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ABSTRACT

TCP can perform poorly in multi-hop wireless networks due
to problems that arise with contention and mobility. End-
to-end protocols are at an inherent disadvantage in trying
to solve these problems because their feedback loop operates
over multiple wireless hops, which makes it difficult to di-
agnose problems that occur several hops away and hinders
their ability to adapt to changing network conditions. In
this paper, we design HxH, a hop-by-hop transport protocol
that uses credit-based congestion control and reverse ACKs
to solve many of the problems observed with TCP. We use
a simulation study to demonstrate that our hop-by-hop ap-
proach allows HxH to respond quickly to changing network
conditions and to exploit the unique characteristics of wire-
less networks to reduce overhead. We show that HxH greatly
increases throughput and improves fairness, as compared to
several end-to-end protocols, in both mesh and mobile ad
hoc networks.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

1. INTRODUCTION
In this paper, we consider the problem of reliable trans-

port across multi-hop wireless networks. We focus on net-
works that use a single radio in each node, using the IEEE
802.11 series of protocols, though we also discuss extensions
for multi-radio networks. The network nodes may be pri-
marily stationary, as with a mesh network, or mobile, as
with an ad hoc network. We broadly classify both as multi-
hop networks, since in each case connections must span sev-
eral wireless hops, with the primary differences being that
nodes may be mobile and may be power-constrained in the
ad hoc case.

It is well known that TCP suffers from poor bandwidth
utilization in multi-hop wireless networks. This problem
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arises from the many unique characteristics of wireless net-
works, including contention, interference, the hidden and ex-
posed terminal problems, shared queues, half-duplex links,
and route changes due to mobility. A wide range of research
has attempted to solve this problem by providing feedback
from intermediate nodes [8, 23, 10, 18], by modifying TCP’s
congestion control algorithm [6, 12, 1], or by designing new
transport protocols [16, 2].

Our approach to solving this problem is to design a trans-
port protocol that uses hop-by-hop rather than end-to-end
protocol mechanisms. Our primary motivation is that hop-
by-hop mechanisms free the transport protocol from having
to use a feedback loop that spans multiple hops. Instead,
each of the hops in a connection only has to worry about
conditions that affect delivering packets to the next hop.
This approach is particularly effective in wireless networks,
because intermediate nodes are better positioned to react
to contention and mobility-induced congestion, leading to
a faster response and thus greater throughput. The main
cost of the hop-by-hop approach is that it typically requires
per-flow state in routers; this is less of a problem in wire-
less networks, since they typically operate at the edge of the
network, with relatively few flows.

In designing a new transport protocol specifically for wire-
less networks, we have several goals. First, we want to use
hop-by-hop mechanisms for both congestion control and re-
liability, while still retaining end-to-end transport. This en-
ables us to explore how much benefit can be gained from
a hop-by-hop design, so that we can evaluate whether the
improved performance is worth the additional flow state.
Second, we use 802.11 MAC mechanisms whenever possible,
to eliminate inefficiencies due to duplicate functionality be-
tween the transport and link layers. Finally, the protocol
should be general enough to improve throughput and fair-
ness in both static and mobile wireless networks.

Our hop-by-hop transport protocol, called HxH, contains
two components: a per-flow, credit-based congestion control
algorithm, and end-to-end reliability using reverse ACKs.
The advantage of using per-flow credits is that it eliminates
congestion-induced loss, since a node will not transmit pack-
ets unless there are available credits for that flow at the next
hop. Credit-based control also provides more stability than
rate-based [5] and pricing-based [22] feedback, since flows
are isolated from each other. With rate and pricing feed-
back, whenever new flows start the current rates or prices of
all contending flows must be adjusted and then carried up-
stream. With credit-based feedback the only concern when
adding a new flow is whether there is enough buffering avail-
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able for the new flow; if per-flow buffering is kept small then
this is not a problem on modern hardware.

While hop-by-hop congestion control has many benefits
for wireless networks, pure hop-by-hop reliability is not as
feasible. The fate-sharing principle states that it is accept-
able to lose state for a conversation only if one of the entities
in the conversation is itself lost [3]. If the wireless network
was charged with delivering packets reliably, it would be very
difficult to guarantee that packets would not be lost if nodes
moved or crashed. Accordingly, we design a novel end-to-
end reliability protocol that uses hop-by-hop, reverse ACKs
to reduce ACK overhead. With reverse ACKs, feedback is
carried upstream when data is sent downstream. This avoids
the overhead of sending explicit transport-layer acknowledg-
ments in most cases.

This paper makes several contributions relative to previ-
ous work in hop-by-hop congestion control for wireless net-
works. First, we design and evaluate credit-based conges-
tion control, whereas existing work uses rate-based control,
congestion pricing, or backpressure. Second, we design and
evaluate the first reliable transmission protocol for wireless
networks that uses hop-by-hop, reverse ACKs to provide
end-to-end reliability. Existing work explores only conges-
tion control and does not consider hop-by-hop approaches to
reliable transmission. Third, we perform the first detailed
simulation study to demonstrate the benefits of hop-by-hop
transport as compared to end-to-end transport in both wire-
less mesh and mobile ad hoc networks.

Our simulation study compares the performance of HxH
to TCP with Adaptive Pacing [6], which was designed for
mesh networks; ATP [16], which was designed for ad hoc
networks; and several variants of TCP. We show that HxH
provides much greater throughput and better fairness than
the end-to-end protocols when flows compete at a bottle-
neck. Because of its hop-by-hop congestion control algo-
rithm, HxH is able to react to mobility much faster than
an end-to-end protocol, and thus transfers more data when
nodes move frequently. HxH also reacts quickly when con-
gestion changes suddenly, whereas end-to-end protocols have
difficulty converging to a new rate. We show that reverse
ACKs can improve throughput by 70% for HxH as com-
pared to explicit ACKs, and that this benefit holds even
when passive feedback is not regularly received by nodes,
due to contention or interference. We conclude by showing
that these mechanisms combine to help HxH provide greater
throughput in general mesh and ad hoc networks,

2. END-TO-END PROBLEMS
Many of the problems TCP encounters in wireless net-

works arise from its end-to-end design, which makes it dif-
ficult to diagnose problems that occur several hops away
and to react quickly to changing network conditions. These
problems include:

ACK Overhead: In a wireless network, the channel is a
scarce resource that must be shared among all nodes within
radio range. The transport protocol will operate most effec-
tively if it can minimize the number of times the MAC layer
must contend for access to this resource. Unfortunately,
most end-to-end protocols rely on per-packet acknowledg-
ments, which must contend for resources with data packets.
As wireless networks become faster, channel access domi-
nates the medium access time, and ACKs can consume as
much as half of the wireless bandwidth.

There are several ways to reduce the impact of ACKs
on transport performance. In TCP, ACKs can be piggy-
backed on data packets going in the reverse direction; how-
ever, many applications such as FTP, peer-to-peer, stream-
ing video, and web traffic consist of primarily one-way flows.
Delaying [4] or aggregating [16] ACKs can help, but these
strategies run the risk of reducing responsiveness.

Improper Diagnosis of Loss: Wireless networks may
lose packets for a number of reasons, including contention,
interference, congestion, and mobility. End-to-end transport
protocols may have difficulty distinguishing which type off
loss has occured. If the transport protocol assumes all loss
is due to congestion, then it will slow down needlessly when
other types of loss occur.

This problem is sometimes solved with purely end-to-end
mechanisms [18], but more frequently by using intermediate
nodes to either hide the loss or to notify the transport pro-
tocol and put it into the correct state [8, 23, 10]. The node
that has sent a frame unsuccessfully is clearly in the best
position to determine what caused the loss.

Slow Feedback Loop: In order to prevent congestion, a
transport protocol must react to changes in network condi-
tions by adjusting its transmission rate. End-to-end proto-
cols use some form of implicit or explicit signaling, such as
packet loss or ECN. In wireless networks, there is a greater
chance that this feedback loop can become delayed or lossy,
due to MAC retransmissions, contention, collisions, and in-
terference [16]. Irregular feedback results in the transport
protocol making rate decisions with imperfect knowledge of
network conditions.

Rate-based congestion control algorithms try to solve this
problem by choosing a rate that minimizes congestion and
contention-induced loss, thereby improving the regularity of
feedback. Protocols such as TCP with Adaptive Pacing [6]
provide higher goodput and better responsiveness than stan-
dard TCP congestion control algorithms. However, any end-
to-end algorithm must still measure network conditions and
receive feedback before reacting to congestion. The larger
the delay in this feedback loop, the less responsive it will be
to changes in the network.

Poor Response to Mobility: In wireless ad hoc net-
works, mobility may cause routes to fail and may even lead
to network partitions. During these periods, TCP may time
out if computing a new route takes too long. Even after the
new route is found, TCP will begin with a small congestion
window; if route changes happen frequently TCP may never
send at a high rate.

Most work in this area ensures that TCP pauses during
route changes, either by using feedback from intermediate
nodes [10] or by inferring route changes from packet re-
ordering events [18]. However, even with these changes,
TCP may not react properly to mobility-induced congestion,
which occurs when two flows whose paths did not previously
cross suddenly are within interference or transmission range.
Without additional help from intermediate nodes, end-to-
end algorithms may have difficulty reacting to the sudden
congestion that arises in this case.

3. HXH TRANSPORT PROTOCOL
The HxH transport protocol uses two main features to im-

prove performance: credit-based congestion control at each
hop and reverse acknowledgments to provide end-to-end re-
liability. We first discuss the HxH architecture, including
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Figure 1: HxH Node Architecture

state maintenance and packet scheduling. We then describe
how HxH implements congestion control and reliability us-
ing passive feedback whenever possible. This reduces over-
head and allows HxH to operate over an unmodified MAC
layer. We conclude by discussing MAC modifications that
are necessary for multi-radio networks.

3.1 HxH Architecture
To provide per-flow congestion control and reliability, HxH

uses the node architecture shown in Figure 1. Each node
maintains state for each flow, consisting of a buffer, the
amount of queue space available downstream (for conges-
tion control) and a reverse ACK value (for reliability). A
scheduler determines the order of packet transmission from
each of the flow buffers, coordinating with the MAC layer
to handle loss due to contention.

Flows are identified using the source and destination ad-
dresses and ports listed in the TCP and IP headers. When
a node encounters a flow it has not seen before, it creates
a new queue for the flow and initializes the flow’s state to
appropriate default values. HxH maintains the flow’s queue
and state as long as packets continue to be received for the
flow. The state is deleted when it has not been used for a
period of time. While collecting the results for this paper,
we time out state after two seconds.

HxH uses per-flow fair queueing to provide fairness among
flows that traverse the same path. This doesn’t overcome
all of the limitations of the 802.11 MAC; a protocol such as
Neighborhood Red can be used to address these issues [21].
Whenever the scheduler transmits a packet, it checks with
the MAC layer to ensure the transmission was successful.
If the packet transmission fails, for example due to multi-
hop contention [7], the scheduler places a copy of the packet
back into the flow’s queue and computes a new finishing
time for the packet. This ensures that the scheduler won’t
repeatedly attempt to send packets from problematic flows
without treating the other flows fairly.

HxH handles mobile hosts by suspending a flow when a
route breaks. When a transmitting node detects the failure,
it suspends flows that use the route until a new one is estab-
lished. Nodes that were on the old path, but not the new
one, continue to transmit so that the packets they hold are
not lost. Nodes that were not on the old path, but are on
the new one, establish state for the flow automatically.

3.2 Congestion Control
With credit-based congestion control, each node main-

tains a pool of credits for each flow, indicating the amount of

buffer space available to that flow at the downstream node.
Each time a packet is successfully transmitted for that flow,
the pool is decremented. Each time the node overhears the
next hop transmitting a packet, the pool is incremented.
Transmitting from a node is allowed as long as the pool in-
dicates there is space available downstream.

Because promiscuous listening is not completely reliable,
the congestion control algorithm needs to periodically syn-
chronize the number of available credits with its downstream
neighbor. Credit-based algorithms for wired networks re-
quire each node to send a control message to its previous
hop, telling it how many credits are available for the flow
[13]. Wireless MAC protocols allow us to reduce the over-
head of the credit feedback mechanism by instead using pas-
sive feedback to synchronize the credit pool. This also al-
lows the controller to perform credit-based congestion con-
trol without modifying the MAC layer.

To synchronize the available credits, each HxH node in-
cludes the current number of credits for a flow in a shim
header whenever it sends a packet for the flow. When the
upstream node overhears the packet, it is able to synchro-
nize the credit pool with this amount. As long as passive
feedback succeeds a reasonable amount of time, this scheme
works well. Our simulation quantifies the performance of
HxH based on the success of passive feedback.

In extreme cases, it is possible that an upstream node will
be unable to hear several consecutive packets sent down-
stream. When this occurs, it is possible for the upstream
node to believe that there is no buffer space available when,
in fact, the entire queue downstream is empty. Meanwhile,
the node downstream is unable to correct its upstream neigh-
bor, because it has no packets to transmit. To prevent flows
from stopping in this case, upstream nodes will always trans-
mit a packet from a stopped flow if the time since the last
downstream transmission is more than five times the expo-
nential mean weighted average of previous delays.

Because of this problem, it is also possible that a node
may transmit a packet to a neighbor that has a full queue.
To avoid this case, a downstream node under-reports its
available buffer space by a few packets per flow. The extra
buffer space is used to absorb errors when an upstream node
transmits too soon.

3.3 Reliability
HxH eliminates most sources of end-to-end packet loss.

It uses the 802.11 protocol to provide hop-by-hop reliability,
and whenever a frame transmission fails it re-sends the frame
again. When mobility changes the route for a flow, the mesh
network nodes that were on the old route can still transmit
their packets to the destination, as long as it remains con-
nected to the mesh network. However, packet loss can still
occur if mesh nodes crash or if a misbehaving timer allows
the congestion control algorithm to repeatedly transmit to
a downstream node even though it does not have sufficient
buffer space.

Accordingly, HxH still provides end-to-end reliability, us-
ing reverse ACKs. HxH maintains a reverse ACK value
for each of the flows passing through it. This value rep-
resents the cumulative sequence number that has been ac-
knowledged by the destination. The last hop of a flow is
in position to know whether the destination has successfully
received a packet, since it gets a link-layer ACK. Thus each
time the last hop successfully transmits a packet to the des-

Digital Object Identifier: 10.4108/ICST.WICON2008.4806 
http://dx.doi.org/10.4108/ICST.WICON2008.4806 



Figure 2: Reverse ACKS Using Passive Feedback

tination, it updates its reverse ACK value with the sequence
number of this packet.

All other hops in the flow propagate the reverse ACK
value upstream using passive feedback, as shown in Figure 2.
Whenever a node sends a packet for a flow, it includes the
reverse ACK value in the HxH shim header. When the pre-
vious node hears this value, it updates its own reverse ACK
value.

As long as a steady stream of packets is moving along the
flow, the ACK values will continue to be carried upstream.
Eventually, the values reach the flow’s source and the pro-
tocol responds just as if an explicit ACK was received; that
is, it frees the acknowledged data from its send buffer.

3.3.1 Recovering From Loss

In the rare case that loss occurs, the last hop of a flow
needs to take special care to be sure the reverse ACK value
is updated properly. When packets arrive in order, the last
hop can update its reverse ACK value each time it sends a
packet, knowing that it reached the destination successfully.
However, it cannot do this when there are gaps in the stream,
as this voids the meaning of a cumulative ACK.

To solve this problem, if the last hop of a flow detects a
gap, it stops updating the reverse ACK value and requests
synchronization from the destination by setting a sync bit
in the HxH shim header. When the destination sees the
sync bit set, it determines the cumulative ACK value for
the flow and sends this to the last hop, which synchronizes
its state. The last hop will not continue updating the reverse
ACK value until its synchronized state is equal to the highest
sequence number it has transmitted.

To handle retransmission of lost packets, HxH uses end-
to-end negative acknowledgments. If the destination detects
a gap, it generates a negative ACK for that sequence number
and sends it upstream to the source, which retransmits the
packet. The destination also sets a timer, so that if it doesn’t
receive a retransmission in time it can resend the NACK.

3.3.2 Explicit Acknowledgments

Although this scheme is highly effective for FTP traffic or
other bulk data transfers, additional methods are needed to
handle bursty transmissions and the end of bulk transfers.
Since the ACK data is carried upstream on data moving
downstream, no ACKs will be sent if the flow stops transmit-
ting. To handle these cases, HxH sets a bit in its shim header
to specify that an explicit acknowledgment is requested. The
source sets this bit on the last packet to leave the flow’s
buffer, requesting an explicit ACK from the destination.

Whenever the destination gets a packet with the explicit
ACK bit set, it sends an explicit ACK upstream, subject to
a rate limit. When forwarding explicit ACKs, intermediate
nodes update their ACK state in the same way they would
for a reverse ACK.

3.4 Multi-Radio Networks
In networks with multiple radios, an upstream node may

not be able to use passive feedback, since the downstream
node may transmit packets for the flow on a different fre-
quency. In this case, we must modify the MAC layer so that
the same information sent with passive feedback is instead
conveyed to the previous node explicitly.

For the congestion control algorithm, the feedback a node
requires is the number of credits available downstream. An
upstream node must first tell the downstream node which
flow the frame belongs to; it does this by including a flow
identifier in the DATA frame. When the downstream node
responds with an ACK frame, it includes the current number
of credits for that flow.

For the reliability algorithm, the feedback a node requires
is the reverse ACK value at the next hop node. The up-
stream node again includes a flow identifier in the DATA
frame, and the downstream node includes the reverse ACK
number for that flow in the ACK frame.

These modifications can be done fairly easily, since fre-
quently a wireless MAC includes an ACK message already.
Modifying the MAC has the added benefit that it simplifies
the congestion control algorithm, since it eliminates the need
for timers and extra buffer space that arise when using pas-
sive feedback. This likewise eliminates the need for a sync
bit for the reliability algorithm, since the MAC layer modifi-
cation provides explicit synchronization for each frame sent.

The performance of HxH when using a modified MAC will
be equal or better to the performance when using passive
feedback. When using passive feedback, performance will
suffer whenever passive feedback becomes unreliable. The
MAC modifications, on the other hand, ensure that explicit
feedback is always delivered each time a frame is sent. As a
result, our simulations evaluate a version of HxH that uses
passive feedback exclusively. We then quantify the amount
of performance degradation that occurs as passive feedback
becomes unreliable.

4. RESULTS
We evaluate the HxH transport protocol using the ns-2

simulator on a variety of topologies. Our primary compar-
isons are to TCP with Adaptive Pacing [6], an end-to-end
transport protocol designed for mesh networks, and to ATP
[16], a transport protocol designed for mobile ad hoc net-
works. In the case of ATP, an implementation was not avail-
able, so we wrote our own code based on the authors’ paper.
As a baseline, we also run all experiments with several vari-
ants of TCP. Surprisingly, Vegas and NewReno sometimes
outperform TCP-AP and ATP. Vegas in particular has good
performance due to its rate-based congestion control algo-
rithm, which keeps smaller queues in routers and thus re-
duces some of the impact of multi-hop contention.

Many of our simulations use simple topologies. This is
standard practice when evaluating transport protocols, as
this allows researchers to focus on specific problems that
affect performance, examine the dynamics of the congestion
control algorithm, and make detailed comparisons between
alternative protocols. We also include evaluations on more
complex topologies, in order to assess overall performance
when there are many competing flows and when nodes are
mobile.

Unless otherwise stated, the simulations in this paper use

Digital Object Identifier: 10.4108/ICST.WICON2008.4806 
http://dx.doi.org/10.4108/ICST.WICON2008.4806 



Figure 3: Dumbbell Topology

a wireless medium similar to the 802.11g specification. Link
speeds are 54 Mbps, but the attainable throughput is much
lower due to overhead incurred by the RTS/CTS exchange.
The 802.11 MAC protocol specifies that the RTS and CTS
control packets are sent at a speed of 1 Mbps, to provide
backwards-compatibility among transmitters of differing max-
imum speeds. This lowers the capacity for a single hop to
about 8.8 Mbps, with even lower speeds over multiple hops
due to contention. Higher throughput is of course possible if
the RTS/CTS exchange is also sent at 54 Mbps, but the im-
portant part of our methodology is that all tested protocols
are run with the identical configuration.

Wherever topologies show adjacent nodes, they are placed
so that they are within range of each other, but outside the
range of non-adjacent nodes. We use the AODV routing pro-
tocol [14] for all simulations, even those without mobility, so
that our methodology is consistent across all experiments.
We use a packet size of 1000 bytes and plot throughput
using a one-second sliding window, sampled every 100 mil-
liseconds.

For HxH, nodes advertise a maximum queue size of 4 pack-
ets per flow. Because of this choice, in all simulations queue
sizes are small and end-to-end delay is comparable to TCP
Vegas, smaller than NewReno, and slightly larger than TCP
with Adaptive Pacing.

4.1 Congestion and Fairness
We first compare the performance of HxH with end-to-end

protocols to examine their reaction to congestion and their
ability to provide fairness. We use the dumbbell topology
shown in Figure 3, with four flows sharing a four-hop link,
causing a substantial bottleneck. We stagger the start time
of each flow by ten seconds in order to observe the protocol’s
behavior when it must adjust its rate. We then plot the
throughput observed by each of the four receivers.

Figure 4 highlights many of the benefits of using HxH.
HxH achieves much higher throughput than the other end-
to-end protocols due to its better handling of contention-
induced loss and its use of reverse ACKs. When loss occurs
due to contention, HxH simply re-queues the affected packet
without reducing its rate. TCP with Adaptive Pacing is
able to share bandwidth effectively, but has a lower overall
throughput. ATP can occasionally achieve high through-
put for one flow, due to aggregating ACKs into epochs, but
reducing the amount of feedback also leads to instability.

HxH also shares the bandwidth more fairly among com-
peting flows. We use Jain’s fairness equation to determine
how fairly the available bandwidth was distributed among
the four flows, in terms of bytes received. The results are
summarized in Table 1, with the data shown representing
only the last 30 seconds of the simulation, when all four
flows are actively participating. TCP-AP is also able to al-
locate bandwidth fairly in this case, using only end-to-end

HxH1

HxH2

HxH3

HxH4

0

0.2

0.4

0.6

0.8

1

1.2

T
h

ro
u

g
h

p
u

t 
(M

B
it
s
/S

e
c
)

0 10 20 30 40 50 60

Time (Sec)

(a) HxH

 

TCP−AP1

TCP−AP2

TCP−AP3

TCP−AP4

0

0.2

0.4

0.6

0.8

1

1.2

T
h

ro
u

g
h

p
u

t 
(M

B
it
s
/S

e
c
)

0 10 20 30 40 50 60

Time (Sec)

(b) TCP-AP

 

ATP1

ATP2

ATP3

ATP4

0

0.2

0.4

0.6

0.8

1

1.2

T
h

ro
u

g
h

p
u

t 
(M

B
it
s
/S

e
c
)

0 10 20 30 40 50 60

Time (Sec)

(c) ATP

 

Vegas1

Vegas2

Vegas3

Vegas4

0

0.2

0.4

0.6

0.8

1

1.2

T
h

ro
u

g
h

p
u

t 
(M

B
it
s
/S

e
c
)

0 10 20 30 40 50 60

Time (Sec)

(d) TCP Vegas

Figure 4: Congestion Control on the Dumbbell
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HxH TCP-AP ATP Vegas NewReno

Flow 1 1.21 0.55 1.04 0.61 0.38

Flow 2 1.33 0.52 0.93 0.50 0.72

Flow 3 1.31 0.51 0.99 0.73 0.59

Flow 4 1.20 0.57 0.82 0.32 0.57

Total 5.05 2.15 3.79 2.17 2.26

Fairness 0.998 0.998 0.993 0.928 0.956

Table 1: Fairness in the Dumbbell Topology

Figure 5: Mobile Lattice Topology

mechanisms, but its overall throughput is similar to other
TCP variants.

Two small problems occur due to interactions with the
802.11 MAC. The throughput of HxH is initially a bit jagged;
this occurs due to short-term unfairness in the 802.11 MAC
[20]. In addition, with HxH (and Tahoe and NewReno),
the second flow does not initially begin transmitting until
several seconds after it should, due to the loss of an AODV
route request message. A high rate of RTS/CTS traffic can
prevent broadcast packets such as the AODV route request
from being delivered [7, 12]. We plan to investigate solutions
to these two problems in our future work.

4.2 Mobility
We next examine HxH and end-to-end protocols in a topol-

ogy that stresses mobility-induced loss, without the effects
of congestion. In the topology shown in Figure 5, the source
and destination nodes periodically move along the edges of
a lattice, inducing route failures at each step and requiring
new routes to be formed. The transport protocols must cope
with frequent route failure during this time. We repeat this
simulation with different speeds for the source and destina-
tion, so that we can control the frequency of route failures
the nodes experience. Each simulation is run for 60 seconds.

As shown in Figure 6, HxH is able to achieve a higher ini-
tial throughput and maintain the rate due to reverse ACKs
and its hop-by-hop congestion control. For all protocols ex-
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Figure 7: Topology with Sudden Congestion

cept ATP, throughput decreases as mobility increases. This
is to be expected, since route failures require the protocols
to wait while a new route is established. Yet, the TCP vari-
ants each suffer a drop of nearly 50%, while HxH only loses
8.2% of its total throughput. ATP performs better than the
TCP variants in this scenario, but its instability, seen pre-
viously with the dumbbell topology, prevents it from doing
even better.

4.3 Sudden Congestion
One of the differences between hop-by-hop and end-to-end

congestion control is that the hop-by-hop approach can re-
act more quickly to sudden congestion. To test this case,
we use the topology shown in Figure 7. Two pairs of nodes
communicate in this topology, initially positioned so that
they are not within radio range and thus do not contend
for bandwidth. As the simulation progresses, the two flows
pass through each other’s transmission ranges and eventu-
ally move back out of range of each other. This causes the
flows to see rapid reductions and gains in their attainable
throughput.

Figure 8 compares the results of HxH to those seen by
TCP with Adaptive Pacing, which was the most effective
end-to-end protocol in this scenario. HxH achieves nearly
double the throughput of TCP-AP, primarily due to its use
of reverse ACKs. In addition, hop-by-hop congestion control
allows HxH to react to changing network conditions much
more quickly, both when the flows meet and when they di-
verge.

4.4 Reverse Acknowledgments
We use the same topology to determine the effect of re-

verse acknowledgments on HxH’s performance. We create a
version of HxH that uses explicit ACKs by disabling reverse
ACKs and having the destination send an explicit end-to-
end ACK upstream for every data packet it receives. This
behavior mimics TCP’s reliability mechanism, ensuring that
any benefits seen are solely the result of HxH’s congestion
control algorithm.

The use of explicit ACKs does not hinder HxH’s ability
to react quickly to mobility – both the reverse and explicit
ACK versions react similarly when the flows meet and then
diverge. The primary difference is that using reverse ACKs
allows for a throughput gain due to eliminating the channel
accesses required by ACKs.

The benefit obtained by reverse acknowledgments varies
with the speed of the wireless link. Because the RTS/CTS
exchange occurs at 1 Mbps, to remain compatible with sur-
rounding lower speed nodes, the overhead due to sending an
explicit ACK for every packet increases up to about 50% as
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Figure 8: Reacting to Sudden Congestion

1 Mbps 11 Mbps 54 Mbps

Reverse ACKs 0.80 3.89 5.63

Explicit ACKs 0.68 2.58 3.31

Gain 17.6% 50.8% 70.1%

Table 2: The Benefits of Reverse ACKs

the link speed increases. HxH takes good advantage of the
extra bandwidth gained when eliminating explicit ACKs; as
shown in Table 2, the gain varies from 17% to 70%.

4.5 The Effectiveness of Passive Feedback
The version of HxH we simulate relies heavily on the abil-

ity of nodes to passively overhear traffic sent by other nodes.
It uses passive feedback to deliver the available credits and
reverse ACK value from a downstream node to an upstream
node. Accordingly, it is important to know how the abil-
ity to receive passive feedback affects its performance. Note
that if HxH instead modifies the MAC to deliver explicit
feedback, it is unaffected by this problem.

We conduct an experiment with a single flow on a five node
chain, measuring the frequency with which a node in the
chain is able to overhear the packets sent by its downstream
neighbor. Without any intervention on our part, the success
rate of passive feedback in this case is about 94%. We then
emulate lower success rates by dropping passive feedback
probabilistically, varying the success rate from 0 to 100%.
Figure 9 plots HxH throughput as a function of the passive
feedback success rate.

This result shows that HxH outperforms end-to-end pro-
tocols as long as passive feedback can be overheard at least
30% of the time. Performance does not drop significantly un-
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Figure 9: HxH Throughput vs Passive Feedback

Success Rate

til the success rate drops below 80%. While these numbers
may vary depending on the topology and workload, this is
an encouraging result. For the other experiments presented
in this paper, the success rate for passive feedback varies
from 85% to 99%, without a significant impact on HxH per-
formance.

4.6 Mesh Network
To study performance in a mesh network, we use a six-

by-six grid topology. We establish twelve flows, with six
flows (1 - 6) sending from top to bottom, and six flows (7
- 12) from left to right. Since the simulation is meant to
model a planned topology, no ad hoc routing protocol is
used. Instead, each flow is given a route through the grid,
which it maintains throughout the entire simulation.

HxH and ATP both achieve higher throughput than the
TCP variants due to the smaller number of explicit ACKs
they send. Figure 10 shows the number of bytes received by
each flow for HxH, TCP-AP, and ATP during a 60 second
period. The other other TCP variants perform similarly to
TCP-AP. The caption indicates the aggregate total bytes
transferred by all flows during the simulation.

As can be expected, none of the protocols are able to
achieve a completely fair allocation of bandwidth across all
twelve flows, though TCP-AP does the best job. Although a
transport protocol can worsen this problem, the unfairness
seen is not exclusively a transport layer issue; the MAC
layer and the topology are primarily responsible. Due to
the shape of the topology, some flows compete with fewer
flows than others. In addition, it is well-known that the
802.11 MAC is unfair in how it allocates bandwidth among
competing nodes [21]. Although the transport layer cannot
entirely fix the problem, the use of pacing appears to help
in this situation.

4.7 Ad Hoc Networks
To model ad hoc networks, we generate 50 random topolo-

gies. We place 200 mobile wireless nodes in four square kilo-
meters of terrain. The density of nodes within the terrain
is intended to maintain a connected network. We create
five flows among randomly-selected nodes, with connections
lasting for 60 seconds. Meanwhile, all nodes move using a
random-waypoint model with a speed of 10 meters/second
and a pause time between 5 and 25 seconds.

As shown in Table 3, HxH again outperforms the other
protocols, with HxH nearly doubling the throughput of its
nearest competitor, TCP Vegas. This table shows the mean
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Figure 10: Performance in a Mesh Network

HxH TCP-AP ATP Vegas NewReno

Mbps 2.676 1.025 1.069 1.488 1.423

MBytes 20.07 7.69 8.02 11.16 10.67

Table 3: Performance in Ad Hoc Networks

of the throughput and bytes transferred for each transport
protocol, summed over all five flows. TCP-AP likely per-
forms poorly in this case because it was designed for net-
works with only low mobility.

5. RELATED WORK
The earliest work on hop-by-hop congestion control was

done for high-speed, wired networks. Mishra and Kanakia
designed the HBH congestion control algorithm, in which
a node measures the buffer occupancy for each connection
and sends this information to the upstream node, which
then regulates its sending rate to match the service rate of
the downstream node [11]. Subsequent work for ATM net-
works devised credit-based flow control at each hop, with fair
queueing to divide bandwidth among competing flows [13].
To protect against the possibility of losing credit messages,
nodes re-synchronize periodically by measuring available ca-
pacity. We use similar concepts to these in our hop-by-hop
architecture, with adaptations that capitalize on the unique
aspects of wireless networks.

More recently, hop-by-hop congestion control algorithms
have been designed for multi-hop wireless networks. In one
approach, the network calculates congestion pricing, and a
node regulates its sending rate based on the sum of the prices
of all downstream nodes [22]. This work is only applicable
to multi-radio networks and has only been evaluated with a

static network and traffic flow; it is not clear how quickly the
pricing can adapt to congestion that arises due to mobility
and new traffic flows. Another approach limits the sending
rate of each connection at a given node to one packet at
a time [15]. The downside of this approach is that it is
easy for the connection to underutilize available bandwidth.
Any type of error, such as packet loss or inability to receive
passive feedback, may result in the flow stopping to perform
a retransmission.

In addition to this work, a number of hop-by-hop con-
gestion control algorithms have been designed for wireless
sensor networks [9, 17, 19, 5]. The hop-by-hop approach is
very useful in sensor networks because intermediate nodes
can react more quickly to transient congestion, and because
algorithms must have simple, low-power implementations.
While this work has been very successful, sensor networks
have significant limitations, such as small buffers and packet
sizes, low transmission rates, a many-to-one traffic pattern,
and usually no mobility. Additional work will be needed to
extend these algorithms to a more general multi-hop wireless
network.

6. CONCLUSIONS AND FUTUREWORK
This work demonstrates the viability of credit-based, hop-

by-hop transport for multi-hop wireless networks. Credit-
based congestion control reacts quickly whenever network
conditions change, and can improve fairness among flows
competing on the same path. Reverse ACKs eliminate much
of the overhead of end-to-end transport, while still providing
end-to-end reliability. The primary advantage of end-to-
end protocols is that they require less per-flow state, but
in wireless networks the number of flows is typically small
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enough to justify the performance improvement gained by
providing per-flow, hop-by-hop congestion control.

In future work, we plan to evaluate hop-by-hop conges-
tion control experimentally using a mesh network testbed,
explore the proper settings for timers and buffer sizes, and
study performance for short-lived flows. We will also ex-
pand our evaluation to include other hop-by-hop congestion
control algorithms, including those that use rate-based and
pricing-based feedback. In addition, though our architecture
does provide fairness among flows that traverse the same
path, we are interested in finding complementary techniques
that provide fairness among competing nodes over larger
areas. Finally, we are working on integrating the hop-by-
hop approach with end-to-end protocols, so that it operates
transparently over multiple wireless hops, while also inter-
operating with the wired Internet.
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