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ABSTRACT
By accounting for statistical properties of arrivals and ser-
vice, stochastic formulations of the network calculus yield
significantly tighter backlog and delay bounds than those ob-
tained in a purely deterministic framework. This paper pro-
poses a stochastic network calculus formulation which can
account for partial assumptions on statistical independence
of arrivals and service across multiple network nodes. Sce-
narios where this can be useful are packet tandem networks
with cross traffic and independent arrivals, where identical
packet sizes create correlations across the nodes. As an ap-
plication, the paper investigates the role of partial statistical
independence on end-to-end delay bounds in four main sce-
narios arising by combining assumptions on the statistical
independence of arrivals and packet sizes at different net-
work nodes.

1. INTRODUCTION
The network calculus is a relatively recent theory for queue-

ing analysis which was mostly developed and has played a
significant role in the area of communication networks [4].
Its main idea is to use a bounding instead of an exact rep-
resentation of the arrivals and service at queues. Besides
communication networks, progress and applications of the
calculus were also reported in diverse areas such as manu-
facturing of blocking systems [2], or real-time [23] and avion-
ics [21] embedded systems.

Initially, the network calculus was formulated in a purely
deterministic framework with strict bounds imposed on ar-
rivals and service, and also strict bounds obtained on back-
logs and delays [12]. This bounding approach unfolded in
a very powerful analytical tool for deterministic queueing
systems as historically difficult issues such as scheduling
and multi-node analysis became more amenable to analy-
sis. However, the statistical multiplexing inherent in packet
networks cannot be captured in a deterministic framework
and, consequently, applications of the calculus in networks
with many flows generally results in overly pessimistic per-
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formance bounds, or, implicitly, in low utilizations of net-
work resources.

In order to capture statistical multiplexing, and yet pre-
serve its analytical power, the deterministic network calculus
has been extended in a probabilistic framework. Some ex-
tensions of the calculus preserved the deterministic bound-
ing of arrivals and service [22], whereas others adopted a sta-
tistical bounding of arrivals [24], or service [6], or both [13,
15] (see also [19]). These extensions have in common the
concept of a probabilistic space which permits capturing sta-
tistical multiplexing using results from probability theory
such as large deviations [7], or the Central Limit Theorem
(CLT) [17]. In this way, significant statistical multiplexing
gain was reported using the emerging statistical formula-
tions of network calculus (see for instance [1]).

The key assumption exploited by statistical formulations
of the network calculus is the statistical independence among
arrival or service processes. One way to exploit the inde-
pendence of many arrival processes at a node is to con-
struct bounding functions, called statistical envelopes, for
the aggregate arrival process using the CLT as in [1]. Then,
by increasing the number of arrival processes, the envelope
functions approach the average rate functions of the aggre-
gate arrival process such that the subsequent analysis can
yield very tight performance bounds. The statistical in-
dependence of arrival processes can also be exploited in a
multi-node scenario, for instance using basic properties of
moment generating functions [14]. Using similar properties,
network calculus can also account for the statistical inde-
pendence of arrival and service processes when modelling
queueing models such as M/M/1 yielding reasonably accu-
rate bounds [9].

A statistical network calculus can also analyze network
scenarios where the statistical independence of arrival or ser-
vice processes may not always hold. A bounding representa-
tion for the aggregate of non-necessarily independent arrival
flows is given in [24]. Single-node performance bounds for a
flow whose arrival and services processes are non-necessarily
independent are derived in [18]. End-to-end delay bounds
for a single flow in a tandem network are derived in [5] for a
packetized service model, where correlations among the ser-
vice processes at the nodes exist due to the fact that each
packet maintains the same size at each traversed node. Some
formulations of network calculus, e.g., [11] for a fluid service
model, account for the statistical independence of the arrival
processes at the same node, but do not make independence
assumptions among arrival processes at different network
nodes.
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In this paper we develop a continuous-time network cal-
culus formulation, as a generalization of [11, 14], in order
to exploit partial statistical independence in the service pro-
cesses of a network flow. The key concept is that of a service
curve defined using both a random process and a determin-
istic error function; such a service curve is also introduced
in a discrete-time setting in [9]. The random process speci-
fies probabilistic lower bounds on service, whereas the error
function specifies the probabilities of violating the bounds by
deterministic values. Our calculus formulation can be par-
ticularly useful in a tandem network with cross traffic and
a packetized service model, where the traversing flow’s ser-
vice depends both on the cross traffic and its packets sizes.
If available, the independence of cross traffic is captured in
the service curve processes at the nodes, whereas the correla-
tions induced by maintaining the size of each packet constant
are captured in the error functions.

As an application of the proposed network calculus we
investigate the role of partial statistical independence in a
packetized tandem network with cross traffic. Concretely,
we derive end-to-end delay bounds and provide numerical
illustrations in four scenarios arising by combining indepen-
dence assumptions on (1) the cross traffic at the nodes, and
(2) the sizes of each packet at the traversed nodes. We also
consider a fluid service model and investigate its accuracy
relative to the packetized service model for two scenarios
depending on the independence of traffic.

From a scaling perspective, the derived bounds grow as
Θ(H) in the number of nodes H under complete indepen-
dence assumptions [14]. Otherwise, the bounds grow as
O(H log H) [11]. For a packetized service model where each
packet maintaining its size the O(H log H) is asymptotically
tight, i.e., Θ(H log H) [5]; for the fluid service model, how-
ever, the tightness of O(H log H) is still open.

The rest of the paper is organized as follows. In Section 2
we develop the main elements of a network calculus formula-
tion, i.e., the representation of traffic and service, the deriva-
tion of single-node performance bounds, and the extension
to multi-node analysis. In Section 3 we derive end-to-end de-
lay bounds in a tandem network with cross traffic for both
packetized and fluid service models in various scenarios de-
pending on the statistical independence of cross traffic and
packet sizes. Numerical illustrations of these bounds are
provided in Section 4. Some brief conclusions are provided
in Section 5.

2. A STOCHASTIC NETWORK CALCULUS
FORMULATION

We use a continuous-time model. Network nodes have a
constant service rate and infinite-sized buffers. The arrivals
and departures at a node are modelled with non-decreasing,
left-continuous processes. For an arrival process A(t) and
the corresponding departure process D(t), we assume the
initial condition A(0) = 0 and the causal condition D(t) ≤
A(t). For convenience we introduce the bivariate process
A(s, t) = A(t)−A(s). The corresponding backlog and delay
processes are denoted by B(t) = A(t) − D(t), and W (t) =
inf {d : A(t− d) ≤ D(t)}, respectively.

2.1 Traffic Representation
Unlike the classical queueing network theory which gen-

erally uses exact traffic representations (e.g. exact distribu-

tions of packet sizes and their inter-arrival times), the net-
work calculus uses weaker traffic representations in terms of
bounds. Here we adopt the traffic representation with scaled
exponential bounds on the moment generating functions of
the arrival processes [8, 14].

Definition 1. (MGF Envelope for Arrivals) An
arrival process A(t) is bounded by an MGF envelope, with
rate r and scaling factor M , for some choices of a parame-
ter θ > 0, if for all 0 ≤ s ≤ t

E
h
eθA(s,t)

i
≤ Meθr(t−s) .

Therefore, traffic is by definition essentially unknown but
subject to regularity constraints [12]. Both the rate r and
the scaling factor M depend on the parameter θ whose opti-
mal value can be numerically determined. The upper limit
of the range of θ is generally inversely proportional to the
data unit scale such that numerical optimizations can be
done over a relatively small space.

We restrict the arrivals to the case when r and M are
invariant to time parameters. As such, the arrival model in-
cludes for instance many Markov-modulated and multiplexed-
regulated processes, but excludes self-similar processes (e.g.
fractional Brownian motion). The model also excludes heavy-
tailed processes which have infinite MGFs.

As an example, consider that A(t) is a compound Poisson
process, i.e.,

A(t) =

N(t)X
i=1

Xi ,

where N(t) is a Poisson process with rate λ > 0 and Xi are
i.i.d. random variables with mean 1

µ
. In this case, A(t) is

bounded by an MGF envelope with rate and scaling factor
given by

r =
λ

µ− θ
, M = 1 ,

where the range of θ is (0, µ).

2.2 Service Representation
As for traffic representation, the network calculus also uses

bounds for service representation. The key idea is the con-
cept of a service curve which relates the arrival and de-
parture processes of a traffic flow through a lower bound.
Concretely, a service curve specifies a lower bound on the
amount of service received by a flow either at a network
node or across an entire network path.

Here we extend the statistical service curve model from [9]
to a continuous-time setting. First, we need to define the
(min, +) convolution of two processes X(s, t) and Y (s, t)
as X ∗ Y (s, t) = infs≤u≤t {X(s, u) + Y (u, t)}. Also, for a
number x, we denote [x]+ = max{x, 0}.

Definition 2. (Statistical Service Curve) A doubly-
indexed random process S(s, t) is a statistical service curve
with error function ε(σ) for an arrival process A(t) if the
corresponding departure process D(t) satisfies for all t ≥ 0
and σ

Pr
�
D(t) < A ∗ [S − σ]+ (t + τ0)

�
≤ ε(σ) ,

where τ0 ≥ 0 is a discretization parameter.



For each sample path the random process S(s, t) is de-
creasing in s, increasing in t, and satisfies S(s, t) = S(s, u)+
S(u, t) for all 0 ≤ s ≤ u ≤ t. The error function ε(σ) is
nonnegative and non-increasing, and satisfies

ε(σ) ≥ 1 for all σ < S(τ0) . (1)

The service curve model imposes a positivity constraint
in order to simplify the analysis of scenarios with negative
service curves. It also lets the convolution span the time
interval [0, t + τ0], rather than the interval [0, t] used espe-
cially in discrete-time service models, in order to simplify
formulas arising from the discretization of continuous sam-
ple paths with the parameter τ0. Consequently, the process
S(s, t) or the function ε(σ) depend on τ0 which is gener-
ally subject to optimizations. The next lemma shows how
to make the transition from service curves satisfying Defi-
nition 2 with τ0 = 0 to more less common service curves
defined with τ0 ≥ 0.

Lemma 1. Consider an arrival process A(t), the corre-
sponding departure process D(t), and an error function ε(σ).

If a function Ŝ(s, t) satisfies

Pr
�
D(t) < A ∗

h
Ŝ − σ

i
+

(t)
�
≤ ε(σ) ,

and ε(σ) ≥ 1 for all σ < Ŝ(0), then for any τ0 > 0 the
function

S(s, t) = Ŝ(s, t− τ0)

for t− s ≥ τ0, and S(s, t) = 0 for t− s < τ0, is a statistical
service curve in the sense of Definition 2.

Proof. Using the positivity of A(t), the proof immedi-
ately follows using

A ∗ [S − σ]+ (t + τ0) ≤ A ∗
h
Ŝ − σ

i
+

(t) ,

for all t, τ0 ≥ 0, and all σ. The condition from Eq. (1) on the

error function ε(σ) is also satisfied because S(τ0) = Ŝ(0). 2

Along with its discrete-time counterpart [9], the service
model from Definition 2 generalizes existing service models
by letting S(s, t) be a random process and ε(σ) ≥ 0. Partic-
ularizing with S(s, t) non-random and ε(σ) ≥ 0 it reduces
to the service model from [11]. Also, by letting S(s, t) be
random, ε(σ) = 0, and τ0 = 0, it reduces to a service model
from [8].

Our generalized service model is motivated by the need
to deal with partial statistical independence assumptions on
the service received by an arrival flow across different net-
work nodes. For instance, in a two-node scenario, if the
services are not necessarily independent then at least one
of the service curves is non-random and the corresponding
error functions are positive in order to carry out the convo-
lution of the service curves (see Subsection 2.4). Otherwise,
if the services are independent, then both service curves are
random and the error functions are zero. As we will see
in Subsections 3.2 and 3.3, there also exist scenarios where
the service curves are random and the error functions are
positive in order to exploit partial assumptions of statistical
independence.

In order to deal with the convolution of multiple service
curves, or with the derivation of performance bounds, MGF
envelope models are used to bound service curves defined
with random processes [8, 14].

Definition 3. (MGF Bound for Service Curves) A
statistical service curve S(s, t) has an MGF bound, with rate
r and scaling factor M , for some choices of a parameter
θ > 0, if for all 0 ≤ s ≤ t

E
h
e−θS(s,t)

i
≤ Me−θr(t−s) .

Alike in the MGF envelope model for arrivals from Def-
inition 1, both the rate r and the scaling factor M depend
on θ. On the other hand, unlike bounding the arrivals from
above, the MGF envelope model from Definition 3 bounds
service curves from below. The reason is that the arrival
and service processes of a flow have opposite signs in the
derivation of performance bounds. This can be more clearly
seen in the next lemma which will be used to the derivation
of single and multi-node performance bounds.

Lemma 2. (sample-path Bounds) Suppose that an ar-
rival process A(t) is bounded for some choice of θ > 0 by
an MGF envelope with rate ra and scaling factor Ma. For
some parameter τ0, let a service curve S(s, t) independent
of A(t). For the same θ, S(s, t) has an MGF bound with

rate rs and scaling factor Ms = M ′
s

�b t−s
τ0

c+H−1

H−1

�
for some

integer H > 0, where M ′
s does not depend on t − s. De-

note M = MaM ′
s, r = rs − ra, and assume for stability that

r > 0. Then for all t ≥ 0 and σ

Pr

�
sup

0≤s≤t
{A(s, t)− S(s, t + τ0)} > σ

�
≤ ε(σ) ,

where ε(σ) = M
�

1
θrτ0

�H

e−θσ.

The error function of the service curve is not needed for
the lemma’s purpose. In applications, H corresponds to the
number of nodes. The case when Ms does not depend on
t − s corresponds to H = 1. The complementary case cor-
responds to H > 1; the dependency is caused by a binomial
factor arising in the evaluation of multi-node convolutions
(for further technical details see Theorem 4).

Proof. Fix t ≥ 0 and σ. For 0 ≤ s ≤ t we let j = b t−s
τ0
c

be the integer part of t−s
τ0

, so that [t− (j + 1)τ0]+ < s ≤
t− jτ0. We can write

Pr

�
sup

0≤s≤t

�
A(s, t)− [S(s, t + τ0)− σ]+

	
> 0

�
≤ Pr

�
sup
j≥0

n
A
�
[t− (j + 1)τ0]+ , t

�
−S (t− jτ0, t + τ0)

o
> σ

�
≤ M

X
j≥1

 
j + H − 1

H − 1

!
e−θrjτ0e−θσ

≤ M

 
1−

�
1

1− e−θrτ0

�H
!

e−θσ

≤ M

�
1

θrτ0

�H

e−θσ .

In the fourth line we applied Boole’s inequality. In the fifth

line we used
P

j≥0

�
j+H−1

H−1

�
aj =

�
1

1−a

�H

for all 0 < a < 1

(see [14]). Last we used that
�

1
1−e−x

�H

− 1 ≤ � 1
x

�H
for all

x > 0. The proof is thus complete. 2



2.2.1 Leftover Fluid Service Curves
Here we construct service curves for the lowest-priority

flow, or an aggregate of flows, at a static-priority (SP) sched-
uler serving with constant rate. These service curves are
suggestively referred to as leftover service curves, since they
express the capacity left unused by the higher priority flows.
They provide thus a worst-case description of service and
have the property that they are guaranteed by any workcon-
serving scheduling mechanism. The next theorem provides
such constructions for a fluid service model. This model
dispenses with the size of a packet, i.e., the service unit is
infinitesimal; in other words, a fraction of a packet becomes
available for service as soon as processed upstream.

Theorem 1. (Leftover Service Curve) Consider a
node with capacity C serving two arrival processes A(t) and
Ac(t), whose corresponding departure processes are D(t) and
Dc(t), respectively. Assume that Ac(t) is bounded by an
MGF envelope with rate rc < C and scaling factor 1 for
some choice of θ > 0. Then we have the following two con-
structions for some τ0 > 0.

1. The random process

S(s, t) = [C (t− s− τ0)−Ac (s, t− τ0)]+ (2)

is a statistical service curve for A(t) with error func-
tion ε(σ) = 0. It has an MGF bound with rate C − rc

and scaling factor eθ(C−rc)τ0 .

2. For any choice of δ > 0 the non-random function

S(s, t) = [C − rc − δ]+ (t− s) (3)

is a statistical service curve for A(t) with error func-

tion ε(σ) = eθCτ0

θδτ0
e−θσ.

The first construction, as a continuous-time extension of
a construction from [14], is useful when A(t) and Ac(t) are
statistically independent. The second construction extends
a similar construction from [11] for arrivals described with
MGF envelopes and is useful when A(t) and Ac(t) are not
necessarily independent; note that in this case S(s, t) is non-
random. The proof of Eq. (2) follows from [14] and Lemma 1.
The proof of Eq. (3) follows by extending a proof from [11]
to bivariate service curves.

2.2.2 Packetization Service Curves
Here we construct service curves for a packetized service

model which takes into account packet sizes. These con-
structions complement the constructions from the previous
subsection for the fluid service model.

Consider a network node with capacity C serving a through
arrival process A(t), and possibly some cross arrival process
Ac(t). To account for the packetized service received by
A(t) we represent the node as a concatenation between a
fluid server with rate C and a statistical packetizer denoted
here by P µ (see Figure 1). The fluid server serves packets
according to the fluid service model, whereas the packetizer
has the role of a delay element by ensuring that packets be-
come available for service downstream after they were fully
processed upstream. Unlike packetizers used in the litera-
ture [20, 3] for bounded packet sizes, P µ herein deals with
packet sizes described by probability distributions.

Figure 1: A statistical packetizer P µ at a node with
cross traffic.

We define A(t) as the compound process

A(t) =

N(t)X
i=1

Xi , (4)

where N(t) is a counting process and Xi are i.i.d. random
variables (the packets sizes) with mean 1/µ. Then, the out-

put process eD(t) satisfies for all t ≥ 0

eD(t) =

M(t)X
i=1

Xi + Xf (t) ,

where M(t) denotes the number of packets fully processed
by time t, and Xf (t) denotes the processed fraction of the
packet (if any) currently in service at time t; if the server is

idle at time t, then Xf (t) = 0. The process eD(t) is thus a
virtual output process which represents the fluid output of
the through flow at the fluid server.

Furthermore, the packetizer P µ takes the fluid outputeD(t) as input and produces the packetized output

D(t) =

M(t)X
i=1

Xi .

This accounts for the fact that a downstream node can start
processing a packet no sooner than the packet was com-
pletely processed by the fluid server at the next upstream
node. It then follows inductively that packetizers account
for packetization in the entire network. The possible cross
traffic is not required to pass through packetizers [3] and
leftover fluid service curves for A(t) at the fluid server can
be constructed with Theorem 1.

The next lemma gives two statistical service curve rep-
resentations for the packetizer P µ, which will be useful de-
pending on the statistical independence assumptions on packet
sizes across a network.

Lemma 3. Consider a network node modelled as in Fig-
ure 1. Then the function

Sµ(s, t) = [C(t− s)−Xf (t)]+ (5)

is a statistical service curve for the packetizer P µ with error
function εµ(σ) = 0, in the sense of Definition 2 with τ0 =
0. If the packets sizes are exponentially distributed then the
function

Sµ(t) = Ct (6)

is a service curve for P µ with error function εµ(σ) = eµCτ0e−µσ.

The service curve from Eq. (5) is useful when the sizes
of each packet are statistically independent at the traversed
nodes (Kleinrock’s independence assumption [16]). In turn,



the service curve from Eq. (6), also obtained in [5], is useful
when the sizes of each packet are identical across the nodes;
the reason is that the non-randomness of Sµ(t) circumvents
correlations in the service times across the nodes.

Proof. Fix t ≥ 0 and denote by s the beginning of the
last busy period before t at the fluid server. For proving the
claim for Sµ(t) from Eq. (5) we observe that

u = t− Xf (t)

C

is the starting processing time of the packet currently ser-
viced at time t. It then follows that

D(t) = D(s) + C(u− s)

= A(s) + C

�
t− Xf (t)

C
− s

�
= A(s) + Sµ(s, t)

≥ A ∗ Sµ(t) ,

which completes the first part of the proof. For the second
part we assume that for some σ and τ0 ≥ 0

Xf (t) ≤ σ − Cτ0 .

Using the first part it follows that

D(t) ≥ inf
0≤s≤t+τ0

�
A(s) + [C(t + τ0 − s)− σ]+

	
.

The proof is complete by taking probabilities. 2

2.3 Single-Node Performance Bounds
The next theorem provides single-node performance bounds

for a traffic flow with arrivals described by MGF envelopes
and service described by service curves and MGF bounds.

Theorem 2. (Probabilistic Performance Bounds)
Consider a flow with arrivals and departures processes A(t)
and D(t), respectively. For some discretization parameter
τ0, the flow has the statistical service curve S(s, t), indepen-
dent of A(t), with error function εs(σ). Assume that A(t)
has an MGF envelope with rate ra and scaling factor Ma

for some θ > 0 . Also, S(s, t) has an MGF bound with rate

rs and scaling factor Ms = M ′
s

�b t−s
τ0

c+H−1

H−1

�
for the same θ,

some integer H > 0, and where M ′
s does not depend on time

parameters. Denote M = MaM ′
s, r = rs − ra, and assume

for stability that r > 0. Define the error function

ε(σ) = inf
σa+σs=σ

(
M

�
1

θrτ0

�H

e−θσa

+ εs (σs)

)
.

Then we have the following probabilistic bounds.

1. Output MGF Envelope: If H = 1 and εs(σ) =
0 for all σ, then the output process D(t) is bounded
by an MGF envelope with rate ra and scaling factor

M
�

1
θrτ0

�H

.

2. Backlog Bound: A bound on the backlog process
B(t) is given for all t, σ ≥ 0 by

Pr
�
B(t) > σ

�
≤ ε(σ) . (7)

3. Delay Bound: A bound on the delay process W (t) is
given for all t, σ ≥ 0 by

Pr
�
W (t) >

σ

rs

�
≤ ε(σ) . (8)

The theorem generalizes existing results from the litera-
ture. If the service curve is the non-random function S(s, t) =
rs(t− s) similar bounds were obtained in [11]. If εs(σ) = 0
similar bounds were derived in [14] in a discrete-time setting.

In this paper we only use the delay bounds; the other
two bounds are provided here for completeness. We also
point out that the results from the theorem depend on the
discretization parameter τ0 which will be subject to convex
optimization.

Proof. We only provide the proof for the delay bound;
the other two proofs are similar. Fix τ0 > 0 and choose
t, σ ≥ 0 and σa, σs such that σa + σs = σ. Denote d = σ

rs
,

and assume that for a particular sample-path

A(s, t− d) ≤ [S(s, t− d + τ0) + S(t− d + τ0, t + τ0)− σs]+
(9)

holds for all 0 ≤ s ≤ t− d. Also, assume that

D(t) ≥ A ∗ [S − σs]+ (t + τ0) . (10)

holds.
From Eq. (9) we successively obtain

sup
0≤s≤t−d

�
A(s, t− d)− [S(s, t + τ0)− σs]+

	 ≤ 0

⇒ sup
0≤s≤t+τ0

�
A(s, t− d)− [S(s, t + τ0)− σs]+

	 ≤ 0

⇒ A(t− d) ≤ D(t) ⇒ W (t) ≤ d .

In the second line we extended the range of the supremum
using the positivity constraints. In the third line we applied
Eq. (10), and then we used the definition of delay.

Since we started with Eqs. (9) and (10) we arrive at

Pr (W (t) > d) ≤ P (Eqs. (9) or (10) fail)

≤ M

�
1

θrτ0

�H

e−θrsdeθσs

+ εs(σs)

≤ M

�
1

θrτ0

�H

e−θσa

+ εs(σs) .

We first applied Lemma 2 with σ = S(t−d+τ0, t+τ0)−σs.
The proof is complete after minimizing over σa +σs = σ. 2

2.4 Statistical Network Service Curve
Here we analyze the multi-node case. The next theorem

gives the construction of a statistical network service curve
for a flow traversing a network, i.e., a service curve describ-
ing the service given to the flow as if it traversed a single-
node only. Having such a network service curve, end-to-end
performance bounds can be obtained with Theorem 2.

Let us first introduce two useful notations. For a process
X(t) and a real number δ we define the process

Xδ(t) = X(t) + δt .

Also, for an integrable error function ε(σ) and a positive
number a we define the function

ε̃a(σ) =
1

a

Z ∞

σ

ε(u)du,

as an upper bound for the discrete sum
P∞

j=1 ε (σ + ja).



Theorem 3. (Statistical Network Service Curve).
Consider a traffic flow traversing a network with H nodes
in series. For some discretization parameter τ0 > 0 assume
that Sh(s, t) are statistical service curves for the flow with
error functions εh(σ) at the nodes h = 1, . . . , H. If εh(σ) =
0 for all h and σ, then the process

Snet(s, t) = S1 ∗ S2 ∗ . . . ∗ SH(s, t) . (11)

is a (statistical) network service curve for the flow. Other-
wise, if εh(σ) ≥ 0 and are integrable then the corresponding
statistical network service curve is given for any choice of
δ > 0 by

Snet(s, t) = S1 ∗ S2
−δ ∗ . . . ∗ SH

−(H−1)δ(s, t) , (12)

with the error function

εnet = ε̃1
δτ0 ∗ . . . ∗ ε̃H−1

δτ0
∗ εH (13)

The first construction from Eq. (11) extends the construc-
tion from [8] to a continuous-time setting. The second con-
struction from Eq. (12) generalizes a construction from [11]
to service curves defined as random processes. For a discus-
sion on the motivation of introducing the additional param-
eter δ in Eqs. (12) and (13) see [11]. The proofs for the two
constructions are similar as in [8, 11] and are omitted here.

As we have seen in Theorem 2, the derivation of perfor-
mance bounds requires the existence of MGF bounds on the
service curves. The next theorem provides MGF bounds for
the two statistical network service curves from Theorem 3.
To keep the notation simple we only consider the case when
all the service curves have the same distributions and error
functions.

Theorem 4. (MGF Bound for Statistical Network
Service Curve). Consider the scenario from Theorem 3.
For some choice of θ > 0, assume that the service curves
Sh(s, t) are independent, and each has an MGF bound with
rate rs and scaling factor Ms that does not depend on time
parameters. Then the flow’s statistical network service curve
has the MGF bound

E
h
e−θSnet(s,t)

i
≤ Mnete−θrs(t−s) , (14)

where the scaling factor Mnet depends on the construction
of the network service curve.

1. If the statistical network service curve is given by Eq. (11)
then

Mnet = MH
s

 
b t−s

τ0
c+ H − 1

H − 1

!
e(H−1)θrsτ0 . (15)

2. If the statistical network service curve is given by Eq. (12)
then

Mnet = MH
s

 
b t−s

τ0
c+ H − 1

H − 1

!
e
(H−1)θ

�
rs+δ+δb t−s

τ0
c
�

τ0 .

(16)

The constructions from Eqs. (14) and (15) for the network
service curve from Eq. (11) extend a corresponding result
from [14] to a continuous-time setting.

Proof. Fix δ, τ0 > 0 and 0 ≤ s ≤ t. In the first case
we can expand the MGF of Snet(s, t) by applying Boole’s

inequality and the discretization technique used in the proof
of Lemma 2.

E
h
e−θSnet(s,t)

i
≤ E

"
sup

s≤x1≤···≤xH−1≤t
e−θ(S1(s,x1)+···+SH(xH−1,t))

#
≤

X
0≤j1≤···≤jh−1≤b t−s

τ0
c
E

"
e−θ
�

S1(s,[t−(j1+1)]+τ0)+...

e···+SH((t−jH−1)τ0,t)
�#

≤ MHe(H−1)θrsτ0e−θrs(t−s)
X

0≤j1≤···≤jh−1≤b t−s
τ0

c
1

≤ MH

 
b t−s

τ0
c+ H − 1

H − 1

!
e(H−1)θrsτ0e−θrs(t−s) .

In the fifth line we expanded the MGF of Sh(s, t) by using
statistical independence and then collected terms. In the
sixth line the binomial coefficient is the number of combina-
tions with repetitions.

For the second case we proceed similarly as before

E
h
e−θSnet(s,t)

i
≤ E

"
sup

s≤x1≤···≤xH−1≤t
e
−θ
�

S1(s,x1)+···+SH
−(H−1)δ(xH−1,t)

�#
≤ E

"
sup

s≤x1≤···≤xH−1≤t
e−θ(S1(s,x1)+···+SH(xH−1,t))

eθδ((H−1)t−(x1+···+xH−1))

#
≤

X
0≤j1≤···≤jH−1≤b t−s

τ0
c
E

"
e−θ
�

S1(s,(t−(j1+1))τ0)+...

e···+SH((t−jH−1)τ0,t)
�#

eθδ
PH−1

h=1 (jh+1)τ0

≤ MH

 
b t−s

τ0
c+ H − 1

H − 1

!
e
(H−1)θ

�
rs+δ+δb t−s

τ0
c
�

τ0e−θrs(t−s) .

In the last line we bounded each jh by b t−s
τ0
c. The proof is

thus complete. 2

3. APPLICATIONS: DERIVATION OF END-
TO-END DELAY BOUNDS

In this section we apply the network calculus formulation
from Section 2 to the derivation of end-to-end delay bounds.
The main goal is to illustrate the derivation of the bounds
in four different scenarios depending on four different types
of statistical independence assumptions.

Concretely, we consider the tandem network with cross
traffic from Figure 2. A through flow traverses H nodes
and each node is also transited by a cross flow; the notation
for the flows is as in the figure. Each node has capacity
C and serves the packets in a SP manner giving the cross
flow’s packets higher priorities. The through flow and each



Figure 2: A tandem network with cross traffic

of the cross flows consist of packets arriving according to
Poisson processes with rates λ and λc, respectively. The
size of each packet is exponentially distributed with mean
1/µ. The network is stable, i.e., the utilization factor ρ =
(λ + λc)/(µC) is less than one.

We represent the arrivals by compound Poisson processes
as in Subsection 2.1. As such, the through flow A(t) is
bounded by an MGF envelope with rate and scaling factor
given by

ra =
λ

µ− θ
, Ma = 1 . (17)

Similarly, each cross flow Ah(t) is bounded by an MGF en-
velope with rate rc = λc

µ−θ
and scaling factor Mc = 1 for the

same choice of θ with 0 < θ < µ.
In the next four subsections (3.1-3.4) we analyze four sce-

narios by combining independence assumptions on (1) the
arrival processes, and (2) the sizes of the through flow’s pack-
ets at the nodes. As mentioned earlier, if each packet of the
through flow has identical sizes at the nodes then the corre-
sponding services are not statistically independent.

In addition to treating a packetized service model, the first
two subsections also treat the case of a fluid service model.
By deriving delay bounds in both packetized and service
models, the goal is to offer insight into the justification of
using the (approximative) fluid models which are generally
easier to be carried out analytically.

We also present some technical considerations in Subsec-
tion 3.5 on how the network calculus deals with (lack of)
assumptions of statistical independence.

3.1 Independent arrivals / Independent service
times

Here we assume statistical independence everywhere: the
through and the cross flows are independent processes, whereas
the sizes of the through packets are independently regener-
ated at each node. We first analyze the packetized service
model and then the fluid service model.

Let us consider the representation of each of the network
nodes as in Figure 1 (i.e. as the concatenation between a
fluid server and a packetizer P µ). By enforcing the condition
that θ < µ−λc/C, we can invoke Theorem 1 (by dispensing
with the discretization parameter τ0) and obtain that the
function

T h(s, t) = [C(t− s)−Ah(s, t)]+ (18)

is a statistical leftover service curve at the hth fluid server.
Then, by using the service curve representation of each pack-
etizer from Eq. (5) in Lemma 3, we further obtain with
Eq. (11) that each node in the virtual network from Fig-
ure 2 can be described with the statistical network service

curve

Sh(s, t) = T h ∗ Sµ,h(s, t)

= inf
s≤u≤t

�
[C(u− s)−Ah(s, u)]+ +

h
C(t− u)−Xh

f (t)
i
+

�
≥
h
C(t− s)−Ah(s, t)−Xh

f (t)
i
+

,

where Xh
f (t) denotes the fraction already processed of the

packet currently in service (if any) at node h at time t. More-
over, each service curve Sh(s, t) has an MGF bound with
rate and scaling factor given by

rs = C − rc , Ms =
µ

µ− θ
,

where we used that E
h
eθXh

f (t)
i
≤ µ

µ−θ
.

Next we can construct the statistical network service curve
for the through flow along the H nodes. At this point
we make the transition to a service curve representation
with the discretization parameter τ0. Using Eq. (11) and
Lemma 1 we obtain the statistical network service curve

Snet(s, t) = S1 ∗ . . . ∗ SH(s, t− τ0) ,

that has (according to Eq. (15) from Theorem 4) an MGF
bound with rate and scaling factor given by

rnet = rs , Mnet =

�
µ

µ− θ
e2θrsτ0

�H
 
b t−s

τ0
c+ H − 1

H − 1

!
.

We remark that the contribution of using Lemma 1 to the
scaling factor Mnet from Eq. (15) in Theorem 4 is eHθrsτ0 .

Finally, having the through flow’s MGF envelope descrip-
tion from Eq. (17) and the network service curve Snet, we
can invoke Theorem 2 and derive the delay bounds. Denote

r = rs − ra

and enforce the stability condition

r > 0 ⇔ θ < µ(1− ρ) .

Then Eq. (8) gives the delay bound for all σ ≥ 0

P
�
W net(t) >

σ

rnet

�
≤
�

e2θrsτ0

θrτ0

µ

µ− θ

�H

e−θσ .

Optimizing the discretization parameter τ0 = 1
2θrs

, replac-

ing σ with d · rnet, and letting t →∞ we obtain the steady-
state delay bound for all d ≥ 0

P
�
W net > d

� ≤ �e
2rs

r

µ

µ− θ

�H

e
−θ
�

C− λc
µ−θ

�
d

. (19)

Next we consider a fluid service model. Then we can view
each node in the network from Figure 2 as a fluid server,
and consequently derive the leftover service curves

Sh(s, t) = [C(t− s)−Ah(s, t)]+ ,

i.e., the expression for T h(s, t) from Eq. (18).
To derive end-to-end delay bounds we can proceed as be-

fore, with the difference that the scaling factor of the MGF
bound of Sh(s, t) is now Ms = 1 instead of Ms = µ

µ−θ
.

The steady-state delay bound assuming the fluid service
model thus becomes

P
�
W net > d

� ≤ �e
2rs

r

�H

e
−θ
�

C− λc
µ−θ

�
d

. (20)



3.2 Correlated arrivals / Independent service
times

Here we dispense with the statistical assumptions on ar-
rivals but still assume the independent regeneration of the
packet sizes of the through flow. Note that the assumption
of correlated arrivals makes inapplicable the product prop-
erty of MGFs (i.e. E[XY ] = E[X]E[Y ] for independent
r.v.’s X and Y ) used in the previous section to derive the
MGF bound of Snet(s, t); however, the product property of
MGFs can be still used for packet sizes.

As in the previous section we start with the packetized
service model. Let a positive number θc such that θc <
µ− λc/C, and denote

rs(θc) = C − λc

µ− θc
.

It then follows that the function

T h(s, t) = rs(θc)(t− s)

is a statistical leftover service curve for the through flow at
the hth fluid server with error function εs(σ) = e−θcσ. This
is a refinement of the result from Eq. (3) in Theorem 1 by
accounting for the independent increments property of the
compound arrival processes (see also [9]). Since the error
function corresponding to the packetizer’s service curve Sµ,h

in Lemma 3 is zero, we further obtain for some τ0 > 0 that
the function

Sh(s, t) = T h ∗ Sµ,h(s, t− τ0)

≥
h
rs(θc)(t− s)−Xh

f (t)− rs(θc)τ0

i
+

is a statistical service curve for the through flow at the hth

node in the network from Figure 2 with error function εs(σ)
(as before, Xh

f (t) denotes the fraction already processed of
the packet currently in service at node h at time t).

Next we construct the statistical network service curve
Snet(s, t) as in Eq. (12) for the through flow along the H
nodes. The corresponding error function is given as in Eq. (13)
from Theorem 3, i.e.,

εnet(σ) = ε̃s
δτ0 ∗ . . . ∗ ε̃s

δτ0| {z }
H−1 times

∗εs(σ) ,

where

ε̃s
δτ0(σ) =

1

δτ0

Z ∞

σ

e−θcudu =
1

θcδτ0
e−θcσ ,

for some δ > 0. Using Lemma 3 from [11] we can optimize
the expression of the error function as

εnet(σ) = H

�
1

θcδτ0

�H−1
H

e−
θc
H

σ .

Next we have from Theorem 4 (more exactly Eq. (16))
that Snet(s, t) has an MGF bound with rate and scaling
factor given by

rnet = rs(θc)− (H − 1)δ ,

Mnet = n

�
µ

µ− θ

�H

e(2H−1)θrs(θc)τ0e(H−1)θδτ0 ,(21)

where n =
�b t−s

τ0
c+H−1

H−1

�
.

Finally, having the through flow’s rate envelope descrip-
tion from Eq. (17) and the network service curve just de-
rived, we can invoke Theorem 2 and derive delay bounds.
Let us first denote

r = rnet − ra

and enforce the stability condition that

r > 0 ⇔ δ <
1

H − 1

�
C − λ

µ− θ
− λc

µ− θc

�
.

Then Eq. (8) from Theorem 2 gives the delay bound for all
σ ≥ 0

P
�
W net(t) >

σ

rnet

�
≤ inf

(
M ′
�

1

θrτ0

�H

e−θσa

+ εnet(σs)

)
,

where the infimum is taken after σa + σs = σ; also, M ′ =�
µ

µ−θ

�H

eH(2θrs(θc)+δ)τ0 is obtained by slightly relaxing the

term after the binomial factor in Eq. (21).
We can optimize this expression using Lemma 3 from [11].

Then, replacing σ with d ·rnet, and letting t →∞ we obtain
the steady-state delay bound for all d ≥ 0

Pr
�
W net > d

� ≤ Ke
− θθc

α

�
C− λc

µ−θc
−(H−1)δ

�
d

, (22)

where

K =
α

θc

�
µ

µ− θ

�Hθc
α
�

Heθc (2rs(θc) + δ)

βr

� β
α

·
�r

δ

� (H−1)θ
α

�
θc

θ

� θ
α

α = Hθ + θc, β = (H − 1)θ + Hθc .

In the following we consider the fluid service model. As
shown at the end of Subsection 3.1, the derivation of the
corresponding bounds proceeds as before with the difference
that the term µ

µ−θ
is to be replaced by 1. Consequently, the

steady-state delay bound takes the form

Pr
�
W net > d

� ≤ Ke
− θθc

α

�
C− λc

µ−θc
−(H−1)δ

�
d

, (23)

where

K =
α

θc

�
Heθc (2rs(θc) + δ)

βr

� β
α �r

δ

� (H−1)θ
α

�
θc

θ

� θ
α

,

whereas α and β are as above.

3.3 Independent arrivals / Identical service times
Here we assume that the arrival processes are indepen-

dent, but that the sizes of each of the through packets are
identical at the traversed nodes.

Following the same steps as in the previous two subsec-
tions, we first use Eq. (2) in Theorem 1 and Eq. (6) in
Lemma 3, and obtain that the function

Sh(s, t) = [C(t− s)−Ah(s, t)]+

is a statistical service curve for the through flow at the hth

node with error function εh(σ) = eµCτ0e−µσ, for some τ0 >
0. The service curve has an MGF bound with rate and
scaling factor given by

rs = C − rc , Ms = 1 ,

for some positive θ with θ < µ− λc
C

.



Next we construct the statistical network service curve
Snet(s, t) as in Eq. (12) for the through flow along the H
nodes. The corresponding error function is given as in Eq. (13)
from Theorem 3, and can be written after optimizations with
Lemma 3 from [11] as

εnet(σ) = HeµCτ0

�
1

µδτ0

�H−1
H

e−
µ
H

σ .

for some δ > 0.
Furthermore, we have from Eq. (16) in Theorem 4 that

Snet(s, t) has an MGF bound with rate and scaling factor
given by

rnet = rs−(H−1)δ , Mnet = e(H−1)θ(rs+δ)τ0

 
b t−s

τ0
c+ H − 1

H − 1

!
.

Finally, having the through flow’s rate envelope descrip-
tion from Eq. (17) and the network service curve just de-
rived, we can invoke Theorem 2 and derive the delay bounds.
First, let us denote

r = rnet − ra

and enforce the stability condition that

r > 0 ⇔ δ <
1

H − 1

�
C − λ + λc

µ− θ

�
.

Then Eq. (8) from Theorem 2 yields the following delay
bound for all σ ≥ 0

P
�
W net(t) >

σ

rnet

�
≤ inf

n�eθ(rs+δ)τ0

θrτ0

�H

e−θσa

+εnet(σs)
o

,

where the infimum is taken after σa + σs = σ. We can
optimize this using Lemma 3 from [11]. Then, replacing σ
with d · rnet, and letting t → ∞ we obtain the steady-state
delay bound for all d ≥ 0

Pr
�
W net > d

� ≤ Ke
− θµ

α

�
C− λc

µ−θ
−(H−1)δ

�
d

, (24)

where

K =
α

µ

�
Heµ (C + rs + δ)

βr

� β
α �r

δ

� (H−1)θ
α

�µ

θ

� θ
α

α = Hθ + µ, β = (H − 1)θ + Hµ .

3.4 Correlated arrivals / Identical service times
Here we consider the most pessimistic scenario from this

section, whereby we dispense with the statistical indepen-
dence on arrivals and also assume that the sizes of each of
the through packets are identical at each traversed node.

We first apply Eq. (3) in Theorem 1 to derive a statistical
leftover service curve for the through flow at each fluid server
h for h = 1, . . . , H. The service curves are given for any
δ > 0 by the functions

T h(t) =

�
C − λc

µ− θc
− δ

�
t ,

with error functions

εT,h(σ) =
eθcCτ0

θcδτ0
e−θcσ .

Next, having the description of the packetizers from Eq. (6)
in Lemma 3, we invoke Theorem 3 to derive a statistical
network service curve for the concatenation between a fluid

server and the corresponding packetizer. The service curve
is given at each node h by the function

Sh(t) = T h ∗ Sµ
−δ(t)

= inf
0≤s≤t

��
C − λc

µ− θc
− δ

�
s + (C − δ)(t− s)

�
=

�
C − λc

µ− θc
− δ

�
t .

The corresponding error function is

εh(σ) = ε̃T,h
δτ0

∗ εµ(σ)

= inf
σ1+σ2=σ

(
eθcCτ0

�
1

θcδτ0

�2

e−θcσ1 + eµCτ0e−µσ2

)
=

θc + µ

θc

 �
eθcCτ0

θcδτ0

�2
θc

µ

! µ
θc+µ

e
− θcµ

θc+µ
σ

.

In the last line we applied Lemma 3 from [11].
Next we can derive the statistical network service curve

Snet(t) for the whole network as in Eq. (12). Finally, using
Theorem 2 and letting t →∞ we obtain for all d ≥ 0

Pr
�
W net > d

� ≤ Ke
− θθcµ

γ

�
C− λc

µ−θc
−Hδ

�
d

, (25)

where

K =
γ

θ

�
2HCeθµ

δβ

� β
γ

(θc + µ)
(H−1)θ(θc+µ)

γ

·
�

1

θc

�Hθθc
γ
�

1

µ

� β−Hθµ
γ

,

γ = Hθ(θc + µ) + θcµ , and

β = (3H − 1)θµ + (H − 1)θθc + θcµ .

3.5 Considerations on dealing with (lack of)
statistical independence

In Subsection 3.2 we briefly mentioned that the statistical
independence of independent random variables is exploited
by using the product property of MGFs. This is applied in
conjunction with the Chernoff bound, i.e., for n independent
r.v. Xi

Pr
� nX

i=1

Xi > z
�
≤

nY
i=1

E
h
eθXi

i
e−θz , (26)

holds for all z and some θ > 0. In Subsections 3.1-3.3 the
Xi’s can represent either arrival processes, or packet sizes,
or both, depending on independence assumptions.

In the case of lack of statistical independence, then the
left-hand side of Eq. (26) is bounded in turn by

Pr
� nX

i=1

Xi > z
�

≤ infPn
i=1 xi=z

nX
i=1

Pr (Xi > xi)

≤ n

 
nY

i=1

E
h
eθXi

i! 1
n

e−
θ
n

z , (27)

for all z and some θ > 0. This is a worst case bound as
it dispenses with any information on the joint distribution
of Xi’s. The inequality is used in Subsections 3.2-3.4. For
instance, in Subsection 3.2, Eq. (27) is used with n = H (i.e.
the number of nodes) and Xi’s representing the cross arrival
processes.
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(f) H = 25

Figure 3: The impact of relaxing the statistical independence assumptions of arrivals and packet sizes in the
network from Figure 2 with Poisson arrivals and exponentially distributed packet sizes in (a), (b), (c), (d);
the impact of using a fluid service model in (e), (f). End-to-end delays as functions of (1) the number of
nodes H with utilization factor ρ = 0.75 and percentages of through traffic p = 0.9 and p = 0.5 in (a), (b), and
(2) the utilization factor with percentage of through traffic p = 0.5 and number of nodes H = 5 and H = 25 in
(c), (d), (e), (f) (C = 100 Mbps, average packet size µ−1 = 400 Bytes, z = 1− 10−9)

Equating Eqs. (26) and (27) to some fixed violation prob-
ability ε and solving for z yields an O(log n) increase in
the latter case. Therefore, when n = O(H), the end-to-end
delay bounds obtained with Eq. (27) (in Subsections 3.2-
3.4) gain an O(log H) factor when compared to those ob-
tained only with Eq. (26) (in Subsection 3.1) and which
grow as O(H). The O(H log H) scaling behavior of end-to-
end delays in scenarios with partial statistical independence
assumptions was first reported in [11] for the fluid service
model and later proven to be asymptotically tight in [5] for
the packetized service model. It is still open whether the
O(H log H) growth of the delay bounds from Eq. (23) is
asymptotically tight.

4. NUMERICAL RESULTS
In this section we numerically illustrate the behavior of

the network calculus bounds derived in Subsections 3.1-3.4
when (1) using a packetized service model and relaxing the
independence assumptions of arrivals and/or packet sizes,
and (2) using the approximative fluid service model and re-
laxing the independence assumptions on arrivals.

First we consider the case of a packetized service model. In
Figures 3.(a-d) we illustrate the bounds by relaxing the sta-
tistical independence assumptions of arrivals and/or packet
sizes. In Figures 3.(a-b) we plot the end-to-end delay bounds

as functions of the number of nodes H and consider two
cases: (a) large amount of through traffic (percentage p =
0.9), and (b) medium amount of through traffic (p = 0.5).
The plots correspond to Eqs. (19), (24), (22), and (25), re-
spectively, in an increasing order of the bounds. The plots
show that dispensing with the independence of packet sizes
has a similar effect on the bounds for both independent and
correlated arrivals. Dispensing with the independence as-
sumption of arrivals has a much more noticeable effect in
Figure 3.(b), due to the increase in the amount of cross traf-
fic. The bounds obtained for correlated arrivals but inde-
pendent packet sizes are more pessimistic than the bounds
obtained for independent arrivals but identical packet sizes,
i.e., correlations within arrivals have a more noticeable effect
on the bounds than correlations within service.

Similar conclusions can be drawn from Figures 3.(c-d)
which show the end-to-end delay bounds, on a logarithmic
scale, as functions of the utilization factor ρ for two cases:
(c) small number of nodes (H = 5), and (d) large number of
nodes (H = 25). In both (c) and (d) we let the same percent-
age of through and cross traffic (p = 0.5). Remarkably, the
two plots indicate that Kleinrock’s independence assump-
tions is justified at high utilizations for both independent
and correlated arrivals. Using simulations, this observation
was also pointed out in the context of M/M/1 queueing net-
works with independent arrivals [16].



Finally, Figures 3.(e-f) illustrate the effects of dispensing
with the packetized service model at the nodes. We consider
a small number of nodes (H = 5) in (e) and a large number
of nodes (H = 25) in (f). The two figures consider both
correlated and independent arrivals, and show the end-to-
end delay bounds as functions of the utilization factor. The
plots correspond to Eqs. (20), (19), (23), and (22), in an
increasing order of the bounds. For the case of correlated
arrivals, the bounds obtained for the packetized and fluid
service models closely match. A similar behavior is observed
for independent arrivals, with the difference that the fluid
model predicts more optimistic bounds than the packetized
model but only at very low utilizations. The plots indicate
that using a fluid service model is generally justified for both
independent and correlated arrivals.

5. CONCLUSIONS
In this paper we have developed a stochastic network cal-

culus by formulating the arrival and service models and an-
alyzing the single-node and multi-node cases. This calculus
generalizes existing formulations in the literature by provid-
ing a unified framework to deal with partial assumptions on
the statistical independence of arrivals and service at the
network nodes. This can be particularly useful in analyz-
ing packet networks where the fact that each packet has the
same size in the network creates subtle correlation among
service at network nodes. We have applied our calculus to
investigate the behavior of end-to-end delay bounds in a tan-
dem network with high-priority cross traffic by relaxing the
assumptions of independence of arrivals and packet sizes.
Also, we have investigated the behavior of the bounds by
using an approximative fluid service model for both cases of
independent and correlated arrivals.

Acknowledgments
The author is grateful to Jörg Liebeherr and Almut Bur-
chard for their contribution to [10] which contains most of
the results presented in this paper.

6. REFERENCES
[1] R. Boorstyn, A. Burchard, J. Liebeherr, and

C. Oottamakorn. Effective envelopes: Statistical
bounds on multiplexed traffic in packet networks. In
Proceedings of IEEE Infocom 2000, pages 1223–1232,
Mar. 2000.

[2] A. Bose, X. Jiang, B. Liu, and G. Li. Analysis of
manufacturing blocking systems with network
calculus. Performance Evaluation, 63(12):1216–1234,
2006.

[3] J.-Y. Le Boudec. Some properties of variable length
packet shapers. IEEE/ACM Transactions on
Networking, 10(3):329–337, June 2002.

[4] J.-Y. Le Boudec and P. Thiran. Network Calculus.
Springer Verlag, Lecture Notes in Computer Science,
LNCS 2050, 2001.

[5] A. Burchard, J. Liebeherr, and F. Ciucu. On
Θ (H log H) scaling of network delays. In Proceedings
of IEEE Infocom, May 2007.

[6] A. Burchard, J. Liebeherr, and S. D. Patek. A
min-plus calculus for end-to-end statistical service
guarantees. IEEE Transactions on Information
Theory, 52(9):4105–4114, 2006.

[7] C.-S. Chang. Stability, queue length, and delay of
deterministic and stochastic queueing networks. IEEE
Transactions on Automatic Control, 39(5):913–931,
May 1994.

[8] C.-S. Chang. Performance Guarantees in
Communication Networks. Springer Verlag, 2000.

[9] F. Ciucu. Network calculus delay bounds in queueing
networks with exact solutions. In 20th International
Teletraffic Congress (ITC), June 2007.

[10] F. Ciucu. Scaling Properties in the Stochastic Network
Calculus. PhD thesis, University of Virginia,
Charlottesville, VA, 2007.

[11] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling
properties of statistical end-to-end bounds in the
network calculus. IEEE Transactions on Information
Theory, 52(6):2300–2312, June 2006.

[12] R. Cruz. A calculus for network delay, parts I and II.
IEEE Transactions on Information Theory,
37(1):114–141, Jan. 1991.

[13] R. L. Cruz. Quality of service management in
integrated services networks. In 1st Semi-Annual
Research Review, CWC, University of California at
San Diego, June 1996.

[14] M. Fidler. An end-to-end probabilistic network
calculus with moment generating functions. In IEEE
14th International Workshop on Quality of Service
(IWQoS), pages 261–270, June 2006.

[15] Y. Jiang. A basic stochastic network calculus. In ACM
Sigcomm, pages 123–134, Sept. 2006.

[16] L. Kleinrock. Communication Nets : Stochastic
Message Flow and Delay. McGraw-Hill, Inc., 1964.

[17] E. W. Knightly. Second moment resource allocation in
multi-service networks. In Proceedings of ACM
Sigmetrics, pages 181–191, June 1997.

[18] J. Liebeherr, S. Patek, and A. Burchard. Statistical
per-flow service bounds in a network with aggregate
provisioning. In Proceedings of IEEE Infocom, Mar.
2003.

[19] Y. Liu, C.-K. Tham, and Y. Jiang. A calculus for
stochastic QoS analysis. Performance Evaluation,
64(6):547–572, 2007.

[20] A. K. Parekh and R. G. Gallager. A generalized
processor sharing approach to flow control in
integrated services networks: The multiple node case.
IEEE/ACM Transactions on Networking,
2(2):137–150, April 1994.

[21] J.-L. Scharbarg, F. Ridouard, and C. Fraboul. A
probabilistic analysis of end-to-end delays on an
AFDX avionic network. IEEE Transactions on
Industrial Informatics, 5(1):38–49, Feb 2009.

[22] M. Vojnovic and J.-Y. Le Boudec. Stochastic analysis
of some expedited forwarding networks. In Proceedings
of IEEE Infocom, pages 1004–1013, June 2002.

[23] E. Wandeler, A. Maxiaguine, and L. Thiele.
Quantitative characterization of event streams in
analysis of hard real-time applications. Real-Time
Systems, 29(2-3):205–225, 2005.

[24] O. Yaron and M. Sidi. Performance and stability of
communication networks via robust exponential
bounds. IEEE/ACM Transactions on Networking,
1(3):372–385, June 1993.




