
Efficient XML Usage within Wireless Sensor Networks

Nils Hoeller, Christoph Reinke, Jana Neumann, Sven Groppe, Daniel Boeckmann,
Volker Linnemann

Institute of Information Systems
Ratzeburger Allee 160

23538 Luebeck, Germany
{hoeller, reinke, neumann, groppe, boeckmann, linnemann}@ifis.uni-luebeck.de

ABSTRACT
Integrating wireless sensor networks in heterogeneous net-
works is a complex task. A reason is the absence of a stan-
dardized data exchange format that is supported in all par-
ticipating sub networks. XML has evolved to the de facto
standard data exchange format between heterogeneous net-
works and systems. However, XML usage within sensor
networks has not been introduced because of the limited
hardware resources. In this paper, we introduce XML tem-
plate objects making XML usage applicable within sensor
networks. This new XML data binding technique provides
significant high compression results while still allowing dy-
namic XML processing and XML navigation. This is a step
towards more complex but exchangeable data management
in sensor networks and the extension of the service-oriented
paradigm to sensor network application engineering.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications, Distributed databases; H.2.4
[Database Management]: Systems—Distributed Databases,
Query Processing

General Terms
Languages, Management, Design

Keywords
XML, Wireless Sensor Networks, Database Management,
Programming Language

1. INTRODUCTION
With the rapidly advancing development in the field of

microprocessor technology, which results into smaller and
more powerful microprocessors, wireless sensor networks are
becoming increasingly important. Wireless sensor networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation onthe first page. To copy otherwise, to
republish, to post onserversor to redistribute to lists, requires prior specific
permission and/or a fee.
WICON ’08, November 17-19, 2008, Maui, Hawaii , USA
Copyright 2008ICST 978-963-9799-36-3 $5.00.

consist of single sensor nodes that combine regular com-
puting devices with different sensors for monitoring envi-
ronmental conditions and events. Recently, many sensor
network deployments have been reported for different ap-
plication fields from geological environment monitoring to
ubiquitous computing applications [17, 30, 12]. Neverthe-
less, sensor network programming remains a highly complex
development task and the integration of sensor networks in
heterogeneous networks has only been proposed inchoately.
Besides, recent sensor network data management approaches
only support very simple data structures, like one table per
network [31, 16], while there is a need for more complex data
structures like those in existing database systems. Hence,
the use of a standardized exchange format is desirable while
handling this format during programming should be easy
and transparent for the developer. A highly exchangeable
and extensible data format is XML, which has become the
de facto standard for data exchange over the Web. Different
query languages, like XPath [26], XSLT [28] and XQuery
[27], have been introduced. Using XML in sensor networks
encourages the interchangeability of different types of sen-
sors and systems, e.g. making it easy to interconnect a sen-
sor network to the WWW. In Figure 1 we show a possible
scenario. A sensor network can directly be queried using
XML query languages by any client that is able to process
XML, while the XML result can be further processed, e.g.
in order to present it on a webpage.

Figure 1: Sensor Networks <-> WWW Integration

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

However, due to the limited hardware resources of sen-
sor nodes, native XML support has not been proposed for
wireless sensor networks. The general verbosity of XML
conflicts with the limited energy and memory capacities of
sensor nodes. For this reason, native XML support has to
be based on efficient XML data binding structures that save
space, time and energy by eliminating the XML overhead.
Dynamical XML processing, e.g. querying and updating,
still has to be possible and XML data binding libraries have
to be small sized, which limits the compression possibilities
and makes XML data binding a difficult task in sensor net-
works.

In summary, a good XML data binding solution for sensor
networks has to fulfill the following criteria:

• Memory Efficiency: Representing a high amount of
XML data with a low amount of allocated memory.

• Runtime Efficiency: Using only a minimal number of
processing cycles for processing XML data.

• Processability: Allowing to process XML data dynam-
ically without an expensive decompressing step.

In this paper, we present such an XML data binding tech-
nique for XML processing in sensor networks. This tech-
nique is based on the usage of XML template objects. XML
template objects are defined as XML data structures that
combine similar XML structures and further compress them
while still allowing dynamic processing of the XML con-
tents. By statically analyzing the usage and definition of
XML documents within sensor network programming, XML
template objects can be automatically defined without let-
ting the developer handle the complex XML compression
and data binding task.

In summary, our contributions in this paper are:

• XOBESensorNetwork: We propose an XML program-
ming environment to simplify the XML integration
in sensor network programming. XOBESensorNetwork

(XML Objects for Sensor Networks) provides the
direct use of XML in a sensor node programming lan-
guage while ensuring stable and space-, time- and energy-
efficient programs.

• XML template objects: XML template objects rep-
resent a memory and energy efficient way to process
XML natively in wireless sensor networks.

• Implementation: We present the integration of XML
template objects by using the Embedded C program-
ming language.

• Evaluation: The efficiency of XML template objects is
proven by evaluating typical XML usage scenarios in
sensor networks. Furthermore, we show encouraging
results based on the XMark benchmark.

The remainder of this paper is organized as follows: Sec-
tion 2 explains how to integrate the presented XML process-
ing techniques in sensor network programming by using the
XOBESensorNetwork programming environment. Thereby
we introduce the proposed approach on memory and energy
efficient XML processing within sensor networks. In Section
3, we present the evaluation results of running typical XML
usage scenarios and an XMark benchmark based applica-
tion. We give an overview of related work in Section 4 and

conclude this paper and suggest future research directions
in Section 5 and 6.

2. XML USAGE IN SENSOR NETWORKS
In this section, we describe our approach on managing

XML data within wireless sensor networks. Starting with
the given limitations of XML usage on sensor nodes in Sec-
tion 2.1, we present a complete solution fo processing XML
data under the present energy and memory restrictions in
sensor networks. In detail we describe the integration of
XML in sensor network programming in Section 2.2. Inte-
grating XML usage in sensor network programming requires
transforming XML into internal data structures that are
supported by the sensor network programming languages. In
Section 2.3 we introduce our new approach of binding XML
data by using XML template structures. The implementa-
tion of this new XML data binding technique is presented
in Section 2.4.

2.1 Limitations & Goals
XML is verbose, i.e. using the textual representation of

XML can increase the space cost for representing the same
information up to 400%. Higher space costs slow down com-
putation as more processor cycles are needed for generating,
copying and transmitting data over a network. Whenever
we need more processor cycles for computation, we also need
more energy. Transmitting data is one of the most energy-
consuming operations in wireless sensor networks. Thus,
the biggest waste of energy is whenever more data than
necessary is transmitted. Therefore, saving space costs for
used data leads to increasing performance and saving en-
ergy, which extends the lifetime of each single sensor node
and the whole sensor network. Table 1 presents an overview
over existing sensor node platforms. In summary, the mem-
ory capacity of current sensor nodes is quite limited while
the energy consumption hits its peak at transmission opera-
tions, as described in [16]. These hardware resource limita-
tions therefore conflict with the general verbosity of XML.
This may be one of the main reasons why XML program-
ming and processing has not been integrated into wireless
sensor networks yet.

Another development limitation is the complex task of
programming sensor nodes. This is even more serious for
integrating XML in sensor network programming. While re-
cent sensor network applications use only simple data struc-
tures, e.g. only lists of sensor values, using XML will require
consolidated knowledge on how to represent XML with the
language constructs of sensor node programming languages
like Embedded C [3]. Hence, besides solving the verbosity
problem of XML, the XML programming language integra-
tion should be transparent and usable without any consol-
idated knowledge. The motivation of this paper is to show
a flexible API providing XML storage and XML navigation
methods that are the key feature for future web service so-
lutions integrated in sensor networks.

2.2 Our XML Programming Environment
In this subsection, we propose our XML programming en-

vironment to simplify the XML integration in sensor net-
work programming, XOBESensorNetwork [11, 24]. It pro-
vides the direct use of XML in a sensor node programming
language while ensuring stable and space-, time- and energy-
efficient programs. This is done by integrating XML con-

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

Table 1: An Overview of Common Sensor Nodes
Name pacemate BTnode Tmote Sky (Telos B) MICAz Mote IMote XYZ Sensor Node
Producer Uni Luebeck ETH Zuerich Moteiv Crossbow Intel Yale

RAM [kB] 32 64+180 10 4 64 32
Flash [kB] 256 128 48 128 512 256

structs directly into the used programming language Em-
bedded C [3]. In this section, we also outline the advantages
of our approach, which are transparency to the user and
guaranteed valid XML expressions which enable stable pro-
grams.

2.2.1 Transparency
Programming sensor nodes may be tedious when you have

to deal with different exchange formats, even with XML.
Providing internal send and receive methods might sim-
plify the handling of messages but still does not ensure
full transparency of communication to the developer. With
XOBESensorNetwork we ensure transparency by integrating
the possibility of directly using XML within the program-
ming language. In Figure 1 we show an example of pro-
gramming a node using XOBESensorNetwork. The PC is
asking for the status of the sensor network and is further
processing the result using XML. The sensor node is pro-
grammed to gather its status information using XML, e.g.
read the temperature sensor value, and send it as a result to
the PC. XOBESensorNetwork integrates XML into Embed-
ded C, which is a wide spread programming language for
sensor nodes based on AVR controllers [3]. By using the
XOBESensorNetwork precompiler, the developer does not
have to handle XML within the Embedded C Code man-
ually. Using the keyword xml at variable declaration defines
using an XML variable. From now on, plain XML can be
assigned to the XML variable, which is shown in Figure 1(?).
The XOBESensorNetwork precompiler automatically trans-
forms the assignment into correct C code using our efficiency
optimized transformation rules.

2.2.2 Stable Programs
Besides providing a transparent use of XML within pro-

grams, XOBESensorNetwork code ensures more stable pro-
grams. If a program generates an XML document, it is often
necessary that the document is not only well-formed but also
valid. This means it conforms to a schema, generally given as
a DTD or an XML Schema document. To verify that a given
program produces a valid XML document it is normally nec-
essary to perform comprehensive tests at runtime. This pro-
cess is called dynamic type checking. XOBESensorNetwork

instead offers the possibility of static type checking: by a
program analysis at compile time it can be decided if the
given program produces a valid XML document or not. If
e. g. in the previous code example the right hand side of
the assignment does not conform to the type of status, the
static type checking procedure reports an error.

In this way even the return values of queries, e. g. for-
mulated in XQuery, can be guaranteed to be valid. So the
effort needed for testing a program is significantly reduced
and more stable programs are generated. This is especially
important in the area of sensor networks because program-
ming and testing of sensor nodes is an error-prone and te-
dious process in itself. If an error is not detected until all
sensor nodes are deployed, in the worst case the whole sen-

sor network can become useless and a redeployment of the
whole network may not be profitable. Even if it is affordable
to reprogram the whole sensor network, this often means re-
programming each sensor node via a physical link, which
is a time consuming procedure. In the next subsection, we
describe our XML template object based approach.

2.3 XML Template Objects
Section 2.1 points out that there are limitations on repre-

senting a high amount of XML data on sensor nodes. How-
ever, if XML is used as a centralized data format, the size of
data over long time running applications may become very
high. For this reason, XML data binding techniques without
any compression technique are not suitable for representing
XML in sensor node programs. An example for extensive
usage of XML in sensor network programming is shown in
Listing 1
Listing 1: XOBESensorNetwork program processing a

rapidly growing XML object structure

xml<bt sy s in fo > s en sor ;
s en sor = <bt sy s in fo >

<timestamp >0</timestamp>

<bat>10</bat>
</bt sy s in fo >;

for (int i =1; i <=n ; i++) {
int time = getTime () ;
int bat t e ry = getBat () ;

s en sor = <bt sy s in fo >

<timestamp >{time}</
timestamp>

<bat>{bat t e ry}</bat>
{ s en sor }

</bt sy s in fo >;
}

For every iteration of the loop the program generates a new
XML fragment with three elements. If there are no op-
timizations at transfering this program into Embedded C
program code, there will be a high demand of memory and
the memory of the processing sensor node will be exhausted
soon. Representing the XML with strings and char arrays
respectively without any further compression will result in
a memory demand of 57 bytes for the XML structure and
2 bytes for the dynamic integer values. The string repre-
sentation will therefore demand more than 1 kByte after 16
iterations. If only the dynamic integers are stored, 250 iter-
ations would be possible before 1 kByte of data is exceeded.
This reveals that XML data binding for sensor network pro-
gramming is full of potential for compression.

Beside the string representation of XML, there have been
other XML data binding frameworks introduced. For C
based sensor network programming, autoXML [13] offers
XML to C transformation methods. However, as is the
rule for XML data binding frameworks, autoXML generates
structs and functions for every XML element according to a
given schema file. If the schema file is big, much memory is

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

spent for this transformation method including the function
library overhead.

To save memory and hence be able to use XML within
sensor networks, we propose the new XML template object
(XTO) framework. This data binding framework is based
on the idea of splitting up XML fragments into dynamic
and static parts, which can be compressed individually. In a
program like in Listing 1, resulting XML documents consist
mostly of repeating structures. These repeating structures
are defined as static parts, because they do not change over
iterations. All other parts are supposed to be dynamic and
can be processed separately. The only consideration that
needs to be made is to link static and dynamic parts. As a
result for Listing 1, we define the XML template objects by
the static part consisting of the tags <btsysinfo>, <times-
tamp> and <bat>. The dynamic part is linked by placing
insertion markers for the integer variables time, battery and
the XML element variable btnodeinfo. The resulting XTO
is shown in Listing 2.

Listing 2: XML Template Object with Three Inser-

tion Places @1, @2 and @3

<bt sy s in fo >

<timestamp>@1</timestamp>

<bat>@2</bat>
@3

</bt sy s in fo >

For inverse transformation from XTO to XML it suffices
to store static parts one time globally while only for dynamic
parts memory is allocated every time they are used during
runtime.

2.3.1 Representing XML Template Objects
While the idea of XTO promises good compression re-

sults, there is still the question how to represent XTO in the
C programming language. The obvious thing to do would
be to use strings and char arrays respectively as they are
the natural representation of XML. Insertion markers are
represented by using special characters. Generic structs can
be introduced for XTO information to save further memory.
This result is shown in Listing 3.

Listing 3: Generic String Representation of XML

Templates

struct XmlObject {
char ∗ template ;
void ∗∗ dE ;

} ;

In the variable dE, the dynamic part of the XTO is saved,
whereby the static part is stored in the char array variable
template. However, by accessing the dynamic part during
runtime, a typecast to the original type of the dynamic vari-
able has to be done, e.g. to integer, string or another XTO.
The most memory efficient way to store the original type
would be to store it in the template together with the inser-
tion marker. On the other side, this would result into pars-
ing the template string everytime a typecast has to be done.
Moreover, by using strings to store the template, parsing is
needed for processing navigation steps of XML queries, e.g.
XPath navigation. More parsing means more computing,
which results into higher energy consumption that should
be avoided in energy limited sensor networks. In conclu-
sion, it is better to use tree structures for representing the
static template instead of string representation because:

• subsequent parsing of the template for accessing dy-
namic elements is avoided

• accessing dynamic elements becomes faster

• dynamic element types can be stored within the tem-
plate

• evaluating XML queries is simplified and more energy
efficient

In Listing 4, we show the resulting C structs that are the
basis for further enhancements on XTO.

Listing 4: Generic XML Template Tree Structure

Representation in Embedded C

typedef struct xmlObject xmlObject ;
typedef xmlObject ∗xmlObjectPtr ;
struct xmlObject {

// s t a t i c Part XML Template
xmlTemplatePtr t ;
// dynamic Part
void ∗∗ e l ;
int noe l ; // #elements

} ;

typedef struct xmlTemplate xO;
typedef xO ∗xmlTemplatePtr ;
struct xmlTemplate {

int name ; //name marker
int atname ; // a t t r i b u t e marker
struct e lement ∗∗ e l ; // e lements
char ∗∗ a t t r i b u t e s ; // a t t r i b u t e s
int anze l ; // #elements
int anzAtt ; // #a t t r i b u t e s

} ;

typedef struct e lement elem ;
typedef elem ∗ elemPtr ;
struct e lement {

void ∗ content ;
int name ; // name marker
char type ; // type i d

} ;

In summary, Figure 2(a) shows the resulting XML template
objects for the given example in Listing 1 after two itera-
tions. The corresponding XML document is shown in Figure
2(b).

2.3.2 Optimizing XML Template Objects
XML template objects are generated during compilation

of XML based applications. This brings up the question if
XML templates are needed during runtime. This answer de-
pends on the application. If XML is only used to store data
in a structured format and then send it back to a gateway,
the XML template can be stored outside the sensor network.
Dynamic data is nevertheless strictly related to the external
XML templates and can be used to generate XML docu-
ments at the gateway. However, if XML and XML queries
are processed dynamically on the sensor nodes, storing only
the dynamic parts is not enough. In this case, the XML
structure needs to be accessed and therefore the XML tem-
plates need to be within the sensor network. A compromise
is achieved by storing XML identifiers outside the network
and the structure inside the network. This simple approach

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

(a) XML Template Object (b) XML

Figure 2: Example for growing XML Template Objects

often has good compression results, since XML identifiers
are the most verbose part of XML in a considerable number
of cases. However, the query engine needs to take care of
rewriting XML queries before sending them into the sensor
network. Listing 5 shows this simple but effective approach
by an example.

Listing 5: XML Query Rewriting after Identifier Op-

timization

ex t e rna l array o f i d e n t i f i e r s :
name array [1] = ”b t s y s i n f o ” ;
name array [2] = ”timestamp ” ;
name array [3] = ”bat ” ;

XML Template for <bt sy s in fo >:
<1>

<2>010006</2>

<3>15</3>
<1></1>

</1>

Rewritten XPath Query
/ b t s y s i n f o /bat => /1/3

2.4 Implementation
After presenting the idea of XML template objects and

proposing techniques on how to represent the structure of
XML templates, this section shows how information of XML
documents is processed. In detail, we discuss the genera-
tion of XML template objects for concrete XML fragments
and documents respectively. In this process the static parts
of the XML fragments are collected and represented using
the XML templates technique while the dynamic parts are
stored dynamically like shown in Figure 2(a). This section
finally ends up with an introduction on how to process XML
queries on XML template objects.

2.4.1 Generating XML Templates
In this paper we consider using XML during program-

ming, e.g. writing sensor network applications that make
extensive use of a stored XML document, like saving sensor
values in it. While the XML data definition during run-
time is also considerable, we assume that the XML data is
mostly defined at programming and compile time. In this

case, working with XML can be seen as assigning XML frag-
ments to variables. Listing 1 gives an example for an XML
assignment and the integration of those assignments in gen-
eral programming is discussed later in Section 2. In this sec-
tion, the only assumption is that there are variables refering
to XML fragments and documents respectively.

The generation of XML template objects always depends
on where and what XML fragments are used in the program
code. To avoid generating unnecessary XML templates we
look for XML assignments during compile time to generally
generate an XML template object consisting of the static
XML template and the dynamic parts of the assignments.
This method generates a XML template for every assign-
ment and hence the instance of the XML template object is
stricly related to an XML template. In the first step, this ap-
proach has no advantage over representing XML as strings.
A significant advantage results if XML template object vari-
ables are used frequently within the program code. This is
even more true for loop constructs and recursive functions,
as they often result into rapidly growing data structures for
the collection of data generated in each iteration. The more
the XML template object is used in the application, the
more the memory efficiency becomes apparent.

However, generating XML templates for every assignment
also misses further chances on saving memory. In the case
of a later assignment that differs from an assignment before
in a minimal way, XML templates should be adaptable, e.g.
extended if the assigned XML code is more complex and
reduced in the opposite case. A first solution would be to
create a generic XML template that represents the whole or
a significant part of the given schema file. Obviously, even
for DTDs it is not possible to create a generic XML tem-
plate because of the freedom of expression of each schema.
A schema consisting of many optional elements will result
into a generic XML template with a high overhead for small
XML documents consisting of only a few elements. Non
used optional elements will therefore beeing represented by
empty pointers, which actually also need to be stored and
hence require memory space. In Listing 6, we show an exten-
sion of the schema file Listing 1 is based on. During compile
time it cannot be determined how many btsysinfo elements
will be inserted in each iteration.

Listing 6: Extended DTD for BTstatus Example

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

<!ELEMENT b t s y s i n f o (timestamp , bat ,
b t s y s i n f o ∗)>

<!ELEMENT timestamp (#PCDATA)>
<!ELEMENT bat (#PCDATA)>

For this purpose we check for changing XML structures dur-
ing runtime and adapt XML templates if changes are de-
tected, e.g. the size of the btsysinfo list is changed. To
avoid destroying cross referenced XML templates, we log
the number of assignments to each XML template. Only if
there is no other assignment the XML template is changed.
Otherwise, we need to create a new XML template for the
actual assignment that may use the old XML template for
optimization reasons.

2.4.2 XML to XML Template Object Transformation
In the last subsection, we discussed when to create XML

templates. In this subsection, we will present how to create
XML template objects consisting of XML templates and the
dynamic part of the assignment. We refer again to the ex-
ample given in Listing 1. For simplification, we will leave the
loop construct out. The reassignment has been discussed in
the previous subsection and will be summarized in Subsec-
tion 2.4.3. We assume that all generic template structures
from Listing 4 have been generated.

For the transformation of an assignment as shown in List-
ing 1 first the definition needs to be processed. We therefore
define a new XML template object sensor as follows:

xmlObjectPtr sensor = newXmlObject();

The remaining part of the assignment is the right part. This
part represents the actual XML fragment and is then parsed
for two times. As a result, the parser generates two inter-
nal representations. The first is the XML template, which
is the static structure of the assigned XML fragment, the
second is the dynamic part of the XML template object.
For both parts, we use an internal representation to let the
XML template object be initialized by a central constructor
during runtime to save unnecessary program code. The re-
sulting code in an abbreviated form is shown in Listing 7.

Listing 7: Definition and Instantiation of an XML

Template Object

s en sor = (xmlObjectPtr) generateXTO (
dynamicPart , sensor , 0) ;

sensor−>t = (xmlTemplatePtr) generateXTO (
XMLTemplate , sensor , 1) ;

The parameter 0 determines that the dynamic part will be
defined, while the static part is marked with a 1. As men-
tioned before, this code only displays the first instantiation
of the XML variable sensor. Further reassignments may re-
sult into adaptation or even regeneration of XML templates.

2.4.3 Summary of the XML Template Object Trans-
formation Process

In the last two subsections we discussed how and when
to generate XML template objects. Beyond the scope of
initial instantiation of new XML template objects, the reas-
signment of these types of variables will result into an XML
template update process.

We now propose a complete transformation process for
transformating XML to XML template objects. Figure 3
shows the complete process.

Figure 3: XML to XML Template Object Transfor-

mation Process

Starting with the assigned XML Fragment and a given
XML schema file, the Schema Analyzer separates XML iden-
tifiers as described in Section 2.3.2. The next step is to gen-
erate the generic XML template structs, which have been
introduced in Section 2.3.1. This includes the integration
of further header files including the XML template object
framework. For all XML assignments the transformator will
then define XML template objects and rewrite the assign-
ment as shown in Section 2.4.2. The result of these compile
time processes is a compilable Embedded C program.

During runtime, blocks using the XML template objects
will be reached and the constructor of them is initiated like
described in Section 2.4.2. This process is called Assignment
Interpreting, because the constructor interprets the internal
representations of XML templates and dynamic XML parts
before instantiating the XML template object. As also men-
tioned in Section 2.4.2, the interpreter is used to avoid re-
peating function calls and hence to minimize the program
code. At this moment, the system knows a variable of the
proposed XML template type representing an XML frag-
ment and document respectively. Reassignments are then
observed continuously. If the new assigned XML can be
represented by the XML template, only the dynamic parts
are assigned. Otherwise we need to change the template.
If there are cross references, it is not allowed to change the
template, because this may end up in an unstable system
status. In this case, generating a new XML template is the
only alternative. Nevertheless existing XML templates can
be referenced to store the new XML template in an opti-
mized way. If there are no further cross references we are
able to adapt the XML template directly without any con-

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

sequences for other assignments.
With XML template objects the system is always able

to produce the represented XML in its native form. Fur-
thermore, it integrates into heterogeneous networks like the
WWW and is accessible by a native XML query engine.

2.4.4 Evaluating XPath Queries on XML Template
Objects

In this last part of Section 2 we discuss the evaluation of
XPath queries. Evaluating XML Queries dynamically is a
key feature for an XML data binding framework. As shown
in Section 2.3.1 representing XML with strings lacks of this
functionality without any further parsing step. With the
usage of XML templates based on tree structures we are
able to navigate XML template objects in order to process
XPath queries.

To evaluate a XPath query first the root XML template
object is chosen as the first context node. For each XPath
navigation step new nodes are found. In order to collect
nodes on the navigation path we have implemented two
structures node and nodeset. Each node is a pointer to a
specific location in the XML template object. This can be a
part in the XML template or a dynamical value. We there-
fore can directly access parts of XML template object if they
are in the resultset after evaluating the XPath query.

Until now we have implemented all important axis and
the most important predicate functions of XPath. We have
collected these functions in a library that will be used by our
future continuous XML query engine dynamically within the
sensor network. The implemented axis are

• self, child, descendant, descendant-or-self, parent, an-
cestor, ancestor-or-self, following-sibling, preceding-sib-
ling, following, preceding, attribute

In extension we have implemented most abbreviations in
common use of XPath.

3. EVALUATION
In this section we present results of different represen-

tative sensor network applications using XML natively on
sensor nodes. As proposed in the introduction and in Sec-
tion 2.1, sensor network programs have to satisfy the criteria
of limited hardware resources to be applicable for long time
running sensor network deployments. Hence, in this evalua-
tion we test different XML representation techniques for the
criteria as already shown in the introduction:

• Memory Efficiency: An XML representation must be
memory efficient. For a fixed amount of allocated
memory it should represent a high amount of native
XML data. Besides, less allocated memory means re-
duction of energy consumption for memory operations
and data transmission.

• Runtime Efficiency: The energy consumption in wire-
less sensor networks not only depends on transmission
but also on processing cycles. Therefore, a runtime
efficient representation is defined by using a minimal
number of processing cycles for processing a certain
XML usage scenario. A minimal number of processing
cycles results into less power consumption and thus ex-
tends the lifetime of the whole sensor network. More-
over, the runtime efficiency is crucial for time-critical
application scenarios.

• Processability: Using XML in wireless sensor networks
requires dynamic accessability. XML data will change
over the time, e.g. sensor data will be updated, and
whole XML trees have to be accessible for the query
engine. Thus, it is important that the representation
techniques compress XML in a sufficient way but al-
ways allow to process XML data dynamically without
an expensive decompressing step.

The evaluation tests are based on applications which make
extensive use of XML. In these applications XML documents
grow rapidly over the time by dynamically linking. We com-
pare the following transformation methods for their capabil-
ity of representing XML on sensor nodes:

• XML string representation: Representing XML in a
native form as a string has been discussed in Section
2.3. The processability of this approach is limited due
to the need of parsing the whole XML representation
for every access. There is no compression of XML,
which makes the native size of XML a lower bound for
the memory efficiency of this approach.

• libXML2 DOM: A DOM API can be used for repre-
senting XML. This is an approach with a high pro-
cessability because single parts of the XML can be ac-
cessed using the DOM tree. We chose the libXML2
DOM implementation for evaluation.

• autoXML: As presented in Section 2.3 autoXML [13]
is a state-of-the-art C data binding framework. How-
ever, no compression is focussed so that it is to expect
that this approach is not memory efficient. Navigating
XML for answering XPath queries would also demand
an implemented framework on top of autoXML.

• XML Template Objects: As proposed throughout this
paper XML template objects are a data binding ap-
proach with a high processability. Furthermore, the
memory efficiency has been the main development goal
to reach the limited hardware restrictions of sensor
nodes.

For evaluation we use the BTnode sensor node platform [32]
as target platform. The criteria for this sensor node environ-
ment are that programs are limited to 128 kByte of program
memory and 64 kByte in total of main memory. The BTn-
ode sensor node platform is based on the Atmel ATmega128l
Controller and therefore represents a high amount of other
sensor node platforms like the Crossbow MicaZ sensor node.
This makes our results representive for today’s most used
sensor node platforms. However, the libXML2 DOM and
the autoXML framework demand so much program memory
themselves that they are not applicable for today’s sensor
nodes hardware. We therefore evaluated these techniques
by using the AVR simulator [2].

3.1 BTsys Benchmark
We firstly tested a typical scenario on gathering status

information in the sensor network. Therefore, each sensor
node runs an extended version of the application shown in
Listing 1. This application has a high demand on using
compression techniques, because the XML fragment grows
with every iteration. The results are shown in Figure 4.

As a result, XML template objects are the most mem-
ory efficient way to represent XML within this application.

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

bc bc bc bc
bc
b c

bc

bc

bc
libxml2 DOM (1)

bc bc bc bc bc b c bc bc bc
bc

XML template object (2)

bc bc bc bc bc
b c

bc

bc

bc

bcXML string object (3)

bc bc bc
bc
bc

size of xml data in kByte

m
e
m

o
r
y

u
s
a
g
e

in
k
B

y
t
e

Figure 4: XML Memory Usage for Different Meth-

ods of Data Binding

By using XML template structures we reach a compression
factor of 33% of the native XML documents.

Representing XML by using strings consumes twice as
much memory as the native XML document. The reason
is, that by reassigning the XML variable to itself the appli-
cation needs a temporary variable. This shows up another
problem of representing XML by strings in C.

Using libXML2 DOM in the application leads to a high
memory demand. This is not unusual since libXML2 DOM
is not a typical data binding application and is more related
to simplify accessing XML.

Using autoXML for this sensor node application during
tests caused a stack overflow early during runtime. However,
we managed to measure autoXML’s results until the native
XML size reached 6 kByte, which are shown in Figure 5. The
increasing size of the autoXML representation was the most
memory consuming one in our tests. The memory demand
was steeply increasing, making this data binding framework
not applicable for sensor network programming

We were then interested in the runtime efficiency. We
tested the string representation and the XML template ob-
jects, as both beeing the most memory efficient approaches,
for the amount of needed processor cycles over the iterations.
The results are shown in Listing 6. As the string approach
needs less cycles for the first phase the amount of processor
cycles was also steeply increasing. The runtime duration of
the XML template object program was increasing linearly.

We did further test on how elements and attributes are
represented with XML template objects by extending the
program with a static and a dynamic attribute. As a result
attributes demand less memory than elements, which can be
explained by the pointer using implementation of element
and attribute relations.

3.2 XMark Benchmark
To verify our results we use a sensor network applica-

tion based on the XMark Benchmark data generator. This
data generator produces capacious XML documents and is
controlable by a scaling factor sf. Because even the size of
the native XML documents generated with a scaling factor
greater than 0.006 excesses the memory restrictions of the
BTnode platform, we tested this application with scaling
factors less than 0.006. The results are shown in Listing 7.

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7

bc bc
bc
b c

bc

b c
(1)

bc bc bc b c bc b c(2)

(3)

bc bc
bc
b c

bc

b c

bc
b c
bc

b c

bc
autoXML

xml size in kByte

m
e
m

o
r
y

u
s
a
g
e

k
B

y
t
e

Figure 5: au-

toXML Memory

Usage

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5

bc

b c

bc

bc(4)

bc
b c

bc
bc
(2)

iterations

p
r
o
c
e
s
s

c
y
c
le

s

Figure 6: Runtime

Efficiency

As a result, the XML template object approach also outper-
forms the competitors.

0

100

200

300

400

500

0 0.001 0.002 0.003 0.004 0.005 0.006

bc bc bc
bc b c
XTO

bc bc

bc

bc

XML string object

bc
bc

bc

bc

b clibxml2 DOM

size of xml data in kByte

m
e
m

o
r
y

u
s
a
g
e

in
k
B

y
t
e

Figure 7: XMark XML Memory Usage

3.3 XML Template Object Program Memory
Demand

As a final result, Table 2 shows the program memory de-
mand of the evaluated representations. As described in Sec-
tion 3, libXML2 DOM and autoXML are not listed because
they excess the memory restrictions of every existing sen-
sor node platform. The remaining two possibilities are the
string representation and the XML template objects. Both
representation techniques have been also tested for the rec-
ommended compiler optimization flag (space optimization:
-Os). In result, the string representation framework has
a low program memory demand. The more memory effi-
cient XML template object framework has a higher program
memory demand, needing 19.8% of the sensor node program
memory. This demand becomes even higher, if the evalua-
tion of XPath queries needs to be supported. However, the
demand is still under the restrictions and therefore XML
template objects are fully applicable on today’s sensor node
platforms.

3.4 Summarization of Results
Section 3 shows that common DOM parsers and other

XML data binding tools like autoXML do not compress
XML in a sufficient way. The internal representation size
is rather many times higher than the size of the native XML
document. However, in this paper proposed XML template
objects achieve a sufficient degree of compression and there-

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

Table 2: Program Memory Demand

XML representation program

String 12032 (9.2% Full)
String (-Os) 8844 (6.7% Full)

XTO 47866 (36.5% Full)
XTO (-Os) 32020 (24.4% Full)

including XPath
XTO (-Os) 25906 (19.8% Full)

without XPath

fore are applicable for integrating XML data in sensor net-
work programming. Furthermore, in Section 3.1 we show
that representing attributes with template objects has even
lower space costs than representing elements. By using XML
template objects the processing time for generating linear
growing XML documents becomes independent of the ac-
tual size of the XML object. This shows that XML tem-
plate objects are memory efficient and furthermore energy
efficient and that the proposed approach is suitable for gen-
erating huge XML documents for collecting data on sensor
nodes. While Section 3.1 also shows that extensive XML
template object usage within application results into a re-
markable amount of required program memory, this amount
is still conformable with the program memory restrictions of
sensor nodes.

4. RELATED WORK
In this section we present approaches in the fields of XML

data binding and XML compression. Afterwards, we outline
different approaches of the possible application areas: data
storage and communication in conjunction with service-oriented
architectures in sensor networks.

Representing XML within programming languages is of-
ten refered as XML data binding. While there are many
existing object-oriented XML data binding frameworks for
Java and C++ [22, 9, 1], these frameworks are not applica-
ble for sensor network programming. Beside the choice of
language they do not compress XML in a sufficient way to
overcome the hardware ressource limitations in sensor net-
works. For the programming language C there exist one
XML data binding framework: autoXML [13]. However as
to Section 3, autoXML has also not shown to be applicable
for sensor network applications.

The motivation for compression of XML data is its ver-
bosity. Simple compression techniques like zip [10] require
the whole XML document before compressing. This is of-
ten not possible, especially for dynamicaly growing XML
documents. Besides, dynamical processing of XML, e.g. an-
swering queries, may not be possible without an expensive
decompression step. Special compressors for XML data can
be divided into two groups: those which produce queryable
compressed XML data [21, 19, 5] and those which do not
[29, 15, 6]. A fundamental problem is that the footprint
of these XML compressors and simple compressors is many
times higher than the available memory on sensor nodes. So
these techniques cannot be applied until the footprints are
reduced or the available memory increases. The current sta-
tus in the development of common sensor nodes is shown in
Table 1.

Published approaches for data storage in sensor networks
like TinyDB [16], Cougar [31], DSN [7] and SwissQM [20]
abstain from the usage of XML. In TinyDB, data is repre-

sented as a table with one column for each attribute which
is available in the network. Because of independancy be-
tween programming and query language in SwissQM no data
model is defined.

XML usage is the key feature for using web service tech-
niques in sensor networks and during sensor node program-
ming. Furthermore, the extension of the service oriented
paradigm to sensor networks will also provide better conec-
tivity to sensor networks and better integration of sensor
network services in web applications, e.g. data mining in
sensor networks. For these reasons in recent years, combin-
ing service-oriented architectures with wireless sensor net-
works have been an important research area. The result-
ing approaches can be classified into two categories. In the
first category, the sensor network acts as a whole as ser-
vice provider by querying, processing and delivering data
from sensor nodes [25, 23, 8]. In the second category, sin-
gle sensor nodes provide services which can be composed to
more complex web services using gateways for communica-
tion only [18, 14, 4]. Nearly all of them make use of standard
web service technologies SOAP and WSDL, based on XML,
for exchanging messages between the internet and the sensor
network gateways or interfaces. Within the sensor network
other special message formats are used for communication
[18, 14]. However, Delicato et al. [4] propose an XML based
communication within the sensor network, but this approach
has not been realized on sensor nodes, yet.

5. CONCLUSIONS
In this paper, we presented the XML data binding tech-

nique XML template objects to motivate XML usage within
sensor networks.

We then proposed the approach XOBESensorNetwork to
integrate XML into sensor network programming.

XOBESensorNetwork allows to transparently use XML,
hiding the XML template object transformation task, and
supports static type checking for the detection of failures at
compile time, which leads to more stable programs. While
the energy and memory limitations in sensor networks still
remain, XML template objects allow to compress XML data
sufficiently to bridge this technology gap. Furthermore the
XML data remains dynamically processable and XML queries
can be evaluated directly on XML template objects. By
using XML and XML queries natively within sensor net-
works we propose a solution for supporting heterogeneous
networks including the usage of different brands of sensor
nodes within a sensor network. Furthermore using highly
exchangeable data formats improves and simplifies the con-
nectivity to sensor networks. This supports the integration
in heterogeneous networks like the WWW and the usage
of service oriented techniques within sensor networks to en-
hance sensor network engineering.

6. FUTURE WORK
For future work we consider supporting XML data defi-

nition during runtime from outside the sensor network by us-
ing a DDL. Furthermore we will extend XOBESensorNetwork

by integrating user defined XML template types. These
XML template types may optimized the memory efficiency
by letting the user determine how XML documents grow
under a given schema file.

Beside integrating a dynamic XML query engine, we work
on extending existing XML query languages to support con-

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

tinuous queries. Continuous queries are a key feature in
sensor network query processing and need therefore to be
supported by an XML query engine.

Using XML in sensor networks will not only optimize the
way of getting information from the network. Moreover,
programming sensor networks remains too complex with ex-
isting programming languages and techniques. We therefore
are working on applying and extending the service-oriented
paradigm to sensor network application engineering. There-
fore, XML is a key feature to make programming sensor
network applications easier by using web service techniques.

7. REFERENCES
[1] Altova. Xmlspy - xml editor.

http://www.altova.com/products/xmlspy/xml editor.html.

[2] Atmel. Avr studio 4.13. www.atmel.com/avrstudio/.

[3] R. H. Barnett, S. Cox, and L. O’Cull. Embedded c
programming and the atmel avr, 2006.

[4] J. Blumenthal, M. Handy, F. Golatowski, M. Haase,
and D. Timmermann. Wireless sensor networks - new
challenges in software engineering. 2003.

[5] P. Buneman, M. Grohe, and C. Koch. Path queries on
compressed xml. In vldb’2003: Proceedings of the 29th
international conference on Very large data bases,
pages 141–152. VLDB Endowment, 2003.

[6] J. Cheney. Compressing xml with multiplexed
hierarchical ppm models. dcc, 00:0163, 2001.

[7] D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein,
P. Levis, S. Shenker, and I. Stoica. The design and
implementation of a declarative sensor network
system. Technical Report UCB/EECS-2006-132,
University of California, Berkeley, Oct 2006.

[8] F. C. Delicato, P. F. Pires, L. Pirmez, and L. F.
Carmo. A service approach for architecting application
independent wireless sensor networks. Cluster
Computing, 8(2-3):211–221, 2005.

[9] E. Group. The castor project. http://www.castor.org/.

[10] Gzip. http://www.gzip.org/.

[11] N. Hoeller, C. Reinke, S. Groppe, and V. Linnemann.
Xobe Sensor Networks: Integrating XML in sensor
network programming. In Proceedings of the 5th
International Conference on Networked Sensing
Systems (INSS 2008), June 17 - 19 2008.

[12] M. hun Lee, K. bok Eom, H. joong Kang, C. sun Shin,
and H. Yoe. Design and implementation of wireless
sensor network for ubiquitous glass houses. icis,
0:397–400, 2008.

[13] J. Kent. Autoxml.
http://hgwdev.cse.ucsc.edu/ kent/src/.

[14] M. Kushwaha, I. Amundson, X. Koutsoukos,
S. Neema, and J. Sztipanovits. Oasis: A programming
framework for service-oriented sensor networks. In In
IEEE/Create-Net COMSWARE 2007, January 2007.

[15] H. Liefke and D. Suciu. Xmill: an efficient compressor
for xml data. In SIGMOD ’00: Proceedings of the
2000 ACM SIGMOD international conference on
Management of data, pages 153–164, New York, NY,
USA, 2000. ACM.

[16] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, 2005.

[17] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In WSNA ’02: Proceedings of the 1st
ACM international workshop on Wireless sensor
networks and applications, pages 88–97, New York,
NY, USA, 2002. ACM.

[18] R. Marin-Perianu, H. Scholten, and P. Havinga.
Prototyping service discovery and usage in wireless
sensor networks. IEEE Conference on Local Computer
Networks (LCN), 0:841–850, 2007.

[19] J.-K. Min, M.-J. Park, and C.-W. Chung. Xpress: a
queriable compression for xml data. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 122–133,
New York, NY, USA, 2003. ACM.

[20] R. Mueller, G. Alonso, and D. Kossmann. Swissqm:
Next generation data processing in sensor networks. In
CIDR, pages 1–9. www.crdrdb.org, 2007.

[21] W. Ng, W.-Y. Lam, P. T. Wood, and M. Levene. Xcq:
A queriable xml compression system. Knowl. Inf.
Syst., 10(4):421–452, 2006.

[22] E. Ort
and B. Mehta. Java architecture for xml binding (jaxb).
http://java.sun.com/developer/earlyAccess/xml/jaxb/.

[23] J. M. Prinsloo, C. L. Schulz, D. G. Kourie, W. H. M.
Theunissen, T. Strauss, R. V. D. Heever, and
S. Grobbelaar. A service oriented architecture for
wireless sensor and actor network applications.

[24] H. Schuhart, B. C. Hammerschmidt, and
V. Linnemann. Integrating Statically Typechecked
XML Data Technologies Into Pure Java Architectures.
In Proceedings of the ISCA 15th International
Conference on Software Engineering and Data
Engineering (SEDE-2006), pages 217–222, Los
Angeles, California, USA, July 6-8, 2006. ISCA.

[25] J. Shi and W. Liu. A service-oriented model for
wireless sensor networks with internet. In CIT ’05:
Proceedings of the The Fifth International Conference
on Computer and Information Technology, pages
1045–1049, Washington, DC, USA, 2005. IEEE
Computer Society.

[26] W3C. Xml path language (xpath) 2.0.
http://www.w3.org/TR/xpath20/.

[27] W3C. Xquery 1.0: An xml query language.
http://www.w3.org/TR/xquery/.

[28] W3C. Xsl transformations (xslt) version 1.0.
http://www.w3.org/TR/xslt.

[29] C. Werner, C. Buschmann, Y. Brandt, and S. Fischer.
Compressing soap messages by using pushdown
automata. icws, 0:19–28, 2006.

[30] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo,
J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless
sensor network on an active volcano. IEEE Internet
Computing, 10(2):18–25, 2006.

[31] Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Rec., 31(3):9–18, 2002.

[32] B. P. . E. Zurich. Btnodes - a distributed environment
for prototyping ad hoc networks.
http://www.btnode.ethz.ch/.

Digital Object Identifier: 10.4108/ICST.WICON2008.4787
http://dx.doi.org/10.4108/ICST.WICON2008.4787

