
A power-law graph as a distributed hash table with
quick search and small tables

Hannu Reittu, and Ilkka Norros

VTT Technical Research Center of Finland

P.O. Box 1000, 02044 VTT

Finland

{ilkka.norros, hannu.reittu}@vtt.fi

1

Abstract—We analyze the possibility of using an ’Internet-like’
power-law graph as a basis for peer-to-peer distributed hash
table applications. Our work is based on previous studies of
power-law random graph models that showed emergence of a
spontaneous hierarchy of nodes based on their degrees, called the
’soft hierarchy’. The soft hierarchy indicates very short paths,
leading to the top of the hierarchy, where the top consists of
a clique of highest degree nodes. Such paths have lengths that
scale as log log N , with number of nodes N . Further, such paths
can be found by a heuristic rule: ’the next hop to highest degree
neighbor’. We suggest that these circumstances could be used
as a basis of an efficient distributed hash table. The idea is
that the hash-entries, needed to locate content, are stored at the
periphery of the hierarchy, consisting of large enough set of nodes
to guarantee small tables. It is required that any node, say, i in
the hierarchy is aware which nodes are below it in the hierarchy,
provided it is not in the periphery. The node i places its ’down-
hill’ neighbors in the hash-ring with equal intervals between
them. When node i gets a request to store or search a given
hash-entry, it uses some locally defined function that places the
hash value on this ring and forwards it to the down-hill neighbor
closest to this value. Our main result is a probabilistic estimate of
the number of hash-values stored in a periphery node. It appears
to be sub log log N and super log log log N , with N → ∞, and
with probability tending to 1. Another contribution is a sketch
of a novel algorithm that would create such topologies in a self-
organizing manner.

I. INTRODUCTION

We consider here one case of such a hybrid approach.

We study whether a so called ’power-law graph’, intensively

1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. VALUETOOLS 2009, October 20-22, 2009 - Pisa,
Italy. Copyright 2009 ICST 978-963-9799-70-7/00/0004 $5.00.

studied in connection to Internet and other complex networks,

could serve as a basis for such networks. In previous studies

of a random variant of such graphs, it was found that the

large degree nodes play an important role in the connectivity

of nodes with short paths that scale as log log N with the

number of nodes in the ’giant component’ (the largest [in

number of nodes] connected component of the graph). We

suggest that such large nodes present the provider side of the

network. They are also assumed to be more server-like in the

sense of non-volatility and larger capacity. The rest of the

network, the majority of nodes, is the peer side of the network,

constituted from voluntaries. We show that such a network

can be made self-organizing in a way that it gradually fits

the demands while the network becomes large. We show also

that in a power-law random graph it is possible to establish

a distributed hash table scheme that is very efficient in terms

of search path lengths and the hash table sizes. The first one

scales as log log N [1], [2], [3] and the last one even better

than that. Although the table sizes grow asymptotically to

infinity, the rate is extremely slow, sub log log N and super

log log log N . In the best possible case we would have constant

size tables. Thus we have some penalty in table sizes, but

hardly noticeable in practice. The power-law graph scheme is

based on our previous work on a spontaneous hierarchy of

high degree nodes that form a ’core’ of the random power-

law graph. The results hold with probability tending to 1 as

N → ∞, or in short, a.a.s..

A benefit of such an approach for the provider side could

be relaxed burden on infrastructure, since the peers also

participate and the network is self-organizing. The provider

has also up to date track on demands. The peers would benefit

from a quick search and high capacity system without high

cost overhead of heavy infrastructure.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

fezzardi
Text Box

fezzardi
Text Box

create-net
Typewritten Text

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
VALUETOOLS 2009, October 20-22, Pisa, Italy
Copyright © 2009 ICST 978-963-9799-70-7
DOI 10.4108/ICST.VALUETOOLS2009.7724

II. THE CONDITIONALLY POISSONIAN IVPLRG MODEL

Consider graphs with a set V of vertices (henceforth,

‘nodes’) and a set E of non-directed edges (henceforth,

‘links’). The number of nodes is denoted by N := |V |. Two

nodes connected by a link are called neighbors. The degree of

a node is the number of its neighbors.

The conditionally Poissonian random graph [4] is con-

structed as follows. First, each node is given a ‘capacity’ Λi

with a power-tail distribution. For simplicity, assume that the

capacities obey the Pareto distribution

P(Λ > x) = x−α, x ∈ [1,∞), α ∈ (1, 2). (1)

The choice of the parameter α is crucial: the graph has entirely

different properties if α is taken outside of (1, 2), where Λ has

finite mean but infinite variance. In the second step, each pair

of nodes {i, j} is independently joined by Eij links, where

Eij is a Poisson random variable with mean

ΛiΛj

LN
, LN :=

∑

Λk. (2)

Loops and parallel links are accepted but mostly neglected.

Note that (2) is a ‘gravity rule’: the expected number of links

between nodes i and j is proportional to both capacities Λi

and Λj . Conditioned on the capacities, the degree of node

i is a random variable with distribution Poisson(Λi). By the

addition rule of Poissonian random variables, the number of

edges joining two disjoint sets of nodes is again Poissonian.

From now on, we use the term IVPLRG for this particular

model. Rigorous proofs of the claims below can be found in

[4], [5], and a more intuitive discussion in [6]. Figure 1 helps

with the presentation.

A. The core network and its soft hierarchy

The core network: Choose ε(N) satisfying the following

three conditions as N → ∞:

ε(N) → 0, N ε(N) → ∞,
N ε(N)

log log N
→ 0. (3)

We define the core of the IVPLRG as the set of nodes

whose capacity exceeds N ε(N). This formal definition makes

of course sense only in the asymptotical behavior of the graph

as N → ∞. Intuitively, the core consists of ‘big’ nodes whose

capacity ‘is a power of N ’. The node v∗ with largest capacity

satisfies Λv∗ ≈ N1/α.
Most capacity is at the bottom: Let γ ∈ (ε(N), 1/α). The

aggregated capacity of all nodes i satisfying Λi > Nγ is

proportional to N1−(α−1)γ for large N . Thus, most of the

capacity of any top section of the core resides near its lower

boundary.

core







































































































N1/α

√
N

N ε(N)

v∗

Tγ

Fig. 1. The soft hierarchy structure of the core of an IVPLRG. Capacities
are drawn from distribution (1) and plotted on logarithmic scale, highest in
the center. The green arrows indicate how mighty neighbors a node typically
has. Nodes bigger than

√
N form almost a clique. Horizontally cut ‘tiers’ are

denoted by Tγ .

Density increases from low up to a clique: Consider thin

horizontal sections, ‘tiers’ of the core, denoting

Tγ =
{

i ∈ V : Λi ∈ (Nγ , Nγ+ε(N))
}

.

When γ increases from ε(N) upwards, the internal edge

density of Tγ grows from fairly low up to 1, which is obtained

when γ passes the value 1
2 and corresponds to a clique (a

totally connected subgraph). Even the lower tiers of the core

are almost connected internally.
The hierarchy and its height: Consider a core node v with

capacity Nγ . The largest capacity found among v’s neighbors

is close to min(Nγ/(α−1),Λv∗). Thus, the core network forms

a ‘soft’ hierarchy in the sense that almost every core node

(except v∗) has a neighbor with this much higher capacity.

Iterating this observation, one obtains that the distance from

v to v∗ is with high probability at most

k∗ :=

⌈

log log N

− log(α − 1)

⌉

.

Thus, any two nodes of the core are with high probability

connected by a path containing at most 2k∗ hops and having

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

an up-down profile in terms of capacities of the intermediate

nodes.

The core is found quickly: Although the size of the core

and its aggregated capacity are both asymptotically negligible

parts of the whole, the latter number is sufficiently high

to make the core attractive enough that a randomly chosen

node is, with high probability, either connected to the core

with still less than k∗ hops, or not connected to it at all.

Both alternatives have positive probabilities. The connected

component containing the core is called the giant component.

The core is robust: If all nodes with capacity higher than

Nγ are deleted, with a fixed γ > 0, the relative size of the

giant component remains asymptotically unchanged, and the

shortest paths are increased by a constant that does not depend

on N .

Layers: We define layers of nodes, based on capacities Λ:

V1 = {i ∈ V : Λi ≥ Nβ1(N)} − {i∗}
V2 = {i ∈ V : Nβ1(N) > Λi ≥ Nβ2(N)}

· · ·
Vk = {i ∈ V : Nβk−1(N) > Λi ≥ Nβk(N)}

· · ·

where we used the notations: V = {1, 2, · · · , N} and

β0(N) =
1

α
+

ε(N)

α − 1
βj(N) = (α − 1)βj−1(N) + ε(N), j = 1, 2, · · ·

The soft-hierarchy indicates that, for a node in layer i, there

exists a neighbor in layer i− 1, with probability tending to 1
as N → ∞. Thus paths from the bottom of the layer system,

layer number k∗, to the top node are no longer than k∗. This

is probably also a tight bound, see [3].

III. A SCHEME FOR THE POWER-LAW GRAPH AS A

DISTRIBUTED HASH TABLE (P-DHT)

A distributed hash table is a network for content search

and storage, based on a hash function that turns user-friendly

names to long binary strings. This hash function is common

information, so any member of the network can produce a

hash value corresponding to any name. The usual approach,

like Chord [7], assumes a structured network. A power-law

graph is not structured, since there is no overall picture of its

topology. However, the core can be in some extent considered

as a structure that emerges with high probability as the system

grows, although an entirely random structure is not plausible

for practical use and is replaced by another scheme later on.

However, the theoretical analysis is simpler for a random

structure and that is why we use it.

We use the core as a basis for the storage and retrieval

of a content. We assume a static setting with large enough

number of nodes, the dynamical case will be discussed later.

For scaling, we assume that each node has one file and a

corresponding hash value to be stored. Then in ideal case each

node would have one hash entry to be stored. Let us define a

hash entry as the hash value of a content and the corresponding

network address, where the content resides. The hash values

are usually modeled as Bernoulli type sequences of 0 and

1, where each value 0 or 1 is taken with equal probability

and independently of other values. For the sake of tractability,

we assume that the hash values fill the hash ring perfectly

uniformly. Of course, in real systems this should be replaced

with a Bernoulli type distribution, with some fluctuations of

hash value density in the ring. This would complicate our

analysis, probably without changing the principal indications.

In our scheme the hash values are stored in a tree-like

subgraph of the core of the Poissonian power-law random

graph. The principle for the tree construction is as follows.

The root of the tree is the largest capacity node i∗. It is unique

with probability 1. The next level of the tree, from the root, is

formed by those layer 1 nodes that have a link to i∗. The third

level is formed by some layer 2 nodes. Selection of those nodes

is done according to the following rule. All nodes from layer

2 that have at least one link to a layer 1 node mark uniformly

one of such link of theirs. If the marked link leads to the node

that belongs to the tree so far (i.e. has link to i∗), then such a

layer 2 node with its marked link is added to the tree. Then

the procedure is continued layer by layer similarly to one in

level 3. At each stage the procedure constitutes in analogous

selection of new nodes and links to the tree constructed so far.

As a result, the links in the tree are always between subsequent

layers. This tree is constructed until it reaches the layer k∗.

It may also happen that the tree terminates before it reaches

the level k∗, we let this happen because otherwise the analysis

becomes much more complicated.

Now we describe the principle of mapping the hash ring to

the tree, see Fig. 1. The node i∗ has some tree neighbors in

layer 1, whose random number is denoted as ∆1. This root

node simply divides the whole circle of hash values in equal

intervals between all its ∆1 tree neighbors. This allocation of

neighbors on the ring can be done internally, only node i∗

knows it. A layer 1 node k within the tree has some random

number of tree neighbors, ∆2(k), within layer 2. Such nodes

divide the hash ring again in even intervals between their

neighbors, and so forth until the last layer k∗, where the

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

corresponding tree degree is denoted by ∆k∗(i), where i is

a node in layer k∗ − 1. This regular setting in ring allocation

is made for sake of tractability. In a real algorithm a more

robust way is needed, say, uniform distribution on the ring.

A storage of a hash entry starts from the root, and is based

on the hash value. The entry is stored at some leaf node of the

tree subgraph. This leaf node is uniquely defined by the hash

value. Each node has a functionality of distributing the original

hash values evenly on its hash table, a permutation of the

original hashes. Each node then applies its own permutation

to the original hash, and the hash entry is forwarded to

a tree neighbor that has the closest internal hash value to

the permuted one in counter clock direction of the node’s

internal hash ring, described in the previous paragraph. The

original hash values can not be used for this purpose, since

the forwarding rule makes them localized in a certain range.

However, the new hash value must be a unique function of the

original one. It is also necessary that nodes have independent

ways of creating new hash values. The even distribution of

permuted hashes is also an idealization. More practically some

function, say, iteration of the hash function could be used. The

original hash entry is thus stored at the leave node, which is

at most in the layer k∗. From the construction it is obvious

that each hash value is stored in a unique leave node.

The search is performed in an analogous way as storing.

The request message travels along the same path as the storage

request for the corresponding hash entry used. As the request

reaches the target node, the information about the hash value is

sent to the node that initiated the request. In an IP network, this

information, stored in the leaf node, is simply the IP-address

of the node that has the content or resource corresponding

to the hash value. In other cases the information could be the

shortest path from the source to the top of the hierarchy. Since

the largest node is found with k∗ steps, simply by following

links upwards in hierarchy, the search paths have length ∝ 2k∗.

IV. TABLE SIZES OF P-DHT

We use the above described conditionally Poissonian power

law graph model to estimate the size of a typical hash table

that a node has in the scheme of P-DHT described in previous

section. We first made all estimates conditionally to drawn

sequence of capacities, noted as Λ = Λ1,Λ2, · · · ,ΛN .

Main result and estimates conditional to capacities

We first consider conditional to Λ random graph and con-

struct the P-DHT scheme on it. It should be noted that despite

the capacities are under conditioning, the links are drawn, by

Fig. 2. A scematic picture of our DHT. Black dots represent nodes, links the
tree neighbourhood. The top node i∗ is at the center. The red circles represent
the hash rings. First the top node places its neighbors on the hash ring, this
is the red ring around the top node. Each of these neighbors replaces their
down-hill neighbors on corresponding hash ring, depicted by the subsequent
red rings. This continues until the leaf nodes are reached.

definition, independently of each other. To keep things simpler

we particularize the definition of the tree. As we said a node

in layer k selects one link to layer k − 1, in the case it has at

least one such link. Otherwise it remains outside the tree. It is

simpler to make these links slightly more thin by reducing

the capacities of nodes to the level of the bottom of the

corresponding layer. In other words, in this three construction

it is assumed that layer k nodes have capacity equal to Nβk(N).

Formally this can be done by cutting the existing links, inde-

pendently of each other, with some probability in the following

way. The nodes with Λκ, κ ∈ Vk and with Λκ′ , κ′ ∈ Vk−1

have link with probability pk(κ, κ′) = 1−exp(−Λκ′Λκ/LN).
Define pk = 1−exp(−Nβk−1(N)Nβk(N)/LN), p0(κ, κ′; k) =
pk/pk(κ, κ′) and obviously 0 ≤ p0 ≤ 1 for all such pairs of

nodes κ, κ′. Considering subsequent layers Vk and Vk−1, mark

pairs of nodes {κ, κ′}, where κ ∈ Vk and κ′ ∈ Vk−1, with the

corresponding probability p0(κ, κ′; k), independently of each

others. A link is called marked, if the corresponding pair was

marked. Then our tree construction is simply such that the

links in trees are taken uniformly out of marked links. As a

result, the probability that a marked link exists between such

nodes is just p0,k = 1 − exp(−Nβk−1(N)Nβk(N)/LN).

Finally, the probability that a node in layer Vk has at least

one marked link to be chosen is pk = 1− (1− p0,k)vk−1 . It is

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

allowed that leaves of the tree are higher in the hierarchy than

at the last layer. This could happen if a node in some layer

k < k∗ is attached to a tree, but no node in layer k−1 selects

this node as its tree neighbor. To analyze such events we would

need a complete probability distribution (multinomial), which

we postpone to future work. Here we just look at the typical

case, and not at the worst case.
We want to find out the magnitude of the share of the hash

entries, ρk∗ , that come to a leaf node in which we enter by

selecting successive uniformly random neighbors at the tree.
Consider the following sequence of random variables, and

sequence of random nodes. Let ∆1 denote the number of tree

neighbors of the largest capacity node i∗. These are, if any, in

the V1. Then take any such tree neighbor in V1 (with uniform

probability) and denote by ∆2 the number of its tree neighbors.

All nodes that contribute to ∆2 are in V2. And so forth, until

we get to layer Vk∗ with corresponding random number ∆k∗ .

Denote by ρk∗ the random variable ρk∗ = N/
∏

i≤k∗ ∆i. This

is the share of the hash values a leaf node in k∗ gets, because

the root node divides the hashes in ∆1 equal sets, and so forth.

Denote by vk the cardinality of the layer Vk. The main result

is the following:
Theorem 4.1: P(ρk∗ ≤ m(N)) → 1, where

m(N)/ log log N → 0 and log log log N/m(N) → 0,

as N → ∞,
which we shall prove at the end of this section.

For the proof of Theorem 4.1 we need several lemmas,

starting from the following:
Lemma 4.2: Conditionally on Λ, and ∀ξ such that 1

2 < ξ <
1:

P

(

ρk∗ ≤ N

vk∗

1
∏

i≤k∗ pi(1 − yξ−1
i)

)

≥ 1 −
∑

i≤k∗

e−
1
2 (yi)

2ξ−1

,

y1 = p1v1, yi =
pivi

vi−1
, i > 1

p1 = 1 − exp(−Nβ1Λi∗/LN)

pi = 1 − (1 − p0,i)
vi−1 , i > 1

p0,i = 1 − exp(−Nβi+βi−1/LN), i > 1.

Proof: It is clear that ∆1 is binomially distributed: ∆1 ∼
Bin(v1, p1), because all nodes in V1 are potential neighbors of

i∗ and thus can belong to the tree. The probability that they are

neighbors of i∗ is given by p1, using thinned links between V1

and i∗. Similarly, all other variables ∆i, i > 1 are binomially

distributed: ∆1 ∼ Bin(vi, pi). Indeed, potential neighbors are

from layer i, thus n = vi in notation Bin(n, p). For a node in

layer i, the probability that it has at least one marked link to

layer i − 1 is 1 − (1 − p0,i)
vi−1 , if such marked links exists.

Then a uniformly randomly target is selected from layer vi−1,

and the probability that a given node is selected is thus 1/vi−1.

The product of these two probabilities gives the parameter p.

We obviously have E∆i = yi. That is why Chernoff’s bound

gives P

(

∆i ≥ yi(1 − yξ−1
i)

)

≥ 1−e−
1
2 y2ξ−1

i , see [8], for any

ξ, 1/2 < ξ < 1. Then we have

P





∏

1≤i≤k∗

∆i ≥
∏

1≤i≤k∗

yi(1 − yξ−1
i)





≥ P(∀i, ∆i ≥ yi)

≥
∏

1≤i≤k∗

P

(

∆i ≥ yi(1 − yξ−1
i)

)

≥
∏

1≤i≤k∗

(1 − e−
1
2 y2ξ−1

i)

≥ 1 −
∑

1≤i≤k∗

e−
1
2 y2ξ−1

i .

It remains to note that the argument of the left-hand side is

∏

1≤i≤k∗

∆i ≥
∏

1≤i≤k∗

yi(1 − yξ−1
i)

= vi∗

∏

1≤i≤k∗

pi(1 − yξ−1
i).

We also need the following lemma.

Lemma 4.3:
∏

1≤k≤k∗ (1 − N−mβk) ≥ c > 0, as N → ∞,

where m > 0.

Proof: Let k′ = max{k : Nmβk ≥ log log N}. For large

enough N , βk is a monotonously decreasing function of k.

Therefore, Nmβk′+1 < log log N . Then mβk < log log log N ,

for large enough N . βk′+1 = (α−1)k′+1

α + c′ l(N)
log N , where

c′ is of the order of one. It is clear that the term with

l(N) = ε(N) log N is small and can be neglected, be-

cause l(N)/ log log log N → 0. That is why we have k′ ≤
1

log 1
α−1

(log log N − log4 N), where log4 N denotes 4-times

log, and

∏

1≤k≤k′

(1 − N−mβk) ≥
(

1 − 1

log log N

)k∗+1−c log4 N

→ α − 1 > 0.

The rest of the product can be estimated as

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

∏

k′+1≤k≤k∗

(1 − N−mβk) ≥ (1 − N−mβk∗)k∗+1−k′

≥ (1 − N−fmε(N))1+c log4 N → 1,

because log4 N/N ε(N) → 0, where f, c > 0 are some

constants. As a result, the whole product has a strictly positive

lower bound.

Estimates unconditional to capacities and the proof of the main

result

So far everything was conditioned on Λ, now we try to

get unconditional results. The total capacity LN is a random

variable with finite mean. The Markov inequality gives us the

following:

Lemma 4.4: For any ξ > 0,

P

(

N ≤ LN ≤ α

α − 1
N1+ξεN

)

≥ 1 − N−ξε(N).

The random variable LN causes some formal difficulties.

Indeed, under the condition that LN ∈ A, where A denotes

the range of values, say, in Lemma 4.4, some other random

variables can become dependent. This is true for variables

like vk etc. To cope with this we use the following obvious

inequality:

Lemma 4.5: Let A and B be any measurable sets, with

complements Ā and B̄. Then

P(A ∩ B) ≥ 1 − P
(

Ā
)

− P
(

B̄
)

.

If we can show that the right hand side goes to 1 as N → ∞,

then so does the left hand side.

Lemma 4.6: ∃ some f > 0, such that:

P

(

1

2
E(vk) ≤ vk ≤ 2E(vk)

)

≥ 1 − 2e−
1
8 E(vk) ≥ 1 − 2e−Nf

.

Proof: This follows from the fact that vk is a binomially

distributed random variable. Then the first inequality is the

Chernoff’s bound. It remains to calculate the expectation of

vk. We have E(vk) = NN−αβk(1 − Nα(βk−1−βk)) ≥ Nf . It

is easy to see that 1−αβk > 0, and α(βk−1 − βk) ≤ 0. Thus

we can select some f > 0 so that the inequality holds.

Let us denote by C the event { 1
2E(vk) ≤ vk ≤

2E(vk)}1≤k≤k∗ . Then, Lemma 4.5 gives us the needed es-

timate for the joint probability and we get

Corollary 4.7: P(C ∩ LN ∈ A) ≥ 1−2k∗e−Nf−N−ξε(N).

The conditional probabilities pi, i = 1, 2, · · · , k∗ are also

random variables. We have the following:
Lemma 4.8: There exist some constants s, r, c, f > 0, s.t.

k = 1, 2, · · · , k∗,

P

(

{pk ≥ 1 − e−sNrε}1≤k≤k∗

)

≥ 1 − 2k∗e−cNf − N−ξε(N).

Proof:

By definition, pk = 1 − e−vk−1N

βk+βk−1
LN . Let us denote

by B the event that {pk ≥ 1 − e−sNrε}1≤k≤k∗ . Then we

have: P(B) ≥ P(B ∩ LN ∈ A ∩ C) = P(LN ∈ A ∩ C) ≥
1−2k∗e−Nf −N−ξε(N), where the last inequality comes from

Corollary 4.7. The last equality comes from the fact that B
is true when both C and LN ∈ A take place. Indeed, under

these conditions

pk ≥ 1 − e
−2 N

1−αβk−1+βk+βk−1

2N
(α−1)

α

≥ 1 − e−gNβk−(α−1)βk−1 ≥ 1 − e−gN(α−1)ε(N)

for some g > 0.

As a result we conclude that the estimates given in Corollary

4.7 and Lemma 4.6 are true with probability tending to 1, or

a.a.s. Indeed, it is clear that k∗e−Nf → log log Ne−Nf → 0.
Now we can prove Theorem 4.1:

Proof: Let M denote the event that ρk∗ ≤
N

vk∗

1
∏

i≤k∗ pi(1−(
pivi
vi−1

)ξ−1 , when we make a uniformly

random selection of ρk∗ . Let M0 be such a subset of M that

ρk∗ ≤ m(N), with function m as in the conditions of the

theorem. We have:

P(M0) ≥ P(M0 ∩ C ∩ LN ∈ A)

= P(M0 | C ∩ LN ∈ A) P(C ∩ LN ∈ A)

→ P(C ∩ LN ∈ A) → 1,

because M ∩C ∩LN ∈ A = M0 ∩C ∩LN ∈ A. Indeed, this

can be easily verified by substituting the conditions that event

C∩LN ∈ A takes place to the right hand side of the condition

of M ⊃ M0, and then using Lemma 4.3 for the product. That

is why we can use the Lemma 4.2 for P(M | C ∩ LN ∈ A),
showing that it goes to 1 as N → ∞, and Corollary 4.7 to

show that also P(C ∩ LN ∈ A) has the same limit.

V. MODEL FOR GRAPH PROCESS WITH POWER LAW

DEGREES

A random graph is hardly a good choice for a network

topology. That is why we consider how one could get a topol-

ogy that has properties of a power law random graph, without

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

Fig. 3. As schematic picture of the topology of supernode tree with attached
peers. Red arrows repreresent uplinks between supernodes.

some drawbacks, say, more than one connected components.

Such topology should also be ’self-organizing’, it is formed

by local actions of peers, without global steering elements.

Here we give a sketch of one possibility that seems to be well

suited for our purpose. We postpone more careful analysis of

this model.

Our construction relies on generalized Pólya’s urn process

by Chung et al [9] and on the concept of soft hierarchy

created for random power law graph. We assume dynamical

setting where nodes can come and go. First consider only

node arrivals, the leaves require a certain modifications that are

given in the next sections. An arriving node makes a decision

whether it will be a supernode or not. With a fixed probability

p it takes the role of the supernode and with probabity 1 − p
it will be a peer. Each peer in the system is attached by a link

to one supernode. The arriving node that is going to be a peer,

samples randomly and uniformly over all peers in the system

and attaches to the same supernode as the sampled peer. If

the arriving node decides to be a supernode it does the same

random sampling and makes the link to the corresponding

supernode, in addition it is considered as a supernode with one

attached peer, that is itself. The last circumstance is needed

to make the newly born supernode visible for future arriving

peers.

It appears that this arrival process is just another formulation

of Chung’s et all, urn process. Indeed, this discrete time urn

process assumes that at each time step with probability p
a new bin is created and one new ball is put into it, and

with probability 1 − p a ball is sampled uniformly among all

existing balls and one new ball is placed in the same urn as the

sampled one. Obviously creation of a supernode is equivalent

to creation of a bin and so on. It was shown that in the limit

of large time, the fraction of bins with i ∈ {1, 2, · · · } balls,

fi converges to

fi ∼ i−(α+1), α =
1

1 − p
.

Thus, in the range 0 < p < 1
2 , we get the power law

distribution with finite mean and infinite variance. As a result,

the distribution of number of peers attached to a supernode

follows this same law in the limit of large system. To achieve

soft hierarchy of supernodes the following procedure must be

added. When a supernode gets a new neighbor, it makes new

uniform sampling of peers in the system, if the found peer

is attached to a supernode with higher degree than the one

to which the initiator of the sampling was currently attached,

then it swaps its supernode contact, in other wards cuts the

old link and attaches to a higher degree supernode. In the

case that a supernode with lower or equal degree was found,

nothing happens. This results in a supernode subgraph, that

is obviously a tree. We argue that it has low typical height

of the order of log log N , where N is number of supernodes.

The only operation that is needed to create it is the uniform

sampling of the peers, this can be done in a distributed manner

and as a result the supernode hierarchy is self organized.

In order to make our model tractable, we simplify it. It is

well known that the expected degree sequence of a power law

graph has the form:

dj = (t/j)
1
α ,

where, t is the order of graph, j = 1, 2, · · · t. In our case, t is

the number of arrivals so far. We conjecture, that in the limit of

large t, it is plausible to assume that the degree sequence fol-

lows the above relationship, and results concerning distances

in the network are asymptotically identical. That is why we

assume deterministic degrees or ’capacities’, that grow in time,

it is assumed that a supernode gets a new neighbor when its

capacity reaches the level of the subsequent integer. Thus we

should use floor function for the degrees in above relation. As

a result degree of supernode with number k at time t > k is

dj(t) = c

⌊

(

t

j

)
1
α

⌋

,

where c is a constant. We agree, that the degree of a supern-

ode does not include links between supernodes. However, a

supernode has at least one peer attached to it, indeed in the

moment of creation a supernode has one peer attached to it.

The sum of all supernode degrees equals to t.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

In this deterministic degree models, we can estimate prob-

ability of supernode-supernode links. As in original model,

when a supernode is created it samples all peers in the system

uniformly and makes link to that supernode to which the

sampled peer was attached. This link we call the ’uplink’. Each

time the supernode’s degree increases by 1, the supernode

repeats this procedure and updates the uplink only if it

founds a supernode that has larger degree than the current

uplink target has. Denote by P(j → k, t), the probability, that

supernodenode j has uplink to supernode k at time t. We have

the following suggestion:

Hypothesis 5.1:

P(j → k, t) ≥ 1 − exp(−mdj(t)dk(t)/t), j > k,

where m > 0 is a constant. We give only a sketch

of proof. Node j makes c(t/j)1/(α) attempts to improve

its uplink target. Denote moments of time when these at-

tempts happen by s(i), i = 1, 2, · · · , c(t/j)1/(α), where

we neglect the notion of floor function, which should be

plausible in large time limit. All these times are upper

bounded by t. Thus we have, with some positive constant m′:

1−P(j → k, t) =
∏c(t/j)1/(α

i=1 (1−m′(s(i)/k)1/(α) 1
s(i)) ≤ (1−

m′

k1/(α)
1

t1−1/(α))
(t/j)1/(α) ≤ exp(−m′(t/j)1/(α)(t/k)1/(α)/t),

from which the claim follows.

In previous chapters a power law random graph was studied.

In such models link probability was given by an analogous

formula and with replacing the magnitudes like dj(t), with

power law distributed random capacities. In our current models

we keep only one uplink, but make many trials to improve

them. Roughly speaking, if the all such trials would result

in a link between supernodes, we would have similar graphs

in the large t limit. Then the mentioned soft hierarchy with

low height was found as an asymptotic structure. It was also

recognized that within the core of large degree nodes, it is

sufficient to look just one link that goes from a given vertex

to the largest capacity neighbor. Our hypothesis is that the

above uplinks are similar to those ’extreme’ links.

Another feature in the original random graph was that the

capacity of a set of nodes can be added up, in the sense that

the probability that a node has link to such set of nodes is

given by an analogous formula with capacity of the set of

nodes represented with the sum of capacities over that set. We

have a similar result here. Let denote by P(j → S, t) that a

node in has an uplink to a node in a set of nodes S, with

s ∈ S ⇒ s < j. Then we have

Hypothesis 5.2:

P(j → S, t) ≥ 1 − exp (−mdj(t)
∑

s∈S

ds(t)/t).

Proof: This follows from the Hypothesis 5.1,

since 1 − P(j → S, t) =
∏

s∈S (1 − P(j → s, t)) ≤
∏

s∈S exp(−mdj(t)ds(t)/t) =
exp(−mdj(t)

∑

s∈S ds(t)/t), which was the claimed

inequality.

Now we can repeat definition of approximately log log t
layers of supernodes, such that in the limit of large t, a node

in layer k has asymptotically almost surely an uplink to the

next upper laying layer k − 1. Thus, in such a way one can

show the log log t distance scaling to be hold. Of course,

more rigorous arguments are needed, however it seems that

the result is very likely to be right. The distance distribution

show a one peak function, the position of this peak, the typical

distance, is almost a constant corresponding to log log t-
type dependency. The tail of the distribution grows somehow

quicker, corresponding to log t scaling of the diameter, some

rare pairs of nodes have such record distances.

We postpone the corresponding rigorous analysis. Although

such analysis would back up our model theoretically it has a

limitation that the results are only asymptotical in t. Now more

important is what kind of graphs we get in a reasonable range

of t, say up to millions of peers in the system. That is why

the simulations have also important role in this perspective,

although they have very little to give for rigorous analysis.

VI. SOFT HIERARCHY TREE INSTANCES

We made some computer experiments with the proposed

algorithm. They suggest that the results are in qualitative

agreement with the connections to the power law random

graph model suggested in previous sections. The distance

scaling is very good indeed, the distances hardly grow in the

range of thousands and millions of peers. This is even notable

if compared with the log t-scaling typical for networks based

on distributed hash tables, like the Chord, where distances are

scaled somehow similarly to the hypercube with dimension

t. In very large networks the path lengths become rather

long, say, of the order of 20, which can be untolerable.

Our algorithm produces graphs, in any reasonable range,

with typical hop count distances less than 10 with parameter

p = 0.1. Only few node pairs have distances that correspond

to the diameter, which has asymptotical scaling of log t, [2].

In this respect already the supernode graph shown in Fig. VI

is somehow representative. Indeed, the typical distances are

only a few hops and most of the supernodes have only very

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

low number of supernode neighbors while there are a few

very high degree nodes in the system. Such heavy nodes are

crucial for the connectivity and have obviously a central role

in mediating between supernodes. In a real system it would

be necessary to have in places of such heavy supernodes some

sufficiently capable and reliable entities given by the provider.

On the other hand, typical supernodes are lightly involved in

the system and could well be handled by voluntaries. This

picture will remain unchanged even if the size of the system

grows with many orders of magnitude, remainig almost static.

Again a typical peer has to deal with a light burden, while the

heavy nodes have the main burden in increasing connectivity.

However, even for these large nodes the needed degrees are

sub linear functions of t, thus making our approach clearly

different from the centralized server based solutions. Indeed,

we have the following suggestion:

Hypothesis 6.1: In a power law supernode tree, the degree

of a large enough supernode of rank i at time t scales at most

as dj(t)
2−α = (t/i)(2−α)/α.

Obviously, in our case the power of t fulfills 0 < (2−α)/α <
1. This result follows from an estimate for expected degree of

such a high rank node, and the law of large numbers telling

that the deviations from this value can not be too large with

notable probability. The reasoning goes like this

E |{j : j → i, t}|
≥ di(t)

∑

j>i

dj(t)/t = (t/i)1/αt1/α
∑

j>i

j−1/α/t

≈ (t/i)(2−α)/α.

The following computer experiments (see Fig. 5) support

the view of good distance scaling in the power law tree. We

take values of t = 104, 105, 106, the mean distance remaining

almost constant around 5. The diameter shows a bit larger

values (13 − 18), but the numbers of node pairs within such

large distance are insignificant.

VII. COPING WITH ’CHURN’

So far we assumed a monotonous growth of the network.

This is motivated by the assumption that the presented system

shows good scalability with large orders and is aimed for large

scale systems, where the main challenge lays. However, the

algorithm should also cope with decreasing number of nodes

without centralized control. We argue that this is in principle

possible. This part of the work is only a preliminary sketch.

In future work we shall study this question in more details.

Fig. 4. An example of soft hierarchy tree with p =
1

10
, corresponding to

α = 1
1

9
, only the supernodes, 301 in numbers, are shown.

Fig. 5. Empirical hop count distance distribution in a soft hierarchy tree
with p = 0.1 and t = 10

4 (red line), t = 10
5 (blue line) and t = 10

6

(green line). It shows fraction of pairs of nodes at distances 1, 2, · · · , found
in computer experiment with 10 instances of two smallest graph sizes and 1
instance for the largest.

When the number of peers decreases in the system, this

happens in homogeneous manner in the sense that all supern-

odes lose their peers in a uniform fashion. This is a result of

unstructured design following from the uniform sampling of

the peers. Thus a super-node can proceed autonomously, based

only on its experience of its neighboring peer dynamics. That

is why we suggest the following procedure of backtracking

the uplinks. The supernode keeps track on its history of trials

to change the uplink. It remembers the addresses of previous

uplinks and the number of attempts that were needed to

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

achieve the consequent improvement. For each departure of

its neighboring peer, the supernode goes back in history, a

new arrival on the other hand moves it forward to history, and

when the balance of arrivals and departures is +1, it makes a

new attempt to improve the uplink, setting all counters to 0.

On the other hand, when the departures exceed the arrivals in

a way that the supernode’s counter hits the moment when the

uplink was updated last time, it tries to change its uplink to

this previous target.

Another type of failure occurs when a supernode leaves the

network. Then we assume that the supernode that has this gone

node as an uplink target changes the uplink to the previously

used one, and if there is none, it makes a new trial to find an

uplink target. However, we assume that the large nodes might

be more robust than the typical nodes. Say, they are backed

up by a provider. Then such failures of supernode may be

reduced, and a typical supernode departure is one where a

very light weight supernode leaves and does not require any

massive procedures. Probably some other relaxations can be

done, since the main target is to keep the soft hierarchy in

up-to-date state. This means that nodes belonging to a certain

layer has an uplink to the next layer. This circumstance is not

violated immediately after some minor changes in the order

of the system.

VIII. FINDING A UNIFORMLY RANDOM PEER

So far we did not specify how the process called ’find a peer

uniformly over all peers in the system’ is realized. Let us call

this function FindUP. Again we provide only some sketches

of solution. One could assume an auxiliary network for this

purpose. For instance, in Chord type DHT this could be done,

[10]. However, it would be nicer to have only one network.

We have obviously one natural ’randezvous point’ in the

network, the top node. It can be found in a distributed fashion

by going along uplinks as described in previous sections. The

requests for a random peer are forwarded to the top node.

It could then, say, generate a sequence of random hashes.

These hashes are used to forward the request the request to

the random leaf node of the tree, at each step the subsequent

random hash value is used to forward the request. The leaf

node picks up uniformly, one of hash entries it possesses, an

this entry is returned as the result of the request.

This FindUP function can also be used for peer joining

process. A similar approach was used in [10]. It is necessary

that an arriving peer gets an address of any supernode and

forwards through it a FindUP request.

Acknowledgements This work was financially supported

by the EU-project Net-Refound.

REFERENCES

[1] Reittu, H., Norros, I.: On the effect of very large nodes in internet graphs.
In: Proceedings of IEEE GLOBECOM’03, Taipei, Taiwan (2002)

[2] Chung, F., Lu, L.: The average distances in random graphs with given
expected degrees. Internet Mathematics 1 (2003) 91–113

[3] van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: Distances in
random graphs with finite mean and infinite variance degrees. Electronic
Journal of Probability 12 (2007) 703–766

[4] Norros, I., Reittu, H.: On a conditionally Poissonian graph process. Adv.
Appl. Prob. 38 (2006) 59–75

[5] Norros, I., Reittu, H.: On the robustness of a power-law random graph
in the finite mean, infinite variance region. Internet Mathematics, to
appear (2009) Arxiv: 0801.1079.

[6] Norros, I., Reittu, H.: Network models with a ’soft hierarchy’: a random
graph construction with loglog scalability. IEEE Network 22(2) (2008)
40–46

[7] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F.,
Dabek, F., Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup
Protocol for Internet Applications. IEEE/ACM Transactions on Net-
working 11(1) (2003) 17–32

[8] Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley (2000)
[9] Chung, F., Handjani, S., Jungreis, D.: Generalizations of Polya’s urn

problem. Annals of Combinatorics 7 (2003) 141–153
[10] Norros, I., Pehkonen, V., Reittu, H., Binzenhfer, A., Tutschku, K.:

Relying on randomness - PlanetLab experiments with distributed file-
sharing protocols. In: Next Generation Internet Networks 3rd EuroNGI
Conference, Trondheim, Norway (2007)

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7724
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7724

