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ABSTRACT
Regenerative systems are able to overcome significant perturba-

tions, and maintain autonomously their functionality in dynamic

and uncertain environments. More and more this ability of biologi-

cal systems plays a role in designing technical systems, e.g., in sen-

sor networks, as well. Important properties of regenerative systems

are their dynamic structures and their operation on different spatial

and temporal scales. Those propel the development of new model-

ing, simulation, and visualization methods. Among them, variants

of the π-calculus formalism, a portfolio of Gillespie related spatial

simulation algorithms, means for automatically configuring simu-

lators, and the integrated visualization methods, that make use of

innovative layouts and linked and coordinated views target chal-

lenges in analyzing biological regenerative systems. They provide

a basis for analyzing regenerative systems in general by means of

simulation.

1. INTRODUCTION
More and more computer systems are required to act independently,

flexibly, and autonomously [18]. The agent metaphor has helped

nurturing systems that work in a distributed and decentralized man-

ner and adapt themselves to changes in their environment [54].

This ability of systems is often subsumed under the term self-X,

e.g., self-organizing, self-optimizing, or self-healing. Self-healing

or the ability to regenerate refers to the ability of a system to main-

tain its functionality in spite of significant perturbations from its

environment and faults in its components. In the ideal case regen-

eration implies not only compensation but restoring functionalities.

In contrast to other self-X concepts, it also bears in itself its goal

and with it a measure of success. However, up to now it is still not
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clear how to achieve this ability and it appears natural to turn to bi-

ological systems for inspiration as regeneration appears as a salient

feature of those.

Biologically inspired computing seeks to adopt specific mecha-

nisms of biological systems to instill flexibility and autonomy, or

the ability to regenerate, into the designed systems. It appears natu-

ral to use an experimental technique like computer simulation for a

better understanding and evaluation of these approaches. Computer

simulation, as dry-lab experimentation, is also on its way toward es-

tablishing itself as a method of scientific investigation in molecular

and cell biology, which becomes particularly apparent in the field of

systems biology [27]. As a highly dynamic field, systems biology

is fast in adopting concepts from other fields, including computer

science and engineering [46].

In traditional computer science, simulation is an established method

for evaluating the performance, and gaining insight into the scala-

bility and robustness of systems. However, despite its wide use,

there is strong evidence that computer scientists should not only do

more experiments but also do better ones, e.g., [51, 39]. Unlike

biology, computer science does not see itself as an experimental

branch of science, and most experiments constitute rather proofs of

concept than thorough experimental evaluation studies. However,

the more autonomous computer science systems become the more

a shift in perception appears overdue.

Modeling and simulation forms a common and uniting ground ad-

vancing research on both technical and biological regenerative sys-

tems and facilitating the transfer of concepts between both. Impor-

tant properties of regenerative systems are their variable structures

and their operation on different temporal and spatial scales. Due

to these properties, off-the-shelf modeling and simulation tools and

methods will hardly suffice. This leads to new modeling and simu-

lation methods, among which, due to the complexity of this type of

systems, visualization methods play a central role [37].

In the following we will explore some of the challenges that regen-

erative systems provide for modeling, simulation, and visualization

methods, and hopefully also scratch the potential these methods

bear as a common platform for advancing work on regenerative sys-

tems in general. We will use methods developed for regenerative

biological systems to illuminate the challenges and opportunities

that regenerative systems offer. First let us shortly discuss aspects

of regeneration by examples taken from biology and computer sci-

ence respectively.
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2. REGENERATIVE SYSTEMS
As already mentioned regeneration is a salient feature of biological

systems. Variable structures and the operation on different tempo-

ral and spatial scales are central properties of these systems. Over

the last decades these properties also gained importance in techni-

cal systems. The agent metaphor permeates many current software

designs, and with this the need for variable structure modeling in

realizing self-X systems. Distributed ad-hoc computing and sensor

networks are examples, where also the second property of regener-

ative systems, i.e., the operation at different spatial and temporal

scales, plays a major role. To achieve regeneration, whether in

terms of restoring functionality or in terms of “simple” compen-

sation, requires further features.

Technical systems are increasingly required to manage themselves

fully autonomously, following high level objectives. This implies

distributed computational environments that shall work with often

limited resources of bandwidth, energy, and processing capability

and shall be able to overcome perturbations and faults in their com-

ponents. Biological systems have demonstrated to be efficient in

dealing with many of these problems. Therefore, significant inter-

est in identifying and applying suitable biological concepts exist,

particularly in the area of sensor networks.

2.1 Biological cellular systems
Differentiation of cells is the process by which cells specialize.

This implies that a cell’s pattern of behavior, composition, and in-

teraction typically changes. Signal transduction pathways are es-

sential processes for converting a signal or stimulus into another,

and for initiating and controlling the differentiation. Among those

the canonical Wnt pathway is assumed to play a key role in differ-

entiation of neural progenitor cells and thus for the regeneration of

the brain (see 2.2).

The main outcome of the Wnt/β-catenin signaling pathway is an

increase of the amount of β-catenin in response to Wnt molecules

binding to receptors at the outside of the plasma membrane. In

the absence of Wnt, a degradation complex efficiently reduces the

amount of β-catenin. In the presence of Wnt, the degradation com-

plex gets deactivated and consequently, due to its constant produc-

tion, the amount of β-catenin increases. This affects the regulation

and transcription of genes and accompanies the cells in their spe-

cialization (differentiation) process. Although formal models of the

Wnt pathway exist, e.g., [30], many details of the Wnt signaling

pathway are still not well understood. They motivate further work,

e.g., analyzing the impact of cell-specificity, compartment specific

dynamics, and cell cycle on the Wnt signaling pathway [33].

2.2 Biological neuronal networks
Biological neural networks are a prime example of systems with

variable structure. Neurons, which are cells already undergone a

cell differentiation process, communicate with each other via elec-

trical discharges, so-called action potentials or ’spikes’ (all-or-none

binary signals). The connectivity between neurons depends on the

history of these spikes. The communication between two neurons

is realized via a synapse, and in terms of propagating the electrical

signals the communication is uni-directional. One can distinguish

between a presynaptic (’sending’) and a postsynaptic (’receiving’)

neuron (Figure 1a). In the neocortex of mammals, a single neu-

ron may make connections to approx. 10000 presynaptic neurons,

where the signals integrated from the presynaptic neurons deter-

mine as to whether a spike is generated in the postsynaptic neuron.

It has been hypothesized by Hebb [16] that the strength of a synapse
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Figure 1: Illustration of neuronal communication and synap-

tic plasticity. a) A single postsynaptic neuron in the neocortex

may integrate signals (all-or-none spikes, thick lines) from up

to 10000 presynaptic neurons. b) The strength of a synaptic

connection is increased if the presynaptic neuron sends a spike

before a postsynaptic spike (upper row), whereas it is decreased

if the presynaptic spike comes after the postsynaptic spike (bot-

tom row).

between two neurons is increased, if the presynaptic neuron repeat-

edly contributes (in terms of sending spikes to it) in having the post-

synaptic neuron emitting a spike. This way of altering the connec-

tions between neurons is referred to as activity-dependent synaptic

plasticity.

Recently, it has been found experimentally [3] that the timing of

spikes emitted by the pre- and postsynaptic neurons is crucial in

shaping the connections between them (Figure 1b). In particular, it

has been found that only when the presynaptic neuron sends a spike

before a postsynaptic spike, the synapse is strengthened, whereas it

is weakened when the presynaptic neuron sends a spike after a post-

synaptic spike. Here, ’before’ and ’after’ refers to time-windows on

the order of a few tens of milliseconds. This form of plasticity is

referred to as spike-time dependent plasticity (see [36] for a review

on models).

Activity-dependent synaptic plasticity in general, and spike-time

dependent plasticity in particular, are believed to be the underly-

ing mechanisms of learning, memory and the ontogenetic devel-

opment of the nervous system. In the context of regenerative sys-

tems the latter is of primary interest. Biological neuronal systems

are not regenerative in the sense of self-healing. Instead of gen-

erating new neurons to recover lost functions (like after a stroke),

the remaining neurons dynamically reorganize by the mechanism

of activity-dependent plasticity in order to compensate lost func-

tions (like the motor control of limbs). During development, the

nervous system establishes connections based on the spike activity

of neurons, because not the detailed connectivity between neurons,

but presumably only the corresponding algorithms to set it up are

stored in the genome. In other words, the activity of biological

neuronal networks, which is often driven by sensory stimulations

from the environment, shapes the network connectivity, and the

network connectivity shapes the network activity. During develop-

ment these activity-dependent processes lead to a ’self-assembly’

of the nervous system, and after perturbation they help to restore

lost functions.

From a therapeutic perspective it is of interest to generate new neu-

rons by controlling the process of cell differentiation and to make

use of activity-dependent synaptic plasticity in order to integrate

them into damaged parts of the nervous system, thereby helping

the nervous system to become regenerative also in terms of self-
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Figure 2: Prolongation of network lifetime by bio-inspired role changing [42]; (A) Example network cluster with different net-

work roles, (B) Cluster energy consumption using reactive, centralized role change protocol, (C) Cluster energy consumption using

proactive, bio-inspired and energy-aware role change protocol.

healing. However, given that spike-time dependent plasticity and

the recovery of lost functions occur on vastly different spatial and

temporal scales, new modeling and simulation concepts and tech-

niques are needed, which can handle variable structures and differ-

ent spatial and temporal scales.

2.3 Sensor networks
Wireless Sensor Networks (WSN) are composed of sensor nodes,

which measure physical parameters in regions of interest, such as

temperature, brightness, presence of objects etc., and send mea-

sured data to a data sink where the information is processed. As

sensor nodes are left unattended after deployment, they are usually

battery powered. Therefore, energy and corresponding computa-

tional power are most critical resources. One of the main com-

ponents of energy consumption is wireless communication that is

usually carried out by on-board radio transceivers. During radio

signal propagation, the transmission power decreases proportion-

ally to the square of distance or worse. For nodes with limited

transmission power, transmission range as well as bandwidth and,

hence, communication capabilities are also highly constrained. Im-

plementation goals of large wireless sensor networks are quality of

service, i.e., functionality and coverage of all relevant parameters,

maximized lifetime despite limited batteries, and a well-balanced

compromise between accuracy and effort. On the other hand, lim-

ited resources increase the probability of failures due to node errors,

wireless communication perturbations, or directed attacks. Failures

may yield wrong information about local physical values or may

lead to completely unreachable and paralyzed network regions.

Therefore, biologically and socially inspired principles have been

thoroughly researched since some time to improve WSN behavior

even under critical circumstances. Some principles with their tech-

nical applications impact will be briefly described.

After deployment and for reorganizing after faults, WSN benefit

from self-organization by setting up a proper wireless interconnec-

tion structure, for example a flat mesh or a hierarchically layered

network. In [45] the authors present a simple and energy effi-

cient, fully decentralized procedure using just local rules to set up

a clustered network from scratch. The resulting clustered network

is called scale-free and obeys a Power law known from biology

and sociology (small world phenomenon) [29, 1], yielding inher-

ent favorable properties like robustness and energy efficiency. Self-

adaptation allows WSN to perform even under dynamically varying

environment conditions as well as in case of node and communica-

tion faults. A flock of birds typically rotates the most strenuous

leading position under the strongest birds. In case of WSN, clus-

ter heads receive sensor data from all cluster members and route

aggregated data to the central gateway using neighboring cluster

heads. Cluster heads thus dissipate their energy quite fast. Role

changing between nodes depending on remaining energy level as

proposed in X-Leach [15] and in [42] balances the energy burden

among all cluster members and prolongs network lifetime consider-

ably as depicted in Figure 2, which shows the results of simulation

experiments.

Error resilience in biological systems is often based on mechanisms

of self-healing or compensation. In case of severe faults most of-

ten not the whole organism fails, but just a functional degradation

is experienced. The term graceful degradation has been coined for

this behavior. In our technical context, a network must be able to

identify and dismiss failing nodes. Neighboring or hibernating re-

dundant nodes adopt their roles. Algorithms like XGAF [45] and

MASCLE [44, 43] are able to determine the minimum number of

active nodes to assure coverage and dynamically activate hibernat-

ing nodes or route around network holes. Thereby, the induced

reduction of a network’s functionality is kept as small as possible.

3. CHALLENGES AND APPROACHES
The above mentioned properties of regenerative systems provide

ample challenges for all areas in modeling and simulation. In the

following we will focus on modeling, simulation (i.e., the execution

of models), and visualization methods. The work we are reporting

has been driven by requirements of systems biology and constitute

parts of the modeling and simulation framework JAMES II [17].

3.1 Modeling
One of the characteristics of regenerative systems is their variability

when it comes to structure. Structure refers to components, inter-

actions, behavior, and interface equally. A central question is how

these dynamic structures can be modeled in an appropriate manner,

e.g., in the context of molecular or cell biology [4].

Most modeling formalisms assume a rigid model structure, e.g.,

DEVS [57]. DEVS supports a modular hierarchical construction

of models by distinguishing between atomic and coupled models.

Atomic models are equipped with input and output ports, a state,

transition functions, a time advance function that determines the

next time-triggered event, and an output function. Coupled models
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comprise other models as components and define the coupling be-

tween those, they do not have a behavior of their own. As atomic

models do, coupled models interact with the environment by re-

ceiving and sending events via their input and output ports. Due

to the requirements of application areas like regenerative systems,

extensions have been developed to support variable structures mod-

els. E.g. the variant dynDEVS supports variable composition,

interaction, and behavior, ρ-DEVS extends dynDEVS by adding

variable ports and with them dynamic interfaces, ml-DEVS builds

on ρ-DEVS introducing different levels of abstraction to support

multi-level modeling [53]. Thus, successively part of the rigidness

of the original formalism DEVS has been overcome.

In contrast to DEVS, other modeling formalisms support variable

structures from the outset. To those belongs the π-calculus [35].

The π-calculus is a model of concurrent computation and is based

on the notion of naming. Names represent both interconnection

links between active entities, called processes, and the data that

these entities exchange through communication. Two concurrent

processes can interact using a name they share the knowledge of:

one process acts as a sender, the other as receiver. The message

being transmitted is again a name, which the receiver henceforth

knows and may use in further interactions. Thereby, networks with

evolving connectivity can be described.

During the last decade, the π-calculus has seen quite a number of

variants emerging. Many of those have been proposed for biologi-

cal applications since the seminal work of Regev and Shapiro [41].

Space-π is a spatial extension of π-calculus supporting the repre-

sentation of continuous space and molecular motions [23]. Con-

current processes are equipped with global positions and velocity

vectors. The ability to communicate depends on the closeness of

processes. The advantage of the Space-π approach is that intra-

cellular structures and spatial effects can be represented in a very

detailed manner. It is possible to build membranes, to introduce

compartments, and active transportation processes. Even the im-

pact of molecule sizes and shapes can be modeled. This makes

the approach applicable to scenarios that are difficult to model with

implicit representations of space, only. The operational semantics

of Space-π is hybrid, i.e., combining continuous movement and

discrete communication [47].

The idea that the ability to communicate depends on the current

position of the processes and processes are equipped with further

attributes, is generalized in Attributed π. Attributed π extends the

π-calculus by attributed processes and attribute dependent synchro-

nization. To ensure extendability, the calculus is parametrized with

the language L which defines possible values of attributes [25]. At-

tributes subsume possible reaction rates and constraints as in higher

order logic. The introduction of the language L avoids inventing

completely independent calculi for the many reasonable choices of

attribute values and constraints. Thus, depending on the language

L Attributed π can express diverse compartment organizations. A

non-deterministic and a stochastic semantics have been defined for

Attributed π, where rates may depend on attribute values. Unlike

Space-π which is hybrid, Attributed π is a discrete formalism.

Imperative π-Calculus is based on Attributed π and introduces im-

perative assignment operations to a global store. This forms a step

toward multi-level modeling and simulation as information can be

maintained and accessed at different levels. The extension allows

for wide range of kinetics, e.g., including Michaelis Menten [33]

and dynamic compartments with mutable configurations and vari-

able volumes [24].

Developments as those from dynDEVS, over ρ-DEVS to ml-

DEVS, and from the stochastic π-calculus, over Space-π, At-

tributed π to Imperative π-Calculus illuminate the driving force

of cell biological applications in the field of modeling formalisms.

Although these extensions have been designed for cell biological

applications, they are applicable to the modeling of technical sys-

tems as well. In particular regenerative systems that exhibit simi-

lar characteristics, will benefit from these extensions. E.g., Space-

π is currently being adapted for self-organizing sensor networks.

DEVS variants that support variable structures have been applied

to simulate ad-hoc networks evaluating decentralized strategies that

utilize context information to assess the cooperativeness of other

nodes [28].

3.2 Simulation
Operating on different scales in space and time is one of the charac-

teristics of regenerative systems in general and biological systems

in particular. Many intra-cellular dynamics, incl. the functioning

of signaling pathways, depend on space, e.g., protein localization,

cellular compartments, and molecular crowding. Thus, as already

mentioned in the modeling section, spatial aspects, whether in a

hybrid (Space-π) or a discrete manner (Attributed π or Imperative

π-Calculus), are becoming of increasing relevance in systems biol-

ogy. As the significance of stochasticity in intra and inter-cellular

information processing is widely accepted, approaches that support

both, i.e., stochasticity and space, are particularly promising, but

also computationally expensive [49], which spurs on the develop-

ment of new simulation algorithms and methods.

Algorithms commonly known under the term stochastic simula-

tion algorithms (SSA) are based on sampling the Chemical Mas-

ter Equation (CME): a partial differential equation describing the

time evolution of the system’s state probability distribution [14].

To address the problem of efficiency different strategies have been

pursued: by introducing improved scheduling algorithms or data

structures, [13], by trading accuracy for efficiency [6], by combin-

ing numerical integration and stochastic discrete event approaches

[50], or by parallel and distributed simulation [5, 32].

One way of considering space within simulation is partitioning

space into sub-volumes and extending the master equation with a

diffusion term, which leads to the reaction-diffusion master equa-

tion (RDME). For sampling the RDME, several methods exist, to

those belongs the Next Sub-volume Method (NSM) [8]. To in-

crease their efficiency, parallel approaches have been developed as

well [7].

The simulation costs increase further if one moves from the meso-

scopic to the microscopic level. Microscopic algorithms operate

with single particle detail, tracing the position of every particle and

considering its individual features. While molecular and Brown-

ian dynamics provide high accuracy, the effort required for position

update and collision detection prevents simulating longer time peri-

ods or simulating models with many particles. Multi-resolution ap-

proaches offer a solution as they balance between accuracy and ef-

ficiency. E.g., by combining Brownian dynamics and the NSM [22]

two different spatial levels are supported within a lattice. Macro el-

ements are simulated at individual level. They affect the available

space for reactions and diffusions at population level. Thus, phe-

nomena like molecular crowding can be studied. According to our
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Figure 3: Impact of macro molecules on population propensi-

ties [21]

results [22], a decrease in the available volume can have a signifi-

cant local effect on reaction propensities. The maximum propensity

for single lattice cells was observed to be up to five times higher

than the maximum in the dilute case (Figure 3).

Another impediment for a thorough evaluation of models lies in

gaining access to sufficient computational resources. Whereas it

is rather difficult to achieve a speedup in a grid-inspired environ-

ment with fine-grained parallel simulation [20], grid-inspired en-

vironments are very suitable for simulation replication and model

parameter optimization, as those exhibit little or no data dependen-

cies between portions of work [31].

The described methods give only a glimpse on recent activities in

the area of simulation methods in systems biology. Similar prob-

lems imply similar solutions, thus solutions are quickly adapted in

simulating biological and technical systems. The concept of multi-

resolution simulation can also be found in network simulations,

e.g., where network flows represented by fluids and packet-oriented

flows are switched on demand [38]. As in systems biology, the goal

is to cope with the calculation effort required and to balance effi-

ciency and required detail in simulating those networks.

However, adopting concepts and cross fertilization between the ap-

plication areas apply also in a broader manner. E.g., a new empha-

sis is being put on the necessity to equip formalisms with a clear

operational semantics and relating this semantics to the simulation

algorithm. How the simulator works is no longer guess work but

subject to an unambiguous description related to the semantics of

the formalism. Therefore, Phillips and Cardelli adopt the idea of

Zeigler [57], to describe their SPIM simulator in terms of an ab-

stract simulator [40]. One step further, the Attributed π simulator

is directly rooted in the stochastic semantics and based on contin-

uous time Markov chains, thereby forming a close bound between

simulator and the formalism’s operational semantics.

The insight that the performance of different simulation algorithms

is influenced by a variety of factors, such as the model, sub-algo-

rithms, and data structures, like event queues, is not new [11], how-

ever is newly fueled by the variety and quantity of recently devel-

oped simulation algorithms. In this context also the question of

how performance evaluation of simulation algorithms can be done

in an as little as possible biased manner, receives new attention.

Based on more than 40.000 simulation runs, the performance for

a variety of SSA configurations for two models, i.e., the linear

chain system and the cyclic chain system model, is tested [19].

According to the results, the execution speed of the direct reac-

tion method (DRM) [14] and the next reaction method (NRM) [13]

differs greatly between both models. The overhead of generating

random numbers had less impact on SSA execution time than first

assumed when the NRM was proposed [13]. However, not sur-

prisingly the choice of the type of event queue influenced the per-

formance of NRM significantly. This underlines that for efficiently

simulating different models, different simulators, sub-algorithms,

and data structures should be offered to be selected and configured

on demand.

However, even if a simulation framework supports to plug in dif-

ferent simulators, sub-algorithms, and data structures, often simply

too many possibilities exist for their combination, e.g., when eval-

uating exact and approximative SSA algorithms, 170 different sub-

algorithm configurations were tested for one model instance [19].

In addition, performance might refer not only to speed, but to ac-

curacy, memory consumption, or a combination thereof. Even for

a simulation expert it is difficult to assess which of the many eligi-

ble simulation configurations, i.e., algorithmic set-ups, will deliver

best performance in a concrete case. There are numerous ways to

tackle this problem, e.g., by theoretically analyzing each simula-

tion configuration, or by gathering performance data and applying

data analysis and machine learning methods [9].

As already stated stochasticity plays an important role in biological

systems and simulation replication is a necessity for all stochastic

simulations. One way to improve replication efficiency is to en-

sure that the best configuration of the simulation system is used

for execution. Even without any prior knowledge on simulator per-

formance or problem instance, a highly efficient simulator can be

configured online, e.g., by an adaptive replication mechanism that

combines portfolio theory with simple policies from reinforcement

learning. Preconditions are that the simulation system supports an

on-the-fly configuration of simulation algorithms and that the num-

ber of required replications is sufficiently high. Figure 4 shows the

consumed CPU time per policy and experiment. The experiments

are executed by different SSA and stochastic π-calculus simula-

tors that have been implemented in JAMES II. The stochastic π-

calculus simulators rely again on SSA sub-algorithms to determine

the next event. 25 and 24 parameter set-ups of SSA and stochastic

π-calculus models have been tested, respectively. Each set-up was

replicated 1000 times by each of the five policies, so that 125.000

(SSA) and 120.000 (stochastic π-calculus) simulation runs were

executed for each experiment. Among the different reinforcement

learning policies, epsilon-greedy performed best and achieved a

good speed-up (up to 3.2) in comparison to the average case that

has been produced by the random policy. However, please note

that even before the learning algorithms are applied, one can restrict

the space of possible configurations to the most promising ones by

exploiting portfolio theory [10]. Without such supportive mech-

anisms for algorithm selection, the performance effect of choos-

ing a suitable configuration can be dramatical, e.g., we observed a

speed-up of over 1000 times when choosing the best instead of the

worst configuration. By automatically configuring suitable simula-

tors and reducing the time needed for experiments, experimentation

is facilitated, be it for the purpose of model validation and analy-

sis or the evaluation of newly developed simulation algorithms in
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bers of available simulation configurations are given in square
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comparison to existing ones.

3.3 Visualization
Each of the different phases of modeling and simulation, i.e., model

design, simulation experiment design, simulation, and interpreta-

tion of results, can be supported by visualization methods. Model-

ing and simulating regenerative systems provide some challenges

for visualization. The main challenge visualization faces refers

to the data as those have a spatial and temporal context, are het-

erogeneous and multi-variate. Classic visualization methods focus

typically on only one of these dimensions or integrate multiple-

dimensions only for a specific application context, e.g., for the field

of terrestrial biogeochemistry in [48]. Yet, in the simulation of re-

generative systems all of those play an equally important role, no

matter if the simulation is conducted for the biology domain, the

network sciences, or any other application area.

A tried and tested solution to this challenge is the use of so-called

linked views – separate but tightly coupled, interactive views that

each target a different aspect of the data. The benefits are obvi-

ous: no complicated all-round visualization techniques for hetero-

geneous, spatio-temporal, and multidimensional data need to be in-

vented, but instead a number of simpler techniques are grouped and

interlinked in a way that their combination fulfills the needed prop-

erties. This approach has been known for a while and the reader

is referred to [2] for a concise overview of the issues involved. In

combination with new visualization techniques, it is indeed a valu-

able approach to gain insight in models, experiments, and multi-run

simulations alike.

Focusing on the visualization of large hierarchical models, the point-

based hierarchy layout utilizes a very space-efficient node place-

ment. It is shown in Figure 5 (left side), depicting a large dyn-

DEVS model of the halobacterium in the context of the JAMES

II framework which also provides additional views on the hierar-

chy. Other visualizations like the Coordinated Graph Visualization

toolkit [52] focusing on networked instead of hierarchical model

structures similarly allow a modeler to easily navigate through large

models (Figure 5, right side).

For the visualization of spatio-temporal simulation data, Figure 6

shows multiple linked 3D-views, visualizing a small next sub-

(a) Event view (b) State view

Figure 6: Visualization of NSM [55].

volume simulation: reaction events and diffusion events are dis-

tinguished for multiple time points in the left view and the state,

i.e., the concentration, is given for a single time point in the right

view. Both are shown in their spatial context and support coordi-

nated interactions in terms of zooming and turning [55].

The next step, the combination of the model visualization and the

visualization of multiple simulation runs, is achieved by the inte-

grated approach presented in [26]. Here, the model structure and its

evolution in the course of different simulation runs is displayed in

linked overview and detail views. While time-varying graphs occur

frequently in many applications, e.g., social networks, adhoc and

sensor networks, this visualization is targeted towards hypergraphs.

These are a generalization of graphs, as they allow edges with more

than two incident nodes. An example of such a hypergraph is a

biochemical reaction network where an edge representing a reac-

tion usually connects more than one reactant with more than one

product. Figure 7 shows this visualization approach, which makes

use of a novel table-based visualization for bipartite graphs, into

which the hypergraphs are transformed. This enables the simula-

tion expert to inspect and compare individual time steps, as well

as gaining an overview of structural changes over time for a larger

scale investigation. In Figure 7, the two detailed views of differ-

ent time steps are shown in the upper part and the overview at the

bottom. The overview shows the concentration of a few selected

chemicals of our example, as well as the structural complexity as a

green curve. Structural complexity can be measured, e.g., by cal-

culating the amount of structural change between the hypergraph at

time t and at time t + 1 using graph edit distances. Plotted against

the time, these measures reveal the ups and downs of the overall

structural changes in the reaction network, pointing at possibly in-

teresting time points to explore in detail.

Yet, finally it is the goal to combine visualizations of all three

stages: modeling, experiment setup, and simulation. This is done

in the Mosan visualization framework [56] which covers the whole

process in all its stages. It is shown in Figure 8. The upper left cor-

ner shows the network structure of this model, i.e., the biochemical

reactions of the Wnt pathway as part of the Experiment View. This

view is coordinated with the Multi-Run View (top right) for the se-

lection of one run from all runs, the Node View (bottom left) for the

detailed analysis of single-run data linked to nodes, and the Edge

View (bottom right) that shows the single-run data connected to

edges. Each of the nodes shows in a glyph-like fashion the overall

gradient of a substance’s concentration. Multiple runs and exper-

iment setups can be compared and selected from numerous dia-
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Figure 5: Visualization of model structures in JAMES II

Figure 7: Screenshot of a visualization tool for time-varying hypergraphs [26].
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Figure 8: An integrated view on modeling and simulation applied to a part of the Wnt pathway [56]

grams displayed in stacked or Rolodex-style.

In summary, it can be said that the modeling and simulation of re-

generative systems is a strong driving force behind many of the

shown visualization techniques. E.g., the shown visualization of

time-varying hypergraphs, which was specifically motivated by the

task of depicting changing biochemical model structures, is the first

of its kind. Yet at the same time, the approach of using multiple

linked views has kept the inevitable complexity of these visualiza-

tions down to a minimum. Also, it has been shown by the selected

visualization techniques presented here, that the evolution of them

is quite similar to the ones described for the modeling formalisms:

step after step the available toolkits have grown, now being up to

the task of visualizing heterogeneous, multi-variate data in spatial

and temporal contexts.

4. SUMMARY
Regenerative systems provide many challenges and thereby, op-

portunities for modeling, simulation, and visualization. The focus

of our exploration has been on methodological approaches devel-

oped for biological applications addressing two important proper-

ties of regenerative systems, i.e., dynamic structures and operating

at multiple spatial and temporal scales. To exemplify approaches

and open challenges, we concentrated on research done in the con-

text of the modeling and simulation framework JAMES II. Although

the presented methods have been developed for biological systems,

central concepts and entire formalisms are applicable for regenera-

tive systems in general.

Whereas variable structures like dynamic interactions come eas-

ily to some modeling formalisms like π-calculus other formalisms

like DEVS require extensions and this at a price of additionally

burdening the formalism. Also the development of numerous π-

calculus variants over the last years document the need for further

improvements to ease the modeling of biological systems. Thus,

although first steps are done to get a feeling what might be needed

to model biological systems, it seems the modeling formalisms are

still a far cry away from offering these features combined with an

ease of use.

As models become more complex, the possibility of exploring and

navigating hierarchical and network model structures is important.

E.g., the adaptation of state of the art space-efficient visualiza-

tion methods and their integration into simulation tools allow an

overview and in-detail inspection of large, complex models on de-

mand. However, as the model’s structure is itself subject to changes,

entirely new challenges arise as now structures are combined with

a temporal dimension. For visualization purposes time is either

mapped to time (animation) or to screen space (multiple time steps

side by side). Visualizing dynamic hypergraphs in JAMES II is

based on the latter and represents a very first step to supporting vi-

sually the analysis of large scale models with dynamic structures.

The representation of meta information, like the amount of struc-

tural changes between events will help identifying interesting re-

gions of simulation traces for further exploration.

Space has a crucial impact on the dynamics of regenerative bi-

ological systems, driving the development of new modeling for-

malisms, e.g., like Space-π, Attributed π, and Imperative π-

Calculus. Whereas Space-π provides a continuous view on space,

Attributed π and Imperative π-Calculus are discrete. These dif-

ferent perceptions of space are also reflected and sometimes even
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combined at the simulation level, e.g., when simulating certain

molecules by Brownian dynamics and others at population level

with NSM. Although the representation of space appears at first

glance specific for biological systems, it also gains importance for

technical systems. Sensor networks are only one obvious example

for this. The more computing exploits decentralized and ad-hoc

structures (e.g., when using cars as sensor and computing nodes to

predict traffic congestion in an online manner [12]), the more im-

portant the location and movement of computing nodes becomes in

realizing those systems and in evaluating them by simulation.

Due to operating on different temporal and spatial scales, simu-

lating regenerative systems is computationally expensive. The de-

sire to balance between efficiency of simulation and required detail

drives the development of new simulation algorithms and innova-

tive approaches that combine techniques from diverse fields, like

machine learning, economics, and experimental algorithmics [34]

to configure efficient simulators on demand.

The key to this type of solutions lies in modeling and simulation

frameworks like JAMES II which is based on a “Plug’n simulate”

concept. It facilitates integrating and evaluating modeling and sim-

ulation methods and supports different application areas. Thereby,

re-use and alternatives do not end at the level of model, model-

ing formalisms, simulation algorithms, and tools, but refer to algo-

rithms, sub-algorithms, data structures, and experimental setups as

well. Not unlike the shown linked views in visualization that help

designing and analyzing regenerative systems, its concept avoids

all-around solutions that are difficult to maintain and relies on link-

ing diverse plug-ins so that their combination fulfills the require-

ments.

The above efforts will help to improve the quality of “in-silico”

experimentations referring to biological and technical regenerative

systems alike. Modeling, simulation, and visualization forms a

common ground for a better understanding and analysis of biologi-

cal and technical regenerative systems, thereby also promoting the

migration of concepts from regenerative biological to computer sci-

ence systems and vice versa.
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