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ABSTRACT

One of the main objectives of this paper is to provide an
information-theoretic answer on how to maximize energy-
efficiency in MIMO (multiple input multiple output) sys-
tems. In static and fast fading channels, for which arbitrar-
ily reliable communications are possible, it is shown that
the best precoding scheme (which includes power alloca-
tion) is to transmit at very low power (Q → 0). Whereas
energy-efficiency is maximized in this regime, the latter also
corresponds to communicating at very small transmission
rates (R → 0). In slow fading or quasi-static MIMO sys-
tems (where reliability cannot be ensured), based on the
proposed information-theoretic performance measure, it is
proven that energy-efficiency is maximized for a non-trivial
precoding scheme; in particular, transmitting at zero power
or saturating the transmit power constraint is suboptimal.
The determination of the best precoding scheme is shown
to be a new open problem. Based on this statement, the
best precoding scheme is determined in several special but
useful cases. As a second step, we show how to use the
proposed energy-efficiency measure to analyze the impor-
tant case of distributed power allocation in MIMO multiple
access channels. Simulations show the benefits brought by
multiple antennas for saving energy while guaranteeing the
system to reach a given transmission rate target.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms

Energy, Information Theory, Game Theory.

Keywords

Energy efficiency, MIMO channels, Outage probability, Power
allocation games, Power control games.
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1. INTRODUCTION
During the past decade energy consumption has become a

more and more important issue in wireless networks. In cel-
lular networks for instance, mobile terminals are now equipped
with relatively large screens, required to offer more and
more functionalities (evolving to PCs), required to operate
at higher transmission rates and better qualities and used
for a longer duration within a day. On the fixed infrastruc-
ture side of cellular networks, energy consumption is also
important since the number of base stations has increased
dramatically and energy cost plays an important role in
OPEX (operating expense); according to [1] energy costs due
to (cellular) fixed networks is expected to be multiplied by
about six within the decade 2002–2012. On the other hand,
very significant progresses have been made in the art of de-
signing wireless transmitters and receivers. This includes
e.g., antennas and electronic circuits technology, signal pro-
cessing algorithms, channel coding techniques and network
protocols. The natural question which arises is: Will techno-
logical progresses be fast enough to control/decrease energy
consumption at the (autonomous) terminal side and energy
costs generated by the network infrastructure? Answering
such a question is not easy and only elements of response
can be provided. For this purpose, exploiting Moore’s law
and Information Theory can be of great help to get some
insights into this issue. As far as this paper is concerned, we
want to propose and exploit a suited information-theoretic
performance metric to better understand this type of prob-
lems. Among the technological breakthroughs in commu-
nications we find MIMO (multiple input multiple output)
systems [2][3][4]. Indeed, it is well known by now that for a
point-to-point communication and given transmission qual-
ity target (say in terms of bit error rate), using multiple
antennas at the transmitter or/and receiver in full diver-
sity allows one to decrease the transmit power dramatically.
Would therefore MIMO be the choicest solution to energy
consumption issues? This paper provides some elements of
response to this question.

The closest related works to the problem under considera-
tion are [5][6][7]. In [5][6], the authors introduced a nice def-
inition of energy-efficiency for the distributed power control
problem over flat fading (single input single output, SISO)
channels: it is defined as the net number of information bits
that are transmitted without error per time unit (goodput)
to the transmit power level. However, the nice framework of
[6] needs to be broadened in order to attain the aforemen-
tioned objectives. First, we need to consider multiple anten-
nas at the terminals (MIMO systems). In [7], the authors
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generalized [6] to multi-carrier CDMA (code division multi-
ple access) systems. Here we go a step further since multi-
carrier systems are a special case of MIMO systems. More
importantly, [6][7] do not provide an information-theoretic
answer to the problem and therefore no indication on the
ultimate performance achievable in a system where power
control/allocation is decentralized. Another important tech-
nical difference is that optimizing the proposed performance
metric only requires the knowledge of the statistics of the
channel. Indeed, the proposed formulation aims at know-
ing how does a transmitter adapt its power to some channel
parameters like path loss and share its power between its
antennas to maximize energy-efficiency. In fact, the current
state of the literature seems to indicate [9] that information-
theoretic answers to the problem of energy-efficient commu-
nications, and therefore related problems like the distributed
power control problem, are not satisfying. Indeed, a natu-
ral idea would be to take the Shannon transmission rate for
the numerator of the ratio goodput to transmit power. For a
single-user channel the energy-efficiency performance metric

would be
log2

(

1+
p|h|2

σ2

)

p
where p is the transmit power, σ2

the receive noise power and h the channel gain. We readily
see that energy-efficiency of a point-to-point communication
is maximized when p → 0 that is, by transmitting with a
very low power. This can be a very unsatisfying answer
for engineers when a certain transmission rate target has to
be reached since the corresponding (Shannon) transmission
rate also tends to zero. Is this answer generalizable to MIMO
systems? If yes, is this really all what information theory
has to say about energy-efficient transmissions? Is there not
an other way of defining energy-efficiency which leads to a
more satisfying answer? One of the purposes of this paper is
to answer these questions. An additional new feature with
respect to [5][6][7] and related works (e.g., [8][9][10][11]) is
that we conduct a discussion on the importance of the chan-
nel model that is, we not only look at slow fading channels
(also called quasi-static or block fading channels) but also
at static and fast fading channels.

The paper is structured as follows. We begin in Sec. 2 by
describing the system model and the general assumptions.
We investigate the power allocation policy that maximizes
the energy-efficiency for a single user MIMO channel for dif-
ferent channel models: static channel (see Sec. 2.1), fast fad-
ing channel (see Sec. 2.2), slow fading channel (see Sec. 2.3).
For the latter case, we define an energy efficiency function
based on the outage probability and see that an analytical
expression of the optimal power allocation policy is difficult
to be found in general and will be further investigated as-
suming a uniform power allocation over the transmit anten-
nas (power control problem). In Sec. 3, we conjecture that
and provide analytical results for several particular but in-
teresting cases. This conjecture will be used in Sec. 4 where
the multi-user setting (the MIMO multiple access channel)
is considered to prove the existence of a Nash equilibrium
in the defined non-cooperative power control game. Some
numerical simulation will be discussed in Sec. 5 and we end
with concluding remarks and possible extensions.

2. CHANNEL MODEL AND UTILITY FUNC-

TION
Apart from one section, in all the paper, we focus on the

case of single-user MIMO channels. Indeed, the case of mul-
tiple access channels, which follows quite easily, will be ad-
dressed in Sec. 4. We thus assume one transmitter and one
receiver and a standard signal model for the received sig-
nal. The equivalent baseband signal at the receiver can be
written as:

y(τ) = H(τ)x(τ) + z(τ), (1)

where H is the nr × nt channel transfer matrix and nt

(resp. nr) the number of transmit (resp. receive) anten-
nas. The entries of H are i.i.d. zero-mean unitary variance
complex Gaussian random variables. The vector x is the
nt-dimensional column vector of symbols transmitted and
z is an nr-dimensional complex white Gaussian noise dis-
tributed as N (0, σ2I). In this paper we are interested in the
optimal way of allocating the transmit power between the
available transmit antennas. We will denote by Q = E[xxH ]
the input covariance matrix (also called precoding matrix),
which translates the chosen power allocation (PA) policy.
The corresponding total power constraint is

Tr(Q) ≤ P . (2)

At last, the time index τ will be removed for the sake of
clarity. In fact, depending on the rate at which τ varies
three dominant classes of channels can be distinguished:

1. the class of static channels;

2. the class of fast fading channels;

3. the class of slow fading channels.

In this paper, we will dedicate most of our attention to the
latter type of channels where an important point has to be
mentioned. In this case, we introduce the general power al-
location problem where the transmitter has to optimize the
precoding matrix Q based on the knowledge of the statis-
tics of H. However, we will mostly focus on the (already
non-trivial) case where Q = pI. Under this assumption, the
power allocation problem becomes a power control problem
in which the transmitter, based on the statistics of H, has
to tune p optimally to maximize its energy-efficiency. The
general problem is therefore left as (a very challenging) ex-
tension of this paper. We will now explain our motivation
by analyzing cases 1 and 2.

2.1 Case of static channels
Here the frequency at which the channel matrix varies is

strictly zero that is, H is a constant matrix. We assume
that both the transmitter and receiver know this matrix.
We are exactly in the same framework as [4] and know that,
for a given precoding strategy Q, the transmitter can send

log2

∣

∣

∣
I + ρ

nt
HQHH

∣

∣

∣
bits per channel use to the receiver re-

liably, with ρ = 1
σ2 . Then, let us define the energy-efficiency

of this communication by:

Fstatic(Q) =
log2

∣

∣

∣
I + ρ

nt
HQHH

∣

∣

∣

Tr(Q)
. (3)

The question is then to know whether the answer “do not
transmit” (or more practically at a very small rate) to max-
imize energy-efficiency we have given in Sec. 1 for SISO
channels also applies to MIMO channels. The answer is
given by the following Theorem.
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Theorem 2.1 (Static MIMO channels). The energy-
efficiency of a MIMO communication over a static channel,
measured by Fstatic, is maximized when Q = 0 and this max-
imum is

F
∗
static =

1

ln 2

Tr(HHH)

ntσ2
. (4)

Proof. As Q is a non-negative Hermitian matrix, it can
always be spectrally decomposed as Q = UPUH where P

is a diagonal matrix representing a given PA policy and U

a unitary matrix. Our goal is to prove that, for every U,
Fstatic is maximized when P = diag(0, 0, ..., 0). To this end
we rewrite Fstatic as

Fstatic(P,U) =

log2

∣

∣

∣

∣

∣

I +

nt
∑

i=1

pig
i
g

H

i

∣

∣

∣

∣

∣

nt
∑

i=1

pi

, (5)

where g
i

represents the ith column of the nr × nt matrix

G =
√

ρ

nt
HU and proceed by induction on nt ≥ 1.

First, we introduce an auxiliary quantity (whose role will
be made clear a little further)

E(nt)(p1, . . . , pnt) , Tr

(

I +

nt
∑

i=1

pig
i
g

H

i

)−1 (

nt
∑

i=1

pig
i
g

H

i

)

− log2

∣

∣

∣

∣

∣

I +

nr
∑

i=1

pig
i
g

H

i

∣

∣

∣

∣

∣

.

(6)
and prove by induction that it is negative that is, ∀(p1, . . . , pnt) ∈
R

nt
+ , E(nt)(p1, . . . , pnt) ≤ 0.

For nt = 1, we have E(1)(p1) = Tr
[

(I + p1g
1
gH

1
)−1g

1
gH

1

]

−
log2

∣

∣

∣
I + p1g

1
gH

1

∣

∣

∣
. The first order derivative of E(1)(p1) w.r.t.

p1 is:

∂E(1)

∂p1
= −p1[g

H

1
(I + p1g

1
g

H

1
)−1

g
1
]2 ≤ 0 (7)

and thus E(1)(p1) ≤ E(1)(0) = 0.

Now, we assume that E(nt−1)(p) ≤ 0 and want to prove

that E(nt)(p, pnt) ≤ 0, where p = (p1, . . . , pnt−1). It turns
out that:

∂E(nt)

∂pnt

= −
nt
∑

j=1

pj

∣

∣

∣

∣

∣

g
H

j
(I +

nt
∑

i=1

pig
i
g

H

i
)−1

g
nt

∣

∣

∣

∣

∣

2

≤ 0, (8)

and therefore E(nt)(p1, . . . , pnt−1, pnt) ≤ E(nt)(p1, . . . , pnt−1, 0) =

E(nt−1)(p1, . . . , pnt−1) ≤ 0.
As a second step of the proof, we want to prove by induc-

tion on nt ≥ 1 that

arg max
p,pnt

F
(nt)
static(p, pnt) = 0. (9)

For nt = 1 we have F
(1)
static(p1) =

log2 |I+p1g
1
gH
1

|
p1

=
log2(1+p1gH

1
g
1
)

p1

which reaches its maximum in p1 = 0.

Now, we assume that arg max
p

F
(nt−1)
static (p) = 0 and want to

prove that arg max
(p,pnt )

F
(nt)
static(p, pnt) = 0.

Let k = arg min
i∈{1,...,nt}

Tr

[(

I +

nt
∑

j=1

pjg
j
g

H

j

)−1

g
i
g

H

i

]

. By

calculating the first order derivative of F
(nt)
static w.r.t. pk one

obtains that:

∂F
(nt)
static

∂pk

=
N

(

nt
∑

i=1

pi

)2 , (10)

with

N =

(

nt
∑

i=1

pi

)

Tr

[(

I +

nt
∑

j=1

pjg
j
g

H

j

)−1

g
k
gH

k

]

− log2

∣

∣

∣

∣

∣

I +

nt
∑

i=1

pig
i
g

H

i

∣

∣

∣

∣

∣

(11)

and thus
∂F

(nt)
static

∂pk
≤ E(nt)(p1, . . . , pnt)

(
∑nt

i=1 pi

)2 ≤ 0 and p∗
k = 0 for

all p1, . . . , pk−1, pk+1, . . . , pnt . We obtain that
F (nt)(p1, . . . , pk−1, 0, pk+1, . . . , pnt)

= F (nt−1)(p1, . . . , pk−1, pk+1, . . . , pnt), which is maximized
when (p1, . . . , pk−1, pk+1, . . . , pnt) = 0 by assumption. We
therefore have that Q∗ = U0UH = 0 is the solution that
maximizes the function Fstatic(Q). Lastly, to find the max-
imum reached by Fstatic one just needs to consider the the

equivalent of the log2

∣

∣

∣I + ρ

nt
HQHH

∣

∣

∣ around Q = 0

log2

∣

∣

∣

∣

I +
ρ

nt

HQH
H

∣

∣

∣

∣

∼ ρ

nt

Tr(HQH
H) (12)

and takes Q = qI with q → 0.

Therefore we see that for static MIMO channels, if energy-
efficiency is defined by Eq. (3), it is maximized by transmit-
ting at a very low power. As already mentioned, from a
more practical perspective, this means that if the consid-
ered application supports very low data rates, one has to
transmit with a very low power to make the communication
energy-efficient. This kind of scenario occurs for example,
when deploying sensors in the ocean to measure a temper-
ature field (which varies very slowly). But this answer is
not acceptable from the moment a minimum transmission
rate is required, which is the most common situation (cel-
lular networks, satellite communications, wireless local area
networks, etc.)

2.2 Case of fast fading channels
In this section, the frequency at which the channel matrix

varies is the reciprocal of the symbol duration (x(τ) being
a symbol) that is, it can be different for each channel use.
Therefore the channel varies over a transmitted codeword
(or packet) and more precisely each codeword sees as many
channel realizations as the number of symbols per codeword.
Because of the corresponding self-averaging effect, the fol-
lowing Shannon transmission rate (also called EMI for er-
godic mutual information) can be achieved on each trans-
mitted codeword by using the precoding strategy Q :

Rfast(Q) = EH

[

log2

∣

∣

∣

∣

I +
ρ

nt

HQH
H

∣

∣

∣

∣

]

. (13)

Interestingly, Rfast(Q) can be maximized w.r.t. Q by know-
ing the statistics of H only that is, E

[

HHH
]

if we make
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the standard assumption that the entries of H are complex
Gaussian random variables. In practice, this means that
only the knowledge of the path loss, power-delay profile, an-
tenna correlation profile, etc is required at the transmitter
to maximize the transmission rate. At the receiver how-
ever, the instantaneous knowledge of H is required. In this
framework, let us define energy-efficiency by:

Ffast(Q) =
EH

[

log2

∣

∣

∣
I + ρ

nt
HQHH

∣

∣

∣

]

Tr(Q)
. (14)

By rewriting Ffast(Q) as

Ffast(Q) = EH













log2

∣

∣

∣

∣

∣

I +

nt
∑

i=1

pig
i
g

H

i

∣

∣

∣

∣

∣

nt
∑

i=1

pi













(15)

and applying Theorem 2.1 for each realization of the channel
matrix, the following theorem can be proven.

Theorem 2.2 (Fast fading MIMO channels). The energy-
efficiency of a MIMO communication over a fast fading chan-
nel, measured by Ffast, is maximized when Q = 0 and this
maximum is

F
∗
fast =

1

ln 2

Tr(E
[

HHH
]

)

ntσ2
. (16)

Here again, we see that for fast fading MIMO channels, it
is not possible to have both an energy-efficient communica-
tion in the sense of Ffast and transmit reliably (in the sense
of Shannon i.e., with an arbitrary small frame error rate)
at a minimum required transmission rate. Interestingly, in
slow fading MIMO channels, where outage events are un-
avoidable, we have found that in general there is a non-
trivial information-theoretic and very interesting answer to
this question. This is the purpose of the remaining of this
paper.

2.3 Case of slow fading channels
In this section and in the remaining of this paper, the

frequency at which the channel matrix varies is the recip-
rocal of the codeword/packet/frame/block duration that is,
the channel remains constant over a codeword and varies
from codeword to codeword. As a consequence, when the
channel matrix remains constant over a certain block du-
ration much smaller than the channel coherence time, the
averaging effect we have mentioned for fast fading MIMO
channels does not occur here and one has to communicate
at rates smaller than the ergodic capacity (maximum of the
EMI). The maximum EMI is therefore a rate upper bound
for slow fading MIMO channels and only a fraction of it can
be achieved (see [12] for more information about the famous
diversity-multiplexing tradeoff). In fact, since the mutual
information becomes a random variable, varying from block
to block, it is not possible (in general) to guarantee at 100 %
that it is above a certain threshold. A suited performance
metric to study slow-fading channels [14] is the probability
of an outage for a given transmission rate target R. It al-
lows one to quantify the probability that the rate target R

is not reached by using a good channel coding scheme and
is defined as follows:

Pout(Q, R) = Pr

[

log2 |I +
ρ

nt

HQH
H | < R

]

. (17)

In terms of information assumption, here again, it can be
checked that only the second-order statistics of H are re-
quired to optimize the precoding strategy Q (and therefore
the power allocation policy over its eigenvalues). In this
framework we propose to define the energy-efficiency as fol-
lows:

Fslow(Q, R) = R
1 − Pout(Q, R)

Tr(Q)
. (18)

It is important to keep in mind that even for Pout(Q, R) the
optimization problem over Q is still an open problem [4][13].
More precisely the optimal solution has been conjectured [4]
but not proven. We will come back to this issue later on.

Proposition 2.3 (Slow fading MIMO channels).
The energy-efficiency function Fslow(Q, R) is maximized, in
general, for Q 6= 0.

Proof. The proof has two parts. First, we start by prov-
ing that if the optimal solution is different than the uni-

form spatial power allocation P∗ 6= pI with p ∈
(

0, P
nt

]

then the solution is not trivial P∗ 6= 0. We proceed by
reductio ad absurdum. We assume that the optimal so-
lution is trivial P∗ = 0. This means that when fixing
(p2, . . . , pnt) = (0, . . . , 0) the optimal p1 ∈ [0, P ] that max-
imizes the energy efficiency function is p∗

1 = 0. The energy
efficiency function becomes:

Fslow(p1, R) = R
1 − Pr

[

log2(1 + ρ

nt
p1‖h1‖2) < R

]

p1
(19)

where h1 represents the first column of the channel ma-
trix H. Knowing that the elements in h1 are i.i.d. h1j ∼
CN (0, 1) for all j ∈ {1, . . . , nr} we have that |h1j |2 ∼ expon(1).
The random variable ‖h1‖2 =

∑nr
j=1 |h1j |2 is the sum of

nr i.i.d. exponential random variables of parameter λ = 1
and thus follows an 2nr chi-square distribution (or an nr

Erlang distribution) whose c.d.f. is known and given by

ς(x) = 1 − exp(−x)
∑nr−1

k=0
xk

k!
. We can explicitly calculate

the outage probability and obtain the energy efficiency func-
tion:

Fslow(p1, R) = R exp

(

− c

p1

) nr−1
∑

k=0

ck

k!

1

pk+1
1

(20)

where c = nt(2
R−1)
ρ

> 0. It is easy to check that lim
p1→0

Fslow(p1, R) = 0,

lim
p1→∞

Fslow(p1, R) = 0. By evaluating the first derivative

w.r.t. p1, it is easy to check that the maximum is achieved
for p∗

1 = c
x∗ ≥ 0 where x∗ is the unique positive solution of

the following equation:

1

(nr − 1)!
x

nr −
nr−1
∑

k=0

xk

k!
= 0. (21)

Considering the power constraint the optimal transmission

power is p∗
1 = min{nt(2

R−1)
x∗ρ

, P}, which contradicts the hy-
pothesis and thus if the optimal solution is different than
the uniform spatial power allocation then the solution is not
trivial P∗ 6= 0.

We make the following conjecture on Fslow.

Conjecture 2.4 (Slow fading MIMO channels). The
energy-efficiency function Fslow(Q, R) is a quasi-concave func-
tion of p where Q = pI.
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One of our objectives in this paper is to prove that, for
special but useful cases, part (ii) can be proven and therefore
Conjecture 2.4 becomes a theorem in these cases.

3. THE FUNCTION FSLOW IS QUASI-CONCAVE
In this section, we focus on slow fading or quasi-static

MIMO channels and study the proposed energy-efficiency
function (Eq. (18)). It is useful to note that we do not need
to analyze that Fslow with respect to Q but to P only. In-
deed, for any spectral decomposition of Q = UPUH (always
with U unitary) we have that Tr(Q) = Tr(P), which means
that the denominator of Fslow is independent of the eigenvec-
tors of Q. Additionally the distribution of the matrix HU

is the same as the matrix H since the latter is assumed to
be a Gaussian random matrix with i.i.d. entries. Therefore
the numerator is independent of U provided it is unitary.
Finally, this shows that there is no loss of optimality by
choosing U = I that is, the search for the optimal precoding
matrix can be restricted to diagonal non-negative matrices.
This explains why we can restrict our analysis only w.r.t. P

(which is diagonal). In this paper, in part because of the
lack of space and simplicity reasons, we restrict our atten-
tion to the uniform power allocation policies i.e., P = pI

and therefore want to prove that Fslow is quasi-concave in p,
which is already a non-trivial very difficult problem. A third
motivation for making this assumption is that, even for the
outage probability alone, the optimization problem w.r.t.
Q is known to be an open problem but all observed results
have confirmed the conjecture by Telatar [4] namely, allocat-
ing the transmit power uniformly over a subset of antennas
minimizes Pout. Under the assumption made (Q = pI), it is
known from [15] that when the benefit function, which is

1 − Pout(p, R) , f(p) (22)

in our framework, is sigmoidal in p the energy-efficiency
function Fslow is quasi-concave in p. Since the release of
[15] there seems to be only one example of energy-efficiency
function used in the literature. Indeed, all papers dealing
with energy-efficiency ([6][7][11] etc) the authors always con-
sider the following (empirical) formula for the packet er-
ror rate f(x) = (1 − e−x)M (x being the SINR), where
M is the packet length. Very interestingly, the proposed
(information-theoretic) benefit function, has also the nice
properties stated by [15], which gives a more fundamental
view to the problem initially tackled by [5]. In particular
we will see that for all the cases treated f(p) is sigmoidal.
We will treat the case of SISO channels and MIMO chan-
nels with arbitrary numbers of antennas in the low and high
SNR regimes. Finally, we will treat the case of large MIMO
systems that is, when the numbers of antennas are large.
Here are some motivations explaining why the latter case is
in fact more common than what could be a priori thought:

• First of all, approximates provided under the large sys-
tem assumption can be very accurate for reasonably
small numbers of antennas [16][17]. In fact, to provide
a rigorous answer to the question whether it is very ac-
curate in our context a complete convergence analysis
should be conducted, which is not done here because
it is not our main objective and also because of the
lack of space (see [18] to know more about this type of
analysis).

• The matrix H can be effectively large in some con-
texts, like virtual MIMO networks, where the network
sum-rate is needed. In this case, the number of rows
(resp. columns) can be the total number antennas of
the group of base (resp. mobile) stations forming the
virtual receiver (resp. transmitter).

• In this paper, the signal model under consideration
is used to study energy-efficiency of communications
with multi-antenna transmitters and receivers but the
proposed analysis is directly exploitable for other sys-
tems where the dimensions of H correspond to other
quantities like the number of sub-carriers in OFDM
systems, the spreading factor in CDMA systems, etc.
This means that the large system assumption has also
to be considered regarding this possibility.

• The case of large systems constitutes an additional spe-
cial case for which Conjecture 2.4 becomes a Theorem.
In fact, it will allow us to prove easily certain results
whose proof requires much more efforts in the finite
case.

• An important result will be drawn from the proposed
asymptotic analysis.

3.1 SISO systems
In this section, we assume that the transmitter and re-

ceiver have a single antenna that is, Q = p. Our goal is to
prove that Fslow(p, R) is quasi-concave in p for a given rate
target R and determine in which point energy-efficiency is
maximized. The following proposition summarizes the re-
sults we have found for the SISO case.

Proposition 3.1 (SISO channels). The energy-efficiency
function Fslow(p, R) is quasi-concave in p and reaches its
maximum in

p
∗ = min

{

2R − 1

ρ
, P

}

. (23)

Proof. By assumption we have that h ∼ CN (0, 1) and
thus |h|2 is an exponentially distributed random variable.
The benefit function f(p) can therefore be explicated:

f(p) = exp

(

− c

p

)

(24)

with c = 2R−1
ρ

. From the second derivative of f

f
′′(p) =

c(c − 2p) exp(− c
p
)

p4
(25)

we see that f is convex on the open interval
(

0, c
2

]

and con-

cave on
(

c
2
, +∞

)

. This means that f is sigmoidal and there-
fore Fslow(p, R) is quasi-concave. Now, by looking at the
first derivative of Fslow(p, R) which is easily shown to be

∂Fslow

∂p
= R

(c − p) exp(− c
p
)

p3
(26)

we see that Fslow(p, R) has a unique maximum in p∗ = c if
c < P and in p∗ = P otherwise.

We see that the proposed efficiency-function has all the de-
sirable properties stated in [15]. In order to fully under-
stand how the statistics of the channel influences the opti-
mal power control policy we also provide the result obtained
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when the channel variance is no longer assumed to be uni-
tary that is, E[|h|2] 6= 1:

p
∗ = min

{

σ2

E[|h|2] (e
R − 1), P

}

. (27)

3.2 Low SNR regime
In the regime of low SNR, defined as ρ → 0, there is a very

simple approximation for the determinant
∣

∣

∣
I + ρp

nt
HHH

∣

∣

∣
,

whatever the numbers of transmit and receive antennas.
The corresponding approximate for Fslow can be shown to
be quasi-concave and is easy to be maximized. This is the
purpose of the following Proposition.

Proposition 3.2 (Low SNR regime). When ρ → 0,
any first-order equivalent of Fslow(p, R) can be shown to be

quasi-concave and maximized in p∗ = c
x∗ = nt(2

R−1)
x∗ρ

where

x∗ is the unique positive solution of the following equation:

1

(nrnt − 1)!
x

ntnr −
nrnt−1

∑

k=0

xk

k!
= 0.

Proof. When ρ → 0 we have
∣

∣

∣

∣

I +
ρp

nt

HH
H

∣

∣

∣

∣

= 1 +
ρp

nt

Tr(HH
H) + O

(

ρ
2)

. (28)

Since |h(i, j)|2 is exponentially distributed for any (i, j) ∈
{1, ..., nt} × {1, ..., nr}, the quantity
Tr(HHH) =

∑nt
i=1

∑nr
j=1 |hij |2 is an 2nrnt chi-square dis-

tributed random variable. Its cumulative distribution func-
tion is

ς(x) = 1 − exp(−x)

nrnt−1
∑

k=0

xk

k!
. (29)

It is therefore possible to explicit the energy-efficiency func-
tion:

Fslow(p, R) = R exp

(

− c

p

) nrnt−1
∑

k=0

ck

k!

1

pk+1
. (30)

By evaluating the first-order and second-order derivatives of

the benefit function f(p) = exp
(

− c
p

)

∑nrnt−1
k=0

ck

k!
1

pk which
are

f
′(p) =

1

(nrnt − 1)!

cnrnt

pnrnt+1
exp

(

− c

p

)

(31)

f
′′(p) =

1

(nrnt − 1)!

cnrnt

pnrnt+3
[c − p(nrnt + 1)] exp

(

− c

p

)

(32)
we observe that the benefit function has a unique inflexion
point p̃ = c

nrnt+1
and thus f(p) is a sigmoid shaped function

w.r.t. p. From [15] we have thus that Fslow(p, R) is quasi-
concave w.r.t. p. By evaluating the first derivative of Fslow

w.r.t. p we obtain:

∂Fslow

∂p
=

R

p2

[

1

(nrnt − 1)!

(

c

p

)nrnt

−

nrnt−1
∑

k=0

(

c

p

)k 1

k!

]

exp

(

−
c

p

)

.

(33)

Applying the same reasoning as in the proof of Proposition
3.1 the wanted result follow. If we no longer assume uni-
tary variances for the channel matrix entries but E[|hij |2] =

E[|h|2] 6= 1 for all i, j then the optimal power control policy
becomes:

p
∗ =

nt(2
R − 1)

x∗ρE[|h|2] . (34)

3.3 High SNR regime
In the high SNR regime, the counterpart of Proposition

3.3 is as follows.

Proposition 3.3 (High SNR regime). When ρ → +∞,
any first-order equivalent of Fslow(p, R) can be shown to be
quasi-concave.

Proof. In the high SNR regime we can approximate
∣

∣

∣I + ρp

nt
HHH

∣

∣

∣ =
∣

∣

∣

ρp

nt
HHH

∣

∣

∣

∣

∣

∣I + nt
ρp

(HHH)−1
∣

∣

∣

=
∣

∣

∣

ρp

nt
HHH

∣

∣

∣

{

1 + nt
ρp

Tr[(HHH)−1] + O
(

1
ρ2

)}

,

where the pdf of
∣

∣HHH
∣

∣ is given in [24].

3.4 Large MIMO systems
In this section the noise level is assumed to be fixed that

is, ρ = const and can be arbitrary. The results we have
obtained can be summarized in the following proposition.

Proposition 3.4 (Large MIMO systems). If one op-
erates in one of the following asymptotic regimes:

(a) nt < +∞ and nr → ∞;

(b) nt → +∞ and nr < +∞;

(c) nt → +∞, nr → ∞ with lim
ni→+∞,i∈{t,r}

nt

nr

= β < +∞,

then Fslow(p, R) is quasi-concave.

Proof. Regime (a). In this asymptotic regime we know
from [25] that the mutual information converges in distribu-
tion to a Gaussian random variable:

log2

∣

∣

∣

∣

I +
ρp

nt

HH
H

∣

∣

∣

∣

→ N

(

nt log2

(

1 +
nr

nt

ρp

)

,
nt

nr

log2(e)

)

. (35)

As a consequence the benefit function can be easily ex-
pressed:

f(p) = Q





R − nt log2

(

1 + nr
nt

ρp
)

√

nt
nr

log2(e)



 (36)

where Q(x) , 1√
2π

∫ +∞
x

exp
(

− t2

2

)

. From Eq. (36) the

second derivative w.r.t. p can be calculated. Let us define

the auxiliary function g by ga(p) =
R−nt log2

(

1+ nr
nt

ρp
)

√

nt
nr

log2(e)
. We

thus have f(p) = Q(ga(p)). The first order derivative of f

is then given by:

f
′(p) = − 1√

2π
g
′
a(p) exp

(

−ga(p)2

2

)

(37)

and the second derivative is

f
′′(p) =

1√
2π

[ga(p)(g′
a(p))2 − g

′′
a (p)] exp

(

−ga(p)2

2

)

. (38)
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Finally we have that

f ′′(p) = 1√
2π

exp
(

− ga(p)2

2

)

n3
rρ2

n2
t log2(e)

1
(

1+ nr
nt

ρp
)2

(

−
√

nr
nt

log2(e) + ntga(p)
) (39)

We see that f has a unique inflection point:

p̃ =
nt

nrρ

{

exp

[

1

nt

(

R − log2(e)

nr

)]

− 1

}

, (40)

which is positive when nr is large. Therefore f(θ) is a sig-
moidal function. Furthermore, when nr → ∞ the inflection
point p̃ → 0 such that f(p) is a concave function w.r.t. p

which implies that the optimal transmission power p∗ → 0.
Regime (b). Here again we know from [25] that the mutual

information converges in distribution to a Gaussian random
variable:

log2

∣

∣

∣

∣

I +
ρp

nt

HH
H

∣

∣

∣

∣

→ N

(

nr log2(1 + ρp),

(√

nr

nt

ρp log2(e)

1 + ρp

)2
)

.

(41)

Here we have that f(p) = Q (gb(p)) with

gb(p) =

√

nt

nr

1 + ρp

ρp log2(e)
[R − nr log2(1 + ρp)]. (42)

We observe that gb(p) is proportional to
√

nt and thus g′
b(p),

g′′
b (p) will also be proportional to

√
nt. In the equation

f ′′(p) = 0 the term in g′′(p) can be neglected in compar-
ison tp (g′

b(p))2gb(p) (see Eq. (38)) when nt → ∞ to obtain
(g′

b(p))2gb(p) = 0. Since

g
′
b(p) =

√

nt

nr

−nrρp − R + nr log2(1 + ρp)

ρp2 log2(e)
≤ 0 (43)

we see that f has a unique inflection point p̃ = 2R/nr −1
ρ

.
Here we observe that the inflexion point does not depend on
nt → ∞ and thus the optimal transmit power will not be
trivial p∗ > 0.

Regime (c). The reasoning is always the same. For this
regime we exploit some results from random matrix theory
derived in [26]. The mutual information converges in distri-
bution to a Gaussian random variable:

log2

∣

∣

∣

∣

I +
ρp

nt

HH
H

∣

∣

∣

∣

→ N
(

ntµI , σ
2
I

)

(44)

where µI = β log2(1+ρp(1−α))−α+log2(1+ρp(β−α)), σ2
I =

− log2

(

1 − α2

β

)

, α = 1
2

(

1 + β + 1
ρp

−
√

(1 + β + 1
ρp

)2 − 4β
)

.

It can be checked that (g′
c(p))2gc(p) − g′′

c (p) = 0 has a

unique solution where gc(p) = R−ntµI (p)
σI (p)

. We obtain g′
c(p) =

ntµIσ′
I−ntµ′

IσI−Rσ′
I

σ2
I

and

g′′
c (p) =

(ntµIσ′′
I −ntµ′′

I σI−Rσ′′
I )σ2

I−2σIσ′
I (ntµIσ′

I−ntµ′
IσI−Rσ′

I )

σ4
I

.

We observe that, in the equation (g′
c(p))2gc(p) − g′′

c (p) = 0,
there are terms in n3

t , n2
t , nt and constant terms w.r.t. nt.

When nt becomes sufficiently large we can neglect the first
order terms such that the solution is given by µI(p) = 0. It
can be shown that µI(0) = 0 and that µI is an increasing
function w.r.t. p which implies that the unique solution is
p̃ = 0. Similarly to regime (a) we obtain the trivial solution
p∗ = 0.

4. NON-COOPERATIVE POWER ALLOCA-

TION GAMES

So far we have been considering point-to-point MIMO
communications or single-user MIMO channels. In this sec-
tion we show how the quasi-concavity property of the energy-
efficiency function as defined by Eq. (18) can be used in
multi-user channels. More specifically we study the dis-
tributed power allocation problem in MIMO multiple access
channels (MAC). We assume one base station (BS) and K

mobile stations (MS). Each mobile station is a transmitter
sending some messages to the base station which decodes all
the messages by applying single-user decoding. No interfer-
ence cancellation technique is assumed here (see e.g., [28] to
know more about power allocation games in MIMO MACs
where the users’ performance criterion is the transmission
rate and receiver applies successive interference cancella-
tion). The network is said to be distributed or decentral-
ized in the sense that each user can choose freely its power
allocation policy in order to selfishly maximize a certain in-
dividual performance criterion. This means that, even if the
the BS broadcasts some specified policies, every (possibly
cognitive) transmitter is free to ignore the policy intended
for him if the latter does not maximize its performance cri-
terion. In the described framework the signal received at
the BS writes as:

y =

K
∑

k=1

Hkxk + z, (45)

where Hk is the nr×nt channel matrix, xk the nt-dimensional

column vector of symbols transmitted by user k ∈ K ,

{1, . . . , K} and z is an nr-dimensional complex white Gaus-
sian noise distributed as N (0, σ2I). We will denote by Qk =
E[xkxH

k ] the precoding matrix transmitter k implements. In
practice, the latter is subject to a constraint:

Tr(Qk) ≤ P k (46)

but as we have already shown it is not always optimal to
use all the available transmit power to maximize energy-
efficiency.

Now we can define properly the power allocation game
modeling the type of wireless networks under investigation.
The appropriate game model is here a static strategic-form
non-cooperative game with complete information and ratio-
nal players.

Definition 1 (Power allocation game). The power
allocation game is completely described by the triplet
G = (K, {Sk}k∈K, {uk}k∈K) where:

• K = {1, ..., K} is the set of transmitters (players);

• Sk =
{

Qk ∈ Mnt×nt(C)
∣

∣Qk º 0, Tr(Qk) ≤ Pk

}

is the
strategy set for player k, where Mnt×nt(C) denotes the
set of square complex matrices of dimension nt;

• uk(Qk,Q−k) = RkL

M

1−Pr[ik(Qk,Q−k)≤Rk]
Tr(Qk)

is the utility

function for transmitter k, where Rk is the transmis-
sion rate target for user k, the standard notation −k
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stands for the set of players K \ {k} and

ik(Qk,Q−k) = log2

∣

∣

∣

∣

∣

∣

I + ρ

nt
HkQkH

H
k + ρ

nt

∑

6̀=k

H`Q`H
H
`

∣

∣

∣

∣

∣

∣

− log2

∣

∣

∣

∣

∣

∣

I + ρ

nt

∑

6̀=k

H`Q`H
H
`

∣

∣

∣

∣

∣

∣

.

(47)

In this definition the function ik represents the mutual infor-
mation between the vector of symbols transmitted by user k

i.e., xk and the received vector y. For the set of strategies we
will focus our attention on the case Qk = pkI for the reasons
we have already mentioned and consider the general case as
an extension of this work. The problem under consideration
then becomes a power control.

The game G describes a conflicting situation of interac-
tion between selfish players. An important question is to
know whether this situation has a predictable issue. A well-
known solution concept for this type of situations is the Nash
equilibrium. In our context it corresponds to a state of the
network which is stable to one deviation; every user has no
incentives to unilaterally deviate from the equilibrium be-
cause otherwise it would lose in terms of utility. For making
this paper sufficiently self-contained we review the definition
of a Nash equilibrium [27].

Definition 2 (Nash equilibrium). The strategy pro-
file
(QNE

1 , . . . ,QNE
K ) is a pure Nash equilibrium if

∀k ∈ K, ∀Q′
k ∈ Ak, uk(QNE

k ,Q
NE
−k) ≥ uk(Q′

k,Q
NE
−k). (48)

It turns out that there is at least one pure Nash equilib-
rium in G where transmitters spread their power uniformly
over their antennas, which is stated under a theorem form
as follows.

Theorem 4.1 (Existence of an NE). Assume Qk =
pkI and uk(p1, ..., pK) is a quasi-concave in pk. Then, there
exists at least one NE in the power control game G.

Proof. The proof relies on an existing fixed-point theo-
rem. It is the the Debreu-Fan-Glicksberg existence theorem
stated properly in [20] and resulting from the contributions
of [21], [22], [23]. This theorem is as follows.

Theorem 4.2 (Debreu-Fan-Glicksberg). Consider a
strategic-form non-cooperative game. If the following condi-
tions are satisfied: (i) for every player, his utility function is
continuous in the profile of strategies; (ii) for every player,
the utility function is quasi-concave in its individual strategy;
(iii) for every player, its strategy set is compact and convex;
then the game has at least one pure Nash equilibrium.

By assumption we know that (ii) is verified. Note that
in this paper we have proved that this assumption is in
fact a property for uk in several useful special case and
the authors conjecture that this property is general (Con-
jecture 2.4). Also the third condition (iii) is straightforward
since Sk = [0, P k]. We therefore just need to prove (i).
For this, we start by proving that fk(p1, . . . , pK) = 1 −
Pr [ik(p1, . . . , pK) ≤ Rk] is continuous w.r.t. (p1, . . . , pK).
We know that ik(p1, . . . , pK) is a continuous function w.r.t.

p` and also w.r.t. H`, ∀` ∈ K. We also know that ik is
strictly increasing function w.r.t. pk and thus invertible
w.r.t. pk we have that Pr[ik(pk) ≤ Rk] = 1 − Pr[i−1

k (Rk) ≤
pk] is a continuous function of pk (the c.d.f. of a continuous
random variable is continuous). We can use the same rea-
soning to prove the continuity w.r.t. p` for all ` 6= k knowing
that ik is strictly decreasing function of p` for all ` 6= k.

5. NUMERICAL RESULTS
Uniform power allocation. First, we assume K = 1 and a

uniform power allocation policy at the transmitter. In Fig.
1 we plot the energy efficiency function versus the transmit
power in the scenario: nr = nt = n ∈ {1, 2, 4, 8}, R =
1 bpcu, ρ = 10 dB, P = 1 W. We see that Fslow(p, R)

is quasi-concave w.r.t. p ∈
[

0, P
n

]

and that a non-trivial

maximum power p∗ > 0 exists. We also can observe two
interesting things. Saturating the transmit power constraint
can be very suboptimal even with single-antenna terminals.
For example, if the available transmit power is 1000 mW,
saturating the power constraint leads leads to transmit 10
times the optimal value p∗ and energy-efficiency is divided
by more than 3. We also see the benefits brought by multiple
antennas for saving energy. For example, using 8 antennas
at each terminal allows to multiply by 8 energy efficiency
while guaranteeing a minimum transmission rate of 1 bit
per channel use (bpcu).

Optimal power allocation vs. Beam-forming power allo-
cation vs. Uniform power allocation. Until now we have
assumed uniform power allocation over the transmit anten-
nas. Now we want to assess the performance gap between
the uniform power allocation policy and the optimal policy,
which can be found exhaustively for 2 × 1 MIMO systems.
We also look at the case where nr = 1 and nt = 2 because
analytical results on the optimal power allocation for mini-
mizing the outage probability are available [13]: the result
for the outage probability minimization is that in the low
power regime the beam-forming power allocation is optimal
and in the high power regime the uniform power allocation is
optimal. The authors give the closed-form expression of the

boundary that separates the two regimes: 2(2R−1)
ρη0

, where
η0 = 1.2564. In Fig. 3, we plot the success probability
(1 − Pout) as a function of P ∈ [0, 10] W for the scenario:
R = 3 bpcu, ρ = 10 dB. We observe that the analysis in [13]
is also valid in our (more complex) case. Fig. 4 represents
for the same scenario the energy efficiency function w.r.t. P .
The crucial difference in the two optimization problems is
that when optimizing the outage probability all of the avail-
able power is used either with the uniform, beam-forming
or optimal scheme which is no longer the case when opti-
mizing the energy efficiency function in all three power allo-
cation policies. What is mostly remarkable is the fact that
the same analysis can be conducted regarding the energy-
efficiency problem. There is a boundary (exactly the same as
before) such that if P is below then the beam-forming policy
is optimal and otherwise the uniform policy is optimal.

In conclusion, we can conjecture the important result that
the uniform power allocation optimizes the energy efficiency
function provided that sufficient transmit power is available
at the transmitter.

6. CONCLUSION
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Figure 1: Uniform PA, nr = nt = n, R = 1 bpcu, ρ =

10 dB, P = 1 W. For n ∈ {1, 2, 4, 8} the energy efficiency

function is quasi-concave w.r.t. p ∈
[

0, P
n

]

and has a non

trivial maximum point.
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Figure 2: Uniform PA nr = nt = n, R = 1 bpcu, ρ = 10 dB,

P = 1 W. The energy efficiency at the maximum point

is an increasing function of the number of antennas n ∈

[1, 10].
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We have provided for different channel models an information-
theoretic answer to the problem of energy-efficient communi-
cations. The most interesting scenario is that of quasi-static
channels. Remarkably, the energy-efficiency function we in-
troduce has all the nice properties stated by [15]. This shed
a new light on [15] since, so far, only empirical efficiency-
functions were used to analyze the problem of energy-efficient
communications or power control. This also ensures the
existence of a Nash equilibrium in MIMO multiple access
channels implementing good coding schemes. In the case of
MIMO single-user channels we have introduced a new open
problem which is to determine the precoding matrix (and
therefore the power allocation policy) maximizing the pro-
posed energy-efficiency measure. We have solved this prob-
lem in several special and useful cases and conjectured the
best precoding scheme. Simulations validates our conjec-
tures. Many extensions of this work are possible. Here are
some of them: 1. The most challenging one mathematically:
solving the proposed open problem; 2. The most interesting
one in terms of channel modeling: consider the case of ar-
bitrary channel transfer matrices (Rice component, antenna
correlations, etc); 3. Analyze the high SNR scenario by us-
ing the famous concept of diversity-multiplexing tradeoff; 4.
From the energy standpoint: refine our energy-consumption
analysis by including the consumption of the radio-frequency
part of the transmitter e.g., the circuits associated with the
transmit antennas.
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