
Resource Virtualization with Programmable Radio
Processing Platform

(Invited Paper)

Zoran Miljaniü and Predrag Spasojeviü
WINLAB, Rutgers University

671 Route 1 South, North Brunswick, NJ 08902, USA
{miljanic, spasojev}@winlab.rutgers.edu

ABSTRACT

As wireless communication moves to all IP and packet based

processing, the virtualization techniques will need to be

introduced to provide common interface to higher layers which

will hide the necessary details for resource reservations and

sharing. In the circuit switched world the communication

resources are guarantied with the allocation of channels that

satisfy certain bandwidth requirements, where the allocated

bandwidth is taken regardless of the actual utilization. In the IP

packet based world the reservations have a soft form with

statistical guaranties allowing dynamic sharing of bandwidth,

while the bandwidth is requested by setting the Service Level

Agreement (SLA) parameters. Setting up SLA parameters and

monitoring their compliance can take complex forms, so it is

advantageous to abstract the SLA related communication from the

higher networking layers and shield them from the changes in the

environment and system load.

The virtualization is even more important for the reconfigurable

and programmable devices suitable for cognitive radio

applications. The changes in frequency band, modulation scheme,

or other baseband and MAC protocols characteristics need to be

monitored by the virtualization layer which is responsible for

mapping original SLA of each flow to the new settings.

We present the novel programmable radio processing platform

architecture framework, Virtual Flow Pipelining – FVP, which

has underlying mechanisms for per flow performance guaranties.

The SLA guaranties are enforced per flow using the scheduling

mechanisms that will allocate proportional share of each hardware

resource to the flow. The allocations of the resource share to the

flow create the Virtual Flow consisting of the sequence of

processing steps on the required processing modules. The

wireless protocol processing often imposes end to end latency

requirements for the whole processing flow, so the resource

scheduler need to take the full flow latency into account as well.

General Terms

Design, Economics, Experimentation

Keywords

Virtualization, SDR – Software Defined Radio, Cognitive Radio,

Multimodal Devices, Flexibility, Performance, OFDM, IP

1. INTRODUCTION
We have witnessed the explosive growth of wireless devices in

the last decade. Every month more than 1.6 million mobile

phones are being sold worldwide [2]. This explosive growth will

coincide with next generation wireless infrastructure that will

consist of multiple radio network technologies, the data rates from

tens of megabits per second to a gigabit per second, and require

efficient use of available spectrum to accommodate the growth.

The expected spectrum liberalization will require either

continuous or frequent spectrum sensing in addition to (per-

packet) agility in adaptation to the interference conditions,

automatic frequency band selection, and power control. The

solutions for efficient spectrum usage in heterogeneous wireless

environments drive the need for collaboration and intelligent

adaptation of wireless devices, which will recognize the radio

access and network infrastructure of the environment and

dynamically change to satisfy connectivity needs [3], [4], [5], [6].

Simultaneous support for diverse traffic streams and dynamic

adaption of devices drive the need for the virtualization support

that will protect higher layer protocols from the changes at the

radio access features and device loading with the simultaneous

traffic flows.

Furthermore, the flexibility can not compromise the speed and

Quality of Service, which are the fundamental requirements of the

emerging mobile multimedia applications [5], [7], [8]. We

propose a new programmable radio processing platform that will

satisfy throughput requirements of the emerging 4G protocols,

and provide deterministic performance guaranties to the multiple

flows simultaneously [9].

The ongoing WLAN deployments and emerging 4G wireless

broadband standards will impose heterogeneous wireless

communication environments, where the infrastructure will be

built with devices using different radio access technologies, and

operating at different spectrum bandwidth. The inherent

heterogeneity is already recognized by the ongoing 4G

Copyright 2008 ACM

WICON'08, November 17-19, 2008, Maui, Hawaii, USA.

Copyright 2008 ICST 978-963-9799-36-3.

Digital Object Identifier: 10.4108/ICST.WICON2008.4887
http://dx.doi.org/10.4108/ICST.WICON2008.4887

standardization efforts where the interoperability between devices

is the requirement, while the infrastructure and terminal devices

are allowed and expected to operate using variety of radio and

higher layer communication protocols. The only common

characteristics of the emerging wireless communication protocols

is IP packet based communication. The flexibility and agility for

per packet protocol selection is required not only for the

interoperability, but even more for the support of new protocols

that are in development and will emerge with the completely new

applications domains (vehicular telemetry, M2M). Achieving the

flexibility at high data rates on a per packet basis is very

challenging because of the need to support at-speed processing for

short (40 bytes) packets [10]. The problem is significantly more

challenging if the protocol selection is required per packet basis,

and even more so if the flexibility is required for the

computationally intensive wireless physical layer processing.

Satisfying these conflicting requirements of low latency

processing time, fast context switching per packet basis, and high

computation complexity is not feasible with the current stored

program architecture processors optimized for static applications

rather than dynamic and I/O intensive applications in the network

centric environment.

The two extreme strategies considered so far for supporting the

interoperability are multimodal hardware and full software

implementation [5], [7] of digital domain processing. The

multimodal hardware approach does not solve the requirement for

a dynamic future evolution which will affect all communication

layers, since it does not have enough or any flexibility to process

the communication protocols different from the ones that the

hardware is designed for. Also, as the number of protocols and

their complexity increases it becomes an impractical solution for

interoperability requirements.

The fully software programmable solution of high speed wireless

protocol remains elusive with current state of the technology. We

can not rely on Moore’s low to catch up with the performance

requirements since the gap between processing complexity of

high speed wireless protocols and processing power of SoC

devices is only increasing: The processing complexity of wireless

protocols experiences the CAGR (Compound Annual Growth

Rate) of 78% [1], while SoC performance is increasing at CAGR

of 22%. This growing gap between the future demand and the

capabilities of existing solutions calls for the research in

breakthrough network centric architecture solutions that will take

into account the new processing paradigms.

The traditional CPU architectures are compute centric with

relatively static data sets and processing tasks orders of magnitude

longer than the time it takes to establish the working data set. The

traditional computer architecture techniques for the performance

improvement through the exploitation of instruction level

parallelism and inherent concurrency in applications are based on

the characteristics of the application that do not hold in the

network centric world. The communication protocol processing is

a short sequence of data manipulation operations, sequential

nature with high data dependency, and no or very little inherent

concurrency to exploit at fine (instruction level) or course

(program or task level) granularity of parallelism.

The new paradigms of computing in the pervasive wireless world

require new techniques for performance improvement and

scalable architectural solutions that will support flexible

processing, rapid reconfiguration and efficient cross layer

communication in collaborative environment.

2. VIRTUALIZATION REQUIREMENTS
FOR WIRELESS COMMUNICATION
As wireless communication moves to all IP and packet based

processing, the virtualization techniques will need to be

introduced to provide common interface to higher layers which

will hide the necessary details for resource reservations and

sharing. In the circuit switched world the communication

resources are guarantied with the allocation of channels that

satisfy certain bandwidth requirements, where the allocated

bandwidth is taken regardless of the actual utilization. In the IP

packet based world the reservations have a soft form with

statistical guaranties allowing dynamic sharing of bandwidth,

while the bandwidth is requested by setting the Service Level

Agreement (SLA) parameters. Setting up SLA parameters and

monitoring their compliance can take complex forms, so it is

advantageous to abstract the SLA related communication from the

higher networking layers and shield them from the changes in the

environment and system load. The following figure illustrates

layering and use of virtualization for the interface towards the

higher layers.

L2

Phy

MAC

L2

L3 and upL3 and up

L2

Virtualization API

L3 and up

Figure 1: Virtualization Architecture

The virtualization layer handles the hardware resources

responsible for managing communication bandwidth. These

processing resources as well as communication bandwidth are

shared among the sessions, so the virtualization is responsible for

SLA enforcement for each session as well as protection between

the sessions so that each gets the required share of the bandwidth.

Each session treats its share of the physical bandwidth as the

separate (virtual) channel, unaware of the other sessions in the

system. Thus the higher protocol layers stay the same regardless

of the number of sessions and physical bandwidth allocation.

Digital Object Identifier: 10.4108/ICST.WICON2008.4887
http://dx.doi.org/10.4108/ICST.WICON2008.4887

The virtualization is even more important for the reconfigurable

and programmable devices since the physical characteristics

change as well.

3. VIRTUAL FLOW PIPELINING
The virtualization layer monitors the setting of physical resources.

The changes in frequency band, modulation scheme, or MAC

protocols characteristics are monitored by the virtualization layer

which is responsible for mapping original SLA of each flow to the

new settings.

The SLA guaranties are enforced per flow, so the virtualization

scheme requires the underplaying hardware resource scheduling

mechanisms that will allocate proportional share of each hardware

resource to the flow. The allocations of the resource share to the

flow create the Virtual Flow consisting of the sequence of

processing steps on the required processing modules. The

wireless protocol processing often imposes end to end latency

requirements for the whole processing flow, so the resource

scheduler need to take the full flow latency into account as well.

Providing the latency and processing bandwidth share guaranties

is difficulty with the software controlled processing platform. The

software control assumes that the scheduler is implemented in

software and requires real time operating system for sharing CPU

processing power as well as the hardware processing engines used

by the software as accelerators. The time scales of real-time

operating system slices and CPU context switching in the

software controlled environment are order of magnitude larger

than the ones required by the wireless protocol processing (tens of

�s vs. �s). Thus Software Defined Radio platforms are not

adequate for the multi-flow communication support since time

slicing of processing resources will be inefficient and non-precise.

We introduce Virtual Flow Pipelining (VFP as the novel

architectural approach for programmable radio protocol

processing which supports controlled coexistence of

communication flows and delivers high performance through the

high utilization of hardware and software processing resources.

The efficient techniques for resource sharing and low overhead

context switching used by VFP, yield high speedup with

parallelization or CPU and hardware processing engines.

4. VIRTUAL FLOW PIPELINING
VFP concept is illustrated in Figure 2.

FU1Hardware

Pipeline
FU2 FU3

Frame Period

FU1(op_a)

Reconfigurable

Hardware and

software virtual

Pipeline

FU3(op_a) FU4(op_b)

Frame Period 1

FU2(op_b) FU1op_c) SW

Frame Period 1

FU3(op_x)

 Figure 2: Virtual Flow Pipelining (VFP) processing

The traditional hardware pipeline based approach has a fixed

sequence of operations, a fixed operation at each stage of the

selected operating mode, and a fixed timing of operations, i.e.,

end to end processing latency. Furthermore there is no provision

for multiplexing functional units among the flows provisioned in

the system which is the basic requirement for enabling the

processing platform virtualization. VFP approach adds the

flexibility with respect to each design dimension described above

and, in addition, allows software defined functions to be

incorporated into the VFP based program control framework.

Virtual flow consists of a set of functions and their scheduling

requirements associated with a higher protocol entity (application,

session, IP, or MAC address). In a VFP scheme, the sequence of

operations is specified by a flow control data structure which

defines operations for each step in the flow, follow up steps and

condition for the selection of the next steps in the case that

processing flow may take alternative paths depending on ht run

time results. The potential sequence space is defined during the

flow provisioning time, but the actual operation sequence is

determined at run time. Furthermore, the synchronization

mechanisms of a VFP scheme are provided to resolve data

dependencies and race conditions between processing units. The

operations performed by functional units have variable size

parameters for data and control information, allowing for the

additional flexibility

The timing of the operations is also provisioned per flow, but

dynamically selected based on the run time results. The

scheduling function of the VFP controller multiplexes each

functional unit (hardware or programmable processor) either

based on a deterministic scheduling policy (time reservation) or

statistical policy, depending on the flow setup. In order to support

synchronous framing type of protocols (e.g., time division

multiplexing), the flow scheduling information for the time

reservation based scheme also specifies the repetition time. The

scheduler is in charge of ensuring both the deterministic and the

statistical performance guaranties.

In addition, the functional units can be of the central processing

engine type, allowing the software programmable functions.

These functions are incorporated in the processing flow using the

Digital Object Identifier: 10.4108/ICST.WICON2008.4887
http://dx.doi.org/10.4108/ICST.WICON2008.4887

same mechanisms as the ones for the functions performed by

hardware modules, retaining all the system flow properties, and

also relieving the software from engaging in the costly

collaboration and communication operations. The hardware

scheduler associated with the central processing units acts in lieu

of an operating system.

The same VFP scheme also incorporates hardware functional

units and software programmable processors for performing the

higher layer protocols processing, including MAC, L2, and L3

layers. The units are shared across the layers based on either

deterministic or statistical guaranties.

5. WIRELESS PROTOCOL PROCESSING
VIRTUALIZATION FRAMEWORK
Supporting multiple concurrent flows and dynamic bandwidth

allocation to the flows in wireless communication networks

requires virtualization. Each flow is a virtual entity described with

the following properties:

x Flow identifier – used by the higher layer protocols for

association for data traffic mapping

x Deterministically or statistically guarantied allocation

of processing resources

x Flow specification program

x Communication between functional elements involved

in the protocol processing

The flows share the resources within the architectural framework

which needs to insure that per flow properties are maintained

throughout flow lifetime. In addition, the flows are protected form

each other, i.e. that traffic fluctuations in one flow will not disrupt

guarantied properties of the other flows.

Flow Identification

The flow identifier is unique number with the local domain

significance with the communication nodes. It is used to identify

flow control information specifying other flow properties, as well

as data buffers storing the data for the functions within the

protocol layer as well as for the interface to the higher layer that

is communicating using the virtual flow.

Resource sharing between the flows

Controlling the processing and communication capacity of

functional units is performed by the scheduler that combines

deterministic and statistical allocation polices. The deterministic

policy makes allocation per repetitive flow frame intervals,

reserving the corresponding functional unit for the required

processing time at the specific interval within the periodic frame.

The remaining capacity of the functional units that is not reserved

by the deterministic policy is allocated by the statistical

scheduling policy using the fixed priority or Weighted Round

Robin (WRR) scheme.

Figure 3 illustrates the VFP scheduling policy:. The processing

elements are performing their functions as tasks which are

initiated by the scheduler. The scheduler deterministic allocations

are handling synchronous tasks which are scheduled for execution

at the allocated time slot within the repetitive frame. As figure 2

illustrates, each virtual flow has associated time frame. The figure

3 shows the allocation of reserved bandwidth time slots to the

synchronous tasks, and shared bandwidth to the asynchronous

tasks. The time slots can possibly belong to the different virtual

TS1: pt=14

AT1: pt=32

TIme

Allocation

ST1Execuition

G1 TS2: pt=10G2 TS3: pt=19G3

Async Task Queue

AT2: pt=10
AT3: pt=6

ST1: pt=14
ST2: pt=10
ST3: pt=19

Sync Task Queue

ST1

Task

Enabling

Event

AT1 ST2 AT2ST3

AT1 ST2 AT1 AT2

AT1 Interrupt

Due to ST2 start
AT1 restart AT1 completion

Figure 3: VFP scheduler policy

Digital Object Identifier: 10.4108/ICST.WICON2008.4887
http://dx.doi.org/10.4108/ICST.WICON2008.4887

flows, so resources allocation policy ran during the flow

provisioning time ensures that processing time is reserved

according to the flow bandwidth and timing requirements. The

synchronous tasks are not interruptible in order to ensure their

deterministic behavior in the presence of other tasks.

The statistical scheduling policy is handling asynchronous tasks

which are allocated in the shared processing bandwidth left over

after the allocation of the reserved capacity by the deterministic

scheduler. The asynchronous tasks are scheduled by fixed or

Weighted Round Robin scheduling discipline. The asynchronous

tasks are interrupted at the start time of the synchronous task time

slot, and resumed at the point of interruption after the completion

of the synchronous task. The interruption is also necessary in

order to guaranty the processing bandwidth for the deterministic

processing of synchronous tasks.

The functions that have the strict time latency requirements, like

physical layer processing sequence that has to fit within the

protocol frame (like FFT, demodulation, decoding) are handled

by synchronous tasks. The other functions, like MAC filtering,

and L2 forwarding are handled by asynchronous tasks.

Flow programs

The VFP functions are executed as tasks, where task can run on

potentially multifunctional hardware engines or software

programmable CPU-s. The sequencing and selection of tasks is

the top level programming paradigm of VFP framework. The VFP

system controller is responsible for selecting for each step the task

function and its associated parameters on each processing

engines. The sequencing is enforced by ordering, function (or

thread on CPU) selection and synchronization between the

processing units. The following notation describes Virtual Flow

Processing sequence specification:

The specification says that opa at functional unit FUi is followed

by opk at functional unit FUj etc. The input and output parameters

are specified for each operation. The operation execution

constitutes that task. The underlying architecture support

mechanism ensures synchronization between the tasks in the flow.

The task can be performed by the multifunctional hardware unit,

or by the programmable CPU (thread). In both cases tasks

scheduling and sequencing is controlled by VFP system controller

which maintains VFP performance and virtualization properties.

Communication

The VFP system controller also performs communication between

functional units in the system, transferring data from the outputs

of one functional unit to the inputs of the following units, as per

input and output parameter references (address bases). The

transfer is performed by the built in DMA engine which relives

hardware processing engine or CPU-s of data transfer burden.

Separating data transfer from processing roles also improves

determinism in processor bandwidth allocation.

6. CASE STUDY
We will illustrate the VFP architecture with the example support

for physical and MAC layer processing of simultaneous 802.11a

and 802.11n flows. Figure 4 describes both the transmitter

downlink processing flows and the functional units necessary to

support these flows. The processing tasks necessary to complete a

802.11n flow are a superset of the ones needed to execute a

802.11a flow.

Encoder-1 Modulator-1Interleaver-1 IFFT

Modulator-2Interleaver-2

STBCMAC

Encoder ModulatorInterleaver IFFTSTBCMAC

Processing Flow
802.11a

802.11n

Functional Units

Interleaver-2 IFFT-2

Figure 4: 802.11a/802.11n

The dotted line blocks correspond to those processing tasks where

the two flows differ. The necessary functional units have the same

functionalities between the two standards except for the space

time block coding block (STBC) which is not needed by 802.11a.

All functional units except the multiple access control (MAC) unit

are synchronous task processing units which should operate in the

described order and can be pipelined between different flows. In

the case of 802.11n the two different

FUi[opa(ipar1, ipar2, opar1) -> FUj[opk(ipar1, opar11,

oparm2) -> FUk[opd(ipar1, opar1)

Digital Object Identifier: 10.4108/ICST.WICON2008.4887
http://dx.doi.org/10.4108/ICST.WICON2008.4887

streams can be pipelined whereas, as is natural, all processing

tasks have to wait for their input processing to be completed (e.g.,

STBC) before being scheduled. The MAC works with the

scheduler to enable the resource sharing and ensure satisfying the

SLA requests. The requests are satisfied by capturing the link and

functional unit resource capabilities, based on the assigned coding

rates, the modulation indices, and overall schedule timing

requirements.

Figure 5 depicts the downlink transmission task schedule where

the upper layers request transmission on three 802.11a flows, and

one 802.11n flows. The 4 flows have potentially different SLA

requirements. The MAC and the scheduler satisfy the requests

based on SLA parameters, while ensuring that no functional unit

is operating simultaneously for a given flow. For illustration

simplicity, in this graph each task has the same duration. In this

example the SLA requests are satisfied whereas two MAC frames

are processed for each of the three 802.11a flows while only a

single MAC 802.11n frame has been completed.

7. CONCLUSION
The convergence of wireless communicates to the IP based with

soft QoS guaranties raises the importance of virtualization as the

mechanism manage sharing the physical resources among the

traffic flows and to abstract the details and changes of physical

channel characteristics. The proliferation of different radio access

network (RAN) standards and need for the simultaneous support

for multiples standards at infrastructure and terminal devices

further increases the need for virtualization. The introduction of

programmable devices as the means to support multiple RAN

standards further drive the need for the virtualization in order to

abstract the adaptation of the communication channel and

network access schemes, and maintain higher payer protocols

resilient and transparent to the changes.

We have presented the novel Virtual Flow Pipelining (VFP)

programming model and processing platform architecture as the

means to support virtualization of traffic flows within the flexible

and programmable framework. The VFP based processing

platform enables the design of protocol processing application

with the performance guaranties in a programmable manner and

to support multiple traffic flows through the virtualization

mechanisms.

We have studied in the simulation environment the characteristics

of concurrent flow support for 802.11a and 802.11n streams and

found out the VFP scheme gives adequate performance for

concurrent flow support as long as the functional modules have

enough aggregate performance and VFP control overhead is kept

less than 100 clock cycles per function activation (task). This

control overhead is well within the reach of practical ASIC

implementation.

In our further study we will investigate the multi flow processing

on the real VFP platform implemented with Xilinx Vertex 5

SX95T devices and compare, and investigate the effects of the

real control overhead on multiple flow support and resources

sharing within VFP framework. Development of different

wireless protocols and their summations run time behavior

analysis is planned for the next phase

MAC

MAC Interl Mod STBC

802.11a

802.11n Enc IFFT

Enc Interl Mod IFFT MAC

MAC Interl Mod IFFTEnc

MAC Interl Mod IFFTEnc

MAC Interl Mod IFFTEnc

MAC Interl Mod IFFTEnc

MAC Interl Mod IFFTEnc

MAC Interl Mod IFFTEnc

MAC

MAC

MAC

Figure 5: Transmitter Schedule with 3 SLA requests for a 802.11a and an 802.11n SLA downlink request transmitter
processing flows and functional units

Digital Object Identifier: 10.4108/ICST.WICON2008.4887
http://dx.doi.org/10.4108/ICST.WICON2008.4887

8. REFERENCES

REFERENCES

[1] Hardware Technology Exploration: Impact of Technology

Evolution on E2R, End-to-End Reconfigurability (E2R)

White Paper, December 2005

[2] The Road to 4G: Will LTE, UMB and WiMAX Just Be

Stops Along the Way?, In-Stat research report, August 2007

[3] J. Mitola III, “Cognitive Radio: An Integrated Agent

Architecture for Software Radio,” PhD thesis, Royal

Institute of Technology (KTH), Sweden, May 2000.

[4] D. Raychaudhuri, “Adaptive Wireless Networks Using

Cognitive Radios as a Building Block,” MobiCom Keynote
Speech, Sept. 2004.

[5] Vanu software-defined radio, http://www.vanu.com

[6] KU Agile radio, https://agileradio.ittc.ku.edu

[7] GNU Radio Project, http://www.gnu.org/software/gnuradio

[8] Universal Software Radio Peripheral (USRP),

http://www.ettus.com/downloads/usrp_1.pdf, see also

http://comsec.com/wiki?UniversalSoftwareRadioPeripheral

[9] Z. Miljanic et al., “The WINLAB Network Centric Cognitive

Radio Platform - WiNC2R,” Proc. CrownComm, Orlando,

Florida: 2007.

[10] Yavatkar, R., and H. Vin (eds.). IEEE Network Magazine.

Special issue on Network Processors: Architecture, Tools,

and Applications 17, 4 (July 2003).

Digital Object Identifier: 10.4108/ICST.WICON2008.4887
http://dx.doi.org/10.4108/ICST.WICON2008.4887

