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ABSTRACT 

As wireless communication moves to all IP and packet based 

processing, the virtualization techniques will need to be 

introduced to provide common interface to higher layers which 

will hide the necessary details for resource reservations and 

sharing. In the circuit switched world the communication 

resources are guarantied with the allocation of channels that 

satisfy certain bandwidth requirements, where the allocated 

bandwidth is taken regardless of the actual utilization. In the IP 

packet based world the reservations have a soft form with 

statistical guaranties allowing dynamic sharing of bandwidth, 

while the bandwidth is requested by setting the Service Level 

Agreement (SLA) parameters.  Setting up SLA parameters and 

monitoring their compliance can take complex forms, so it is 

advantageous to abstract the SLA related communication from the 

higher networking layers and shield them from the changes in the 

environment and system load.  

The virtualization is even more important for the reconfigurable 

and programmable devices suitable for cognitive radio 

applications. The changes in frequency band, modulation scheme, 

or other baseband and MAC protocols characteristics need to be 

monitored by the virtualization layer which is responsible for 

mapping original SLA of each flow to the new settings.  

We present the novel programmable radio processing platform 

architecture framework, Virtual Flow Pipelining – FVP, which 

has underlying mechanisms for per flow performance guaranties. 

The SLA guaranties are enforced per flow using the scheduling 

mechanisms that will allocate proportional share of each hardware 

resource to the flow. The allocations of the resource share to the 

flow create the Virtual Flow consisting of the sequence of 

processing steps on the required processing modules. The  

wireless protocol processing often imposes end to end latency 

requirements for the whole processing flow, so the resource 

scheduler need to take the full flow latency into account as well.  
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1. INTRODUCTION 
We have witnessed the explosive growth of wireless devices in 

the last decade. Every month more than 1.6 million mobile 

phones are being sold worldwide [2]. This explosive growth will 

coincide with next generation wireless infrastructure that will 

consist of multiple radio network technologies, the data rates from 

tens of megabits per second to a gigabit per second, and require 

efficient use of available spectrum to accommodate the growth. 

The expected spectrum liberalization will require either 

continuous or frequent spectrum sensing in addition to (per-

packet) agility in adaptation to the interference conditions, 

automatic frequency band selection, and power control. The 

solutions for efficient spectrum usage in heterogeneous wireless 

environments drive the need for collaboration and intelligent 

adaptation of wireless devices, which will recognize the radio 

access and network infrastructure of the environment and 

dynamically change to satisfy connectivity needs [3], [4], [5], [6]. 

Simultaneous support for diverse traffic streams and dynamic 

adaption of devices drive the need for the virtualization support 

that will protect higher layer protocols from the changes at the 

radio access features and device loading with the simultaneous 

traffic flows.  

Furthermore, the flexibility can not compromise the speed and 

Quality of Service, which are the fundamental requirements of the 

emerging mobile multimedia applications [5], [7], [8]. We 

propose a new programmable radio processing platform that will 

satisfy throughput requirements of the emerging 4G protocols, 

and provide deterministic performance guaranties to the multiple 

flows simultaneously [9]. 

The ongoing WLAN deployments and emerging 4G wireless 

broadband standards will impose heterogeneous wireless 

communication environments, where the infrastructure will be 

built with devices using different radio access technologies, and 

operating at different spectrum bandwidth. The inherent 

heterogeneity is already recognized by the ongoing 4G 
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standardization efforts where the interoperability between devices 

is the requirement, while the infrastructure and terminal devices 

are allowed and expected to operate using variety of radio and 

higher layer communication protocols. The only common 

characteristics of the emerging wireless communication protocols 

is IP packet based communication. The flexibility and agility for 

per packet protocol selection is required not only for the 

interoperability, but even more for the support of new protocols 

that are in development and will emerge with the completely new 

applications domains (vehicular telemetry, M2M). Achieving the 

flexibility at high data rates on a per packet basis is very 

challenging because of the need to support at-speed processing for 

short (40 bytes) packets [10]. The problem is significantly more 

challenging if the protocol selection is required per packet basis, 

and even more so if the flexibility is required for the 

computationally intensive wireless physical layer processing. 

Satisfying these conflicting requirements of low latency 

processing time, fast context switching per packet basis, and high 

computation complexity is not feasible with the current stored 

program architecture processors optimized for static applications 

rather than dynamic and I/O intensive applications in the network 

centric environment.  

The two extreme strategies considered so far for supporting the 

interoperability are multimodal hardware and full software 

implementation [5], [7] of digital domain processing. The 

multimodal hardware approach does not solve the requirement for 

a dynamic future evolution which will affect all communication 

layers, since it does not have enough or any flexibility to process 

the communication protocols different from the ones that the 

hardware is designed for. Also, as the number of protocols and 

their complexity increases it becomes an impractical solution for 

interoperability requirements.  

The fully software programmable solution of high speed wireless 

protocol remains elusive with current state of the technology. We 

can not rely on Moore’s low to catch up with the performance 

requirements since the gap between processing complexity of 

high speed wireless protocols and processing power of SoC 

devices is only increasing: The processing complexity of wireless 

protocols experiences the CAGR (Compound Annual Growth 

Rate) of 78% [1], while SoC performance is increasing at CAGR 

of 22%. This growing gap between the future demand and the 

capabilities of existing solutions calls for the research in 

breakthrough network centric architecture solutions that will take 

into account the new processing paradigms.  

The traditional CPU architectures are compute centric with 

relatively static data sets and processing tasks orders of magnitude 

longer than the time it takes to establish the working data set. The 

traditional computer architecture techniques for the performance 

improvement through the exploitation of instruction level 

parallelism and inherent concurrency in applications are based on 

the characteristics of the application that do not hold in the 

network centric world. The communication protocol processing is 

a short sequence of data manipulation operations, sequential 

nature with high data dependency, and no or very little inherent 

concurrency to exploit at fine (instruction level) or course 

(program or task level) granularity of parallelism.  

The new paradigms of computing in the pervasive wireless world 

require new techniques for performance improvement and 

scalable architectural solutions that will support flexible 

processing, rapid reconfiguration and efficient cross layer 

communication in collaborative environment.  

2. VIRTUALIZATION REQUIREMENTS 
FOR WIRELESS COMMUNICATION 
As wireless communication moves to all IP and packet based 

processing, the virtualization techniques will need to be 

introduced to provide common interface to higher layers which 

will hide the necessary details for resource reservations and 

sharing. In the circuit switched world the communication 

resources are guarantied with the allocation of channels that 

satisfy certain bandwidth requirements, where the allocated 

bandwidth is taken regardless of the actual utilization. In the IP 

packet based world the reservations have a soft form with 

statistical guaranties allowing dynamic sharing of bandwidth, 

while the bandwidth is requested by setting the Service Level 

Agreement (SLA) parameters.  Setting up SLA parameters and 

monitoring their compliance can take complex forms, so it  is 

advantageous to abstract the SLA related communication from the 

higher networking layers and shield them from the changes in the 

environment and system load. The following figure illustrates 

layering and use of virtualization for the interface towards the 

higher layers. 
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Figure 1: Virtualization Architecture 

The virtualization layer handles the hardware resources 

responsible for managing communication bandwidth. These 

processing resources as well as communication bandwidth are 

shared among the sessions, so the virtualization is responsible for 

SLA enforcement for each session as well as protection between 

the sessions so that each gets the required share of the bandwidth. 

Each session treats its share of the physical bandwidth as the 

separate (virtual) channel, unaware of the other sessions in the 

system. Thus the higher protocol layers stay the same regardless 

of the number of sessions and physical bandwidth allocation. 
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The virtualization is even more important for the reconfigurable 

and programmable devices since the physical characteristics 

change as well.  

3. VIRTUAL FLOW PIPELINING 
The virtualization layer monitors the setting of physical resources. 

The changes in frequency band, modulation scheme, or MAC 

protocols characteristics are monitored by the virtualization layer 

which is responsible for mapping original SLA of each flow to the 

new settings.  

The SLA guaranties are enforced per flow, so the virtualization 

scheme requires the underplaying hardware resource scheduling 

mechanisms that will allocate proportional share of each hardware 

resource to the flow. The allocations of the resource share to the 

flow create the Virtual Flow consisting of the sequence of 

processing steps on the required processing modules. The  

wireless protocol processing often imposes end to end latency 

requirements for the whole processing flow, so the resource 

scheduler need to take the full flow latency into account as well.  

Providing the latency and processing bandwidth share guaranties 

is difficulty with the software controlled processing platform. The 

software control assumes that the scheduler is implemented in 

software and requires real time operating system for sharing CPU 

processing power as well as the hardware processing engines used 

by the software as accelerators. The time scales of real-time 

operating system slices and CPU context switching in the 

software controlled environment are order of magnitude larger 

than the ones required by the wireless protocol processing (tens of 

�s vs. �s). Thus Software Defined Radio platforms are not 

adequate for the multi-flow communication support since time 

slicing of processing resources will be inefficient and non-precise. 

We introduce Virtual Flow Pipelining (VFP as the novel 

architectural approach for programmable radio protocol 

processing which supports controlled coexistence of 

communication flows and delivers high performance through the 

high utilization of hardware and software processing resources. 

The efficient techniques for resource sharing and low overhead 

context switching used by VFP, yield high speedup with 

parallelization or CPU and hardware processing engines. 

 

4. VIRTUAL FLOW PIPELINING 
VFP concept is illustrated in Figure 2.  
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 Figure 2: Virtual Flow Pipelining (VFP) processing 

 

The traditional hardware pipeline based approach has a fixed 

sequence of operations, a fixed operation at each stage of the 

selected operating mode, and a fixed timing of operations, i.e., 

end to end processing latency. Furthermore there is no provision 

for multiplexing functional units among the flows provisioned in 

the system which is the basic requirement for enabling the 

processing platform virtualization. VFP approach adds the 

flexibility with respect to each design dimension described above 

and, in addition, allows software defined functions to be 

incorporated into the VFP based program control framework. 

Virtual flow consists of a set of functions and their scheduling 

requirements associated with a higher protocol entity (application, 

session, IP, or MAC address).  In a VFP scheme, the sequence of 

operations is specified by a flow control data structure which 

defines operations for each step in the flow, follow up steps and 

condition for the selection of the next steps in the case that 

processing flow may take alternative paths depending on ht run 

time results. The potential sequence space is defined during the 

flow provisioning time, but the actual operation sequence is 

determined at run time. Furthermore, the synchronization 

mechanisms of a VFP scheme are provided to resolve data 

dependencies and race conditions between processing units.  The 

operations performed by functional units have variable size 

parameters for data and control information, allowing for the 

additional flexibility 

The timing of the operations is also provisioned per flow, but 

dynamically selected based on the run time results. The 

scheduling function of the VFP controller multiplexes each 

functional unit (hardware or programmable processor) either 

based on a deterministic scheduling policy (time reservation) or 

statistical policy, depending on the flow setup. In order to support 

synchronous framing type of protocols (e.g., time division 

multiplexing), the flow scheduling information for the time 

reservation based scheme also specifies the repetition time. The 

scheduler is in charge of ensuring both the deterministic and the 

statistical performance guaranties.   

In addition, the functional units can be of the central processing 

engine type, allowing the software programmable functions. 

These functions are incorporated in the processing flow using the 
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same mechanisms as the ones for the functions performed by 

hardware modules, retaining all the system flow properties, and 

also relieving the software from engaging in the costly 

collaboration and communication operations. The hardware 

scheduler associated with the central processing units acts in lieu 

of an operating system.  

The same VFP scheme also incorporates hardware functional 

units and software programmable processors for performing the 

higher layer protocols processing, including MAC, L2, and L3 

layers. The units are shared across the layers based on either 

deterministic or statistical guaranties.  

5. WIRELESS PROTOCOL PROCESSING 
VIRTUALIZATION FRAMEWORK 
Supporting multiple concurrent flows and dynamic bandwidth 

allocation to the flows in wireless communication networks 

requires virtualization. Each flow is a virtual entity described with 

the following properties: 

x Flow identifier – used by the higher layer protocols for 

association for data traffic mapping 

x Deterministically or statistically guarantied allocation  

of processing resources  

x Flow specification program 

x Communication between functional elements involved 

in the protocol processing 

The flows share the resources within the architectural framework 

which needs to insure that per flow properties are maintained 

throughout flow lifetime. In addition, the flows are protected form 

each other, i.e. that traffic fluctuations in one flow will not disrupt 

guarantied properties of the other flows. 

Flow Identification 

The flow identifier is unique number with the local domain 

significance with the communication nodes. It is used to identify 

flow control information specifying other flow properties, as well 

as data buffers storing the data for the functions within the 

protocol layer as well as for the interface to the higher layer that 

is communicating using the virtual flow. 

 

 

Resource sharing between the flows 

Controlling the processing and communication capacity of 

functional units is performed by the scheduler that combines 

deterministic and statistical allocation polices. The deterministic 

policy makes allocation per repetitive flow frame intervals, 

reserving the corresponding functional unit for the required 

processing time at the specific interval within the periodic frame. 

The remaining capacity of the functional units that is not reserved 

by the deterministic policy is allocated by the statistical 

scheduling policy using the fixed priority or Weighted Round 

Robin (WRR) scheme. 

Figure 3 illustrates the VFP scheduling policy:. The processing 

elements are performing their functions as tasks which are 

initiated by the scheduler. The scheduler deterministic allocations 

are handling synchronous tasks which are scheduled for execution 

at the allocated time slot within the repetitive frame. As figure 2 

illustrates, each virtual flow has associated time frame. The figure 

3 shows the allocation of reserved bandwidth time slots to the 

synchronous tasks, and shared bandwidth to the asynchronous 

tasks. The time slots can possibly belong to the different virtual 
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AT1 Interrupt 

Due to ST2 start
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Figure 3: VFP scheduler policy  
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flows, so resources allocation policy ran during the flow 

provisioning time ensures that processing time is reserved 

according to the flow bandwidth and timing requirements. The 

synchronous tasks are not interruptible in order to ensure their 

deterministic behavior in the presence of other tasks. 

The statistical scheduling policy is handling asynchronous tasks 

which are allocated in the shared processing bandwidth left over 

after the allocation of the reserved capacity by the deterministic 

scheduler. The asynchronous tasks are scheduled by fixed or 

Weighted Round Robin scheduling discipline. The asynchronous 

tasks are interrupted at the start time of the synchronous task time 

slot, and resumed at the point of interruption after the completion 

of the synchronous task. The interruption is also necessary in 

order to guaranty the processing bandwidth for the deterministic 

processing of synchronous tasks.  

The functions that have the strict time latency requirements, like 

physical layer processing sequence that has to fit within the 

protocol frame (like FFT, demodulation, decoding) are handled 

by synchronous tasks. The other functions, like MAC filtering, 

and L2 forwarding are handled by asynchronous tasks.  

Flow programs 

The VFP functions are executed as tasks, where task can run on 

potentially multifunctional hardware engines or software 

programmable CPU-s. The sequencing and selection of tasks is 

the top level programming paradigm of VFP framework. The VFP 

system controller is responsible for selecting for each step the task 

function and its associated parameters on each processing 

engines. The sequencing is enforced by ordering, function (or 

thread on CPU) selection and synchronization between the 

processing units. The following notation describes Virtual Flow 

Processing sequence specification: 

 

 

 

The specification says that opa  at functional unit FUi is followed 

by opk  at functional unit FUj etc. The input and output parameters 

are specified for each operation. The operation execution 

constitutes that task. The underlying architecture support 

mechanism ensures synchronization between the tasks in the flow.  

The task can be performed by the multifunctional hardware unit, 

or by the programmable CPU (thread). In both cases tasks 

scheduling and sequencing is controlled by VFP system controller 

which maintains VFP performance and virtualization properties.  

Communication 

The VFP system controller also performs communication between 

functional units in the system, transferring data from the outputs 

of one functional unit to the inputs of the following units, as per 

input and output parameter references (address bases). The 

transfer is performed by the built in DMA engine which relives 

hardware processing engine or CPU-s of data transfer burden. 

Separating data transfer from processing roles also improves 

determinism in processor bandwidth allocation. 

 

6. CASE STUDY 
We will illustrate the VFP architecture with the example support 

for physical and MAC layer processing of simultaneous   802.11a 

and 802.11n flows. Figure 4 describes both the transmitter 

downlink processing flows and the functional units necessary to 

support these flows. The processing tasks necessary to complete a 

802.11n flow are a superset of the ones needed to execute a 

802.11a flow. 

 

 

Encoder-1 Modulator-1Interleaver-1 IFFT

Modulator-2Interleaver-2

STBCMAC

Encoder ModulatorInterleaver IFFTSTBCMAC

Processing Flow
802.11a

802.11n

Functional Units

Interleaver-2 IFFT-2

 

Figure 4: 802.11a/802.11n  

The dotted line blocks correspond to those processing tasks where 

the two flows differ. The necessary functional units have the same 

functionalities between the two standards  except for the space 

time block coding block (STBC) which is not needed by 802.11a. 

All functional units except the multiple access control (MAC) unit 

are synchronous task processing units which should operate in the 

described order and can be pipelined between different flows. In 

the case of 802.11n the two different  

FUi[opa(ipar1, ipar2, opar1) -> FUj[opk(ipar1, opar11, 

oparm2) -> FUk[opd(ipar1, opar1)  
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streams can be pipelined whereas, as is natural, all processing 

tasks have to wait for their input processing to be completed (e.g., 

STBC) before being scheduled. The MAC works with the 

scheduler to enable the resource sharing and ensure satisfying the 

SLA requests. The requests are satisfied by capturing the link and 

functional unit resource capabilities, based on the assigned coding 

rates, the modulation indices, and overall schedule timing 

requirements. 

Figure 5 depicts the downlink transmission task schedule where 

the upper layers request transmission on three 802.11a flows, and 

one 802.11n flows. The 4 flows have potentially different SLA 

requirements. The MAC and the scheduler satisfy the requests 

based on SLA parameters, while ensuring that no functional unit 

is operating simultaneously for a given flow. For illustration 

simplicity, in this graph each task has the same duration. In this 

example the SLA requests are satisfied whereas two MAC frames 

are processed for each of the three 802.11a flows while only a 

single MAC 802.11n frame has been completed. 

 

7. CONCLUSION 
The convergence of wireless communicates to the IP based with 

soft QoS guaranties raises the importance of virtualization as the 

mechanism manage sharing the physical resources among the 

traffic flows and to abstract the details and changes of physical 

channel characteristics. The proliferation of different radio access 

network (RAN) standards and need for the simultaneous support 

for multiples standards at infrastructure and terminal devices 

further increases the need for virtualization. The introduction of 

programmable devices as the means to support multiple RAN  

 

 

 

 

 

 

 

standards further drive the need for the virtualization in order to 

abstract the adaptation of the communication channel and 

network access schemes, and maintain higher payer protocols 

resilient and transparent to the changes.  

We have presented the novel Virtual Flow Pipelining (VFP) 

programming model and processing platform architecture as the 

means to support virtualization of traffic flows within the flexible 

and programmable framework. The VFP based processing 

platform enables the design of protocol processing application 

with the performance guaranties in a programmable manner and 

to support multiple traffic flows through the virtualization 

mechanisms.  

We have studied in the simulation environment the characteristics 

of concurrent flow support for 802.11a and 802.11n streams and 

found out the VFP scheme gives adequate performance for 

concurrent flow support as long as the functional modules have 

enough aggregate performance  and VFP control overhead is kept 

less than 100 clock cycles per function activation (task). This 

control overhead is well within the reach of practical ASIC 

implementation.  

In our further study we will investigate the multi flow processing 

on the real VFP platform implemented with Xilinx Vertex 5 

SX95T devices and compare, and investigate the effects of the 

real control overhead on multiple flow support and resources 

sharing within VFP framework. Development of different 

wireless protocols and their summations run time behavior 

analysis is planned for the next phase 
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