Wethen usedensor records frosereral
randomlyselectedourneys that werenotin theinput corpusin or-
derto evaluatehow accuratehe predictionsmadeby the coerage
map werewhencomparedo thereal RSS \aluesexperienced on
the samplejourneys. We alsoanalysedhe space-édfciengy of the
resultingextents.

For eachsamplejourney, eachinput tuple of 2-D positionand
sensowvalue (1;, v;) was snappetb the closest point othe rele-
vantroad'scentreline, becoming(z;, v;). The databasevasthen
queriedfor the coeragemap’s stored alue s; atlengthz; along
theroad. For all theinput points,d; = v; — s; wascalculatedas
well asthemeanandstandard déation of thosedifferencesEach
algorithm’s extentswere &aluated usingeachsamplejourney, in
orderto comparetheir accurag.

Thetwo metricsthatareimportantin evaluatingtheperformance
of coveragemappingalgorithmsare the differencebetween pre-
dicted and actual \alues,and the space-dfciency of the ectents.
We now considereachin turn.

7.1 Prediction Err or

In orderto besuccessfula coveragemap’spredictionfor agiven
location must besimilar enoughto a value subsequentlyecorded
at that location to be useful. The differencebetweenthesetwo
valueswill in part bedueto thenatural ariationin RSS \alues,as
explainedin Section 4.

Tables2 and 3showthedifferentalgorithmscomparegor UMTS
and 802.11b/gwhilst Figures5(a) and 5(c)are the correspond-
ing CDFs. Theseshow that for UMTS prediction, the Density-
Dependenand Wu'’s algorithmsperform bestwith the Savitzky-
Golaysmoothingalgorithmalso haing alow predictionerror (90%
confidencenterval of 12 dBm).For802.11b/gthe Savitzky-Golay
algorithmis by far the mostaccuratewith a confidencenterval
of only 10.40 dBm. Figures4(a) and 4(b) showthe spread of
predictionerrors. Significantly the Savitzky-Golay algorithm has
only oneoutlier (circlesonthegraph) forUMTS predictionerrors,
showingthatits predictionsare consistenthgood. The Density-
Dependenand Wu's algorithmsdo have outliers, suggestinghat
their performance casometimedevery poor.

An important questions whetherthesevaluesare significant,
e.g.doesa 90% confidencenterval of 12.00 dBm impact user
far morethan oneof 14.00 dBm?Table 1 showsthat for UMTS
therelationshipbetweenT CPthroughpuandRSS doesiotappear
to belinear: errorsin RSS prediction willbe more significantin
areasof poor coverage.We posit thatthatthis becausen areasof
poor coveragepaclet losseswill be morefrequent,each ofwhich
will causeTCP’s congestion windowo fall to nearzero. Hence,
the window sizewill never be alloved to increaseo large values
that wouldallow highthroughputsGiventhis, we estimatehatfor
RSS aluesbelow -90 dBm, an error of 1 dBmis approximately
equivalentto 40 Kb/s,whilst the same erroat an RSSabowe -90
dBm wouldbefarless (7 Kb/s)Hence|n areaof poorcoveragea
90%confidencenterval of 12.00in RSStranslatesnto a TCPesti-
matethatis approximatel\80 Kb/smore accuratéhan oneof 14.00
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dBm. Hence thedifferencein algorithm prediction performands ’ Algorithm | d [ oa [90%C.L | [d | Tests|
significantfor anend user. Nearest Neighbour] -7.16 [ 4.86 [ 13.00 [7.39] 83

Overall,the algorithmsperformancén thevery worstcasewould Teh-Chin 587 | 6.41 13.6L 734 | 79
be anerrorof 480 Kb/s(poor coverage),or 84 Kb/s(goodcover- Wu “4.65 | 6.61 13.57 6.44 | 65
age).These are acceptablylocomparedo themaximumthrough- Density-Depedent | -7.71 | 6.2 14.0 8.9l | 59
putsachievable,and henceshowthe utility of the coeragemaps Saiitzky-Golay | -5.07 | 439 | 1040 | 5.71| 72
generated by oualgorithms.

Similarly, we estimatehata worstcase erroof 10.00 dBmfor Table 3: Prediction errors for 802.1b/g(d), all in dBm.

802.11g wouldcorrespondo a throughput diferenceof 4-5 Mb/s.
Whilst this isalargevalue,it shouldbebornin mind thatthe maxi-

mum TCPthroughputachiezablewith 802.11gis 20 Mb/s. Hence, low valueof ED~' showshowfew metreseachextentcovers),with
a userwill still derive utility from a predictionthatis subjectto the Savitzky-Golay algorithm being betweethesetwo groups as
sucherror. ) ) shownin the CDFsin Figures5(b) and 5(d).Figures4(c) and 4(d)

Overall, we concludethat Saitzky-Golay smoothingfollowed showthe distributionsof extent densitiesSignificantly for UMTS

by the anapplication ofthe density-dependent dominant poirts the Nearest Neighboualgorithm has seeral outlierswhich arein-

gorithm, performsbest,asit combinesa low 90% confidencein- dicative occasional ery poorperformancémanyextentsgeneratd
tenal in predictionerrors forbothUMTS and 802.11b/gvith few permetre). IncontrastWu's andthe Savitzky-Golay algorithm do
severepredictionerrors (outliers). not have significant outliers. Thesethree algorithmdave similar

- — — distributions for802.11b/g.
Algorithm | d | o4 [90%C.I. [ d [ Tests] Giventhe aboe, we canconcludehatWu's algorithm,and Saitzky-

Nearest Neighbour) -9.64 | 4.40 | 1464 | 9.74 | 748 Golaysmoothingollowed byanapplication othedynamicdensity-
Teh-Chin 1A | 4.A 13.3 8.20 | 748 dependenalgorithm,perform wellas rggardsthenumberof extents

Wu -7.72 | 3.84 12.0 7.92 | 748 generated panetre,and hence argpace-dfcient. As anexample,
Density-Depedent | -6.86 | 4.40 12.0 7.08 | 748 atypical WiFi hotspotcowvering 200 metresf road wouldrequire

Savitzky-Golay | -7.90 | 3.56 12.%6 8.02 | 748 only 6 extentsin orderto represenits coverage,
Overall, we concludethat the Savitzky-Golay smoothingfol-
Table 2: Prediction errors for UMTS (d), all in dBm. lowed by an application ofthe dynamicdensity-dependerdlgo-

rithm performsbest out othe algorithmsve proposegivenits low
- predictionerror and goodspace dfciengy. In addition, we note
7.2 Extent DenSIty its benefitooverthe Nearest Neighbounterpolationalgorithmthat
Ideally, ouralgorithms shoulgiroduce as f& extentsaspossible hasbeen usedor coveragemappingeffortsin the past.
perunit lengthof road(i.e. alow extent densityED), in orderthat
the coeragedatabaselistributedto a vehiclebe smallandcan be
efficiently queried. Tables4 and 5show howthe Nearest Neigh- 8. SCALABILITY
bourandWu’s algorithmsperform well,with few extentsproduced The requirementgor computingresources requiretb produce
per metreof roadfor bothUMTS and 802.11b/gMeanwhile,the coveragemapsare not onerous. We tested ouralgorithmson a
Density-Dependenand Teh-Chin’s algorithm perform poorly(a PentiumlV 3.2 GHz processowith 1 GB of RAM. The system
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\ Algorithm | ED [ ED"' | Num. of Roads |
Nearest Neighbour| 0.030 | 33.409 1380
Teh-Chin 0.086 | 11.807 234
Wu 0.028 | 36.3%2 234
Density-Depedent | 0.068 | 14.615 234
Savitzky-Golay | 0.039 | 25.756 107

Table 4: Mean Extent Density (ED) (extents/m) br UMTS.

| Algorithm | ED [ ED™' [ Num. of Roads |
Nearest Neighbour| 0.019 | 53.383 178
Teh-Chin 0.068 | 14.610 178
Wu 0.019 | 52.245 161
Density-Depedent | 0.062 | 19.3%7 170
Savitzky-Golay | 0.027 | 36.5/7 83

Table 5: Mean Extent Density (ED) (extents/m) br 802.11b/g

analysed 2,444o0adsin the Cambridge aredjnding 1,380roads
that hada enoughRSS datgpointsto constructa coweragemap,
and 115 withone or more 802.11b/gnetworkswith the minimum
numberof pointsnecessary

Thefive algorithmswere eachlrun oneachcandidateoad, pro-
cessingatotal ofover 765,000 UMTSand oer 1.2 million 802.11b/g
datapoints.5,879 UMTSextentsand 2,396 802.11b/gktentswere
generate@ndaddedo thedatabaseThe entireprocesdook 4,714
seconds. The running timeincludesthe printing of a significant
amount ofdebug outputandtherefore coulde furtherdecreased.
In addition,we notethatthis figure involvesprocessingeachroad
up to 5 times,whereasin a real deplgment onlyone algorithm
would beused.

As we and otherdiave seen,the numberof 802.11b/gAPs in
a city can bethousands [13]. Whilst a coveragemap could be
madeto include coeragenformationfor each otheseAPs,i.e.the
many ofthem will not have sufficient coverageto make their usage
by a vehicleworthwhile, or will not permitsuch usageHence,a
coveragemap onlyneedinclude those APs that could be useful.
This mightinclude all thehotspotsfor a particularproviderthata
userhasa subscriptionto, or all thosebelongingto a community
WiFi schemesuchasFon(ht t p: // ww. f on. cont).

Finally, we notethe distinction betweeithe (very large) corpus
of RSS datdhatis collectedandthe (compact)coveragemap.The
raw readingsare uploadedto a sener, which then useour algo-
rithmsto generatea coveragemap,and distrilutesthis to thevehi-
cles.Hence vehiclesneed not hee vastcomputingresources.

Digital Object Identifier: 10.4108/ICST.WICON2008.4901
http://dx.doi.org/10.4108/ICST.WICON2008.4901

9. SENSITIVITY T O CHANGE

A key questionconcernshow frequentlya coveragemap needs
to be updated. Our experiencein Cambridgehas showrthat cel-
lular network deplgmentsappeaito be relatively staticover long
periodsof time (seeFigurel), asmight be epectedgiventhe cost
of installing nev basestations. Incontrastuser-managed wireless
LANSs arelikely to (dis)appeamuch morerequently We suggest
thatthemoreinvestmentequiredin anetwork deplgmenttheless
likely it is to frequentlychangein coverage. Fortuitously it ap-
pearsthat usersaare morelikely to usesuch networkglueto their
greaterubiquity, ratherthanconnectingto wirelessLANs belong-
ing to privatedwellings,in part becausef the billing andsecurity
infrastructurerequiredfor public accesgo a network. Hence,we
believe thatthe principal networkghat will be presentin a coer-
agemapswill notrequirevery frequent updateBased on oudata
collected oer 3 years,jt appearghata suney would be needechat
least yearlyThis islikely to bedueto thelargenumberof students
living in our city, and hencehereis a high deyreeof population
churn; otheareasarelikely to differ.

10. CONCLUSION

Wirelessnetworkaccess forehiclesis increasingly indemand,
thoughits deploymentis not ubiquitousand hencés unpredictable.
Proactve handoer algorithmshave been proposethat depend on
the «istenceof coveragemapsto perform optimal networkse-
lection. This paperhaspresentedand evaluatedfour novel algo-
rithms for generatingcoveragemaps,and comparedthemto the
Nearest Neighbounterpolationalgorithm usedn otherwork. We
havefoundthat usinghe Savitzky-Golaysmoothingalgorithm, fol-
lowed byanapplication ofour density-dependent dominant points
algorithm, hasthe lowest predictionerrors forboth UMTS and
IEEE 802.11b/gwhilst maintainingadequatespace-dfciency.
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