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ABSTRACT

The practical experience of parallelising a simulator of gen-
eral scattering and radiation electromagnetic problems is
presented. The simulator stems from an existing sequential
simulator in the frequency domain and can be fruitfully used
in applications such as the test of coverage of a wireless net-
work, analysis of complex structures, and so on. After the
analysis of a test case, two steps were carried out: firstly,
a “hand-crafted” code parallelisation was developed within
the kernel of the simulator. Secondly, the sequential library,
used in the existing simulator, was replaced by the parallel
MUMPS library in order to solve the associated linear al-
gebra problem in parallel. For factorising the matrix with
MUMPS, two different ordering methods have been consid-
ered.
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1. INTRODUCTION
This paper presents the practical experience and the re-

sults obtained in the parallelisation of the code of a simulator
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that implements a novel hybrid Finite Element-Boundary
Integral, known as Finite Element - Iterative Integral Equa-
tion Evaluation (FE-IIEE) method ([11], [12], [10]), based on
the well-known Finite Element Method (FEM). This method
permits an efficient analysis and solution of general problems
of radiation and scattering of electromagnetic waves.

The analysis of the radiation and scattering of electromag-
netic waves is an important issue that finds applications in
many electromagnetic engineering areas. Currently, compa-
nies face the challenge of cutting costs in many areas and in
this context, it is very interesting the use of simulators be-
fore the actual setting up of several kinds of resources. One
of such resources is, for example, the growing demand of
wireless networks in urban areas. In this and other settings,
simulators can be advantageously used in order to reduce
the time to availability and design cycles of products.

Modern radiating structures, which may exhibit complex
configurations with the presence of different materials, call
for the use of FEM (see, for example, [17]), which is very
flexible and able to handle within the same code, complex
geometries, non-canonical surfaces, exotic permeable mate-
rials, anisotropy, and so on. However, FEM formulation does
not incorporate the radiation condition. For this reason,
FEM is hybridised with the use of the Boundary Integral
(BI) representation of the exterior field, thus endowing the
FEM analysis with a numerically exact radiation boundary
condition at the mesh truncation boundary. Several hybrid
schemes FEM-BI have been proposed (see, for example, [16,
21, 13]). In contrast with standard FEM-BI approaches, FE-
IIEE preserves the original sparse and banded structure of
the FEM matrices, allowing the use of efficient FEM solvers.

In this work we show the experience and results obtained
along the process of parallelising an already existing sequen-
tial FE-IIEE simulator. To achieve this goal we identified
bottlenecks from the point of view of both memory usage
and computational load, targeting a modified code which
is scalable in the range of a modest number of processors.
This result overcomes the limitations of the original simula-
tor, especially in terms of memory availability, thus allowing
the analysis of larger problems.
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2. COMPUTATIONAL ANALYSIS OF THE

SIMULATION METHOD
In this section we analyse the consumption of computa-

tional resources by the different building blocks inside ex-
isting the code in order to prioritise their parallelisation.
By computational resources we refer to two clearly different
aspects:

• time in computational cycles; and

• memory consumption.

The first aspect refers to the total time needed for the appli-
cation to compute the results, whereas the second aspect has
an impact over the size limit of the problems to be solved.

2.1 Methodology
The computational analysis of the existing code of the

simulator was carried out by running a test problem. The
test problem was selected keeping in mind that the avail-
able computational resources were rather limited. The test
problem consists in the scattering problem of a plane wave
incident on a dielectric cube with losses. The number of
mesh elements is 2, 684, and the number of unknowns is
18, 288.

The available system was a cluster of eight nodes (known
as blades by the manufacturer, Sun Microsystems) model
SunFire B1600. The technical details of each node can be
found in Table 1.

Table 1: Configuration of every cluster node
Processor: AMD Athlon XP-M 1800+

Clock: 1.5 Ghz
Cache: 256 KB

Main memory: 1 GB
Hard disk: 30 GB

Network interface: 1 Gbps

2.2 Monitorisation
The sequential source code was conveniently probed by

inserting time and memory-size controlling functions at crit-
ical points.

The probed code was sequentially executed for the test
problem using only one cluster node of the SunFire B1600.
As a result, it became clear that the program exhibits two
separate computational phases:

• an initial phase, where the matrix is factorised;

• an iterative phase, where the code performs a number
of iterations inside the simulator kernel before achiev-
ing the required accuracy. For the test problem con-
sidered, obtaining a threshold relative error δ between
subsequent iterations below 10−4 required a total of
six iterations.

The previous scheme can be repeated for different frequen-
cies. In our test case, only one frequency, denoted K0 in
Fig. 1, was used.

The results obtained with the previous execution are de-
picted in Fig. 1, showing the points where the monitorisation
was inserted. Only those blocks that have a relevant com-
putational load are shown. In this Fig. it is apparent that
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Figure 1: Program flow and monitorisation points

the simulator kernel consists of the evaluation of a double
integral, the upgrade of the boundary conditions and the
solution of a linear sparse system, A · X = B. Both the ini-
tial phase and the iterative phase are handled using a sparse
solver, since A is a sparse matrix. The original sequential
implementation used the HSL linear algebra library package
(formerly known as Harwell Subroutine Library, see [2]) as
building block for simulation.

HSL is a collection of Fortran packages for large scale
scientific computation that makes extensive use of BLAS
package (Basic Linear Algebra Subprograms, see [1]). The
sequential code uses a Fortran solver: either ME62 or ME42
routines, depending on whether the matrix A is symmet-
ric/hermitian or not. Optionally, those routines may work
with direct-access files for the matrix factors so that large
problems can be solved using a relatively small in-core mem-
ory. However, the storage in disk has a limited speed to ac-
cess factors and the size of the files can render the situation
unmanageable as the number of unknowns grows.

Thus, the parallelisation is motivated to overcome the lim-
itations of the sequential code, so that larger problems can
be run in a reasonable time frame and with limited memory
resources. Specifically, the results relative to the present im-
plementation shown in this paper have been obtained using
ME62 Fortran solver (complex symmetric case) with in-core
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storage.
The algorithm used for element ordering (crucial for the

performance of the frontal solver) with HSL is a variant
of Sloan’s algorithm [20], implemented in MC63 routine of
HSL. Indirect element ordering with default MC63 param-
eters is used prior to calling the frontal solver factorisation
routines.

2.3 Analysis of the monitorisation
Regarding time consumption (depicted qualitatively in

Fig. 1), the monitorisation showed that the largest time con-
sumption takes place in:

• The factorisation of the matrix (performed only once
in the first iteration).

• The block named as “IE Evaluation”, inside the simu-
lator kernel. This block corresponds to the evaluation
of double surface integrals (the core of FE-IIEE algo-
rithm).

The main conclusions of the analysis are the following.
Once the FEM matrix is factorised, the solution of the lin-
ear system A · X = B is obtained in a virtually negligible
time within each iteration of the algorithm. This shows in
practise that the computational load of this method, once
the FEM matrix is factorised, is essentially in the opera-
tion corresponding to the evaluation of the integrals. With
respect to the memory consumption, we observed that it re-
mains constant during the full execution time. The initial
memory size reserve stays unchanged until it is freed shortly
before the conclusion.

Yet another conclusion is that the program flow is inde-
pendent of the input data set since the two phases described
above are always executed. Thus, if we analyse the perfor-
mance gain due to parallelisation for a particular input data
set, then it is to be expected that similar performance gains
can also be obtained when using another (possibly larger)
input data set.

2.4 Parallelisation approaches
Based on the results of the analysis for the sequential ex-

ecution, it was decided to attempt two sets of actions.

1. Once identified the main time consumers, a first hand-
crafted parallelisation was accomplished, involving “IE
evaluation”block, since it is the main consumer of com-
puter cycles.

2. Concerning the initial factorisation of the matrix and
the block “A · X = B resolution”, the goal was to re-
place the solver in the HSL library by MUMPS library,
a parallel sparse solver. We expected that MUMPS
could improve both the execution time (since we have
several processes working in parallel) and the size of
the solvable problems (since the parallel solver could
make advantageous use of the memory present on the
different processors).

The new code includes the benefits coming from both ap-
proaches: the convolution operation has been parallelised
and the solver has been changed. Both items are dealt with
in detail in the next sections: The first item is described in
section 3, and the second one is analysed in section 4.

3. HAND-CRAFTED PARALLELISATION
The parallelisation was carried out using the message pass-

ing interface (MPI, [5]), with the support of the MPICH2
library (specifically, version 1.0.8)

The hand-crafted code parallelisation targeted essentially
the heavy computation load given by the convolution-type
operations involved in the “IE evaluation” of the exterior
problem. The fact is that a double loop is required since a
double surface integral is involved, as already explained.

Thus, the parallelisation consisted in distributing the ex-
ecution of the outer loop over the available processes and
performing a final reduction at the end of the loops, so that
all processes have the complete data, needed to resume the
computation.

This method involves a small amount of communication,
basically a reduction in MPI jargon, performed at the end
of the convolution. For this reason, the communication time
is almost negligible.

4. REPLACEMENT OF THE SEQUENTIAL

SOLVER
We focus now on replacing the sequential sparse solver by

an efficient parallel solver. As previously stated, we have
chosen MUMPS for this purpose.

4.1 The MUMPS library
MUMPS (see [3]) is a package for solving systems of lin-

ear equations of the form AX = B, where A is a square
sparse matrix that can be either unsymmetric, symmetric
positive definite, or general symmetric. MUMPS uses a mul-
tifrontal technique which is a direct method based on either
the LU or the LDLT factorisation of the matrix. MUMPS
exploits both parallelism arising from sparsity in the matrix
A and from dense factorisation kernels. MUMPS offers sev-
eral built-in ordering algorithms, a tight interface to some
external ordering packages such as METIS [14] and PORD
[18], and the possibility for the user to input a given or-
dering. The parallel version of MUMPS requires MPI for
message passing and makes use of BLAS, BLACS [4], and
ScaLAPACK [6] libraries.

MUMPS distributes the work tasks among the processes,
but an identified process (the master) is required to per-
form most of the analysis phase, to distribute (if the matrix
is centralised) the incoming matrix to the other processes
(slaves), and finally collecting the solution.

The system AX = B is solved in three basic steps:

1. Analysis. The master performs an ordering based on
the symmetrised pattern A+AT , and carries out sym-
bolic factorisation.

2. Factorisation. The original matrix is first distributed
to processes that will participate in the numerical fac-
torisation. The numerical factorisation on each frontal
matrix is conducted by a master processor and one
or more slave processors. Each processor allocates an
array for the so-called contribution blocks and for the
factors; the factors must be kept for the solution phase.

3. Solution. The right-hand side B is broadcast from
the master to the other processes. These processors
compute the solution X using the distributed factors
computed during Step 2.
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The analysis phase is performed on the master process.
This process is the one with rank 0 in the communicator
provided to MUMPS. By setting a special variable, MUMPS
allows the master to participate in computations during the
factorisation and solve phases, just like any other process.

4.2 Plugging in the MUMPS library
Our goal was the replacement of the HSL library, used

by the sequential version of the simulator, by the MUMPS
library inside both the factorisation and “A · X = B reso-
lution” blocks. We selected an appropriate MUMPS config-
uration for the test problem: in this case, the matrix A is
sparse and either symmetric or unsymmetric depending on
the boundary conditions of the problems, which affects the
setting of the corresponding configuration variables. Due
to the nature of the test cases involved, we chose to set
up MUMPS for the general unsymmetric case. We used
complex double precision arithmetic and we actually let the
master participate in the computations. We chose the most
up-to-date version of MUMPS at the onset of this project,
which turned out to be 4.8.3.

Basically, the idea was to replace the HSL subroutines by
the corresponding (in a broad sense) ones from MUMPS.
Though the programming interfaces to MUMPS and HSL
are very different, several data structures are the same, such
as, for example, the structure that represents which vari-
ables belong to which element. Some pieces of code re-
ceived strong modifications, though the details are rather
too technical to be dealt with here. To summarise, by
cross-examination and comparing, we found a correspon-
dence between the routines in HSL and the ones performing
the similar tasks in MUMPS. We adapted the interface of
the corresponding routines to the data structures inside the
code. Eventually, the replacement, though not completely
straightforward, was carried out successfully.

4.3 Changing the ordering package
As it was mentioned before, MUMPS requires three steps

to solve the linear system and a (re-)ordering is manda-
tory during the analysis phase. However, as stated above,
MUMPS leaves to the user the choice of basically two exter-
nal ordering packages. Initially we considered PORD pack-
age, since it is the default option. We, then, recompiled
MUMPS to include METIS ordering package. Actually, the
latter is strongly recommended by MUMPS developers. The
practical effects on the performance due to the selection of
the package will become apparent later on.

5. TRADE-OFFS AMONG PARALLELISA-

TION OPTIONS
In this section, we present the results obtained, once the

hand-crafted parallelisation, and the replacement of HSL se-
quential solver by MUMPS library (and corresponding in-
terface) have been performed.

To enable some comparisons, a number of executions of
the test problem were performed, using from 1 to 8 cluster
processes and an executable with the hand-crafted paralleli-
sation inside the convolution loop and three configurations
for the solver:

• with HSL (labelled HSL in the figures);

• with MUMPS with PORD (MUMPS & PORD in the
figures);

• with MUMPS with METIS (MUMPS & METIS in the
figures).

The main goal of the test problem was to validate the
results obtained from the parallel version with those of the
original sequential version. Also, it served as a debugging
platform for preliminary tests of the scalability of the par-
allel version.

5.1 Trade-offs of the ordering packages
The results depicted in Fig. 2 refer to the test case men-

tioned in section 2.1, and deserve several comments. It is
worth noting that the times shown in the figure refers to a
complete run of the problems.

First of all, regarding wall time, it should be noticed
that MUMPS equipped with METIS clearly outperforms
MUMPS with PORD, especially when the number of in-
volved processes is low. Regarding CPU time, MUMPS us-
ing METIS outperforms MUMPS using PORD as well. As
the number of process grows, the performances of MUMPS
with both ordering schemes become closer, though.

The third picture shows surprising results. When using
PORD, the system time spent is far from negligible and
displays an irregular pattern as the number of involved pro-
cesses grows. Some analysis on the system calls performed
by the application revealed that these system calls are of
the type poll, which seems to suggest communication issues
among the processes. On its part, MUMPS with METIS
shows that the system time spent is still remarkably high
(though much lower than the corresponding when PORD is
used) and stays roughly stable as the number of processes
grows. Remark that the scale in this picture is much smaller
(actually, one tenth) than in the previous ones, in order to
make apparent the system time behaviour, so that in prac-
tise this time does not impact significantly on the overall
performance. However, the origin of this irregularities is
still to be ascertained.

5.2 Memory trade-offs
The results for memory consumption in the test case can

be seen in Fig. 3, for HSL, MUMPS with PORD and with
METIS.

Since HSL is a sequential library, its memory consump-
tion remains constant for any number of processes. The
behaviour when using MUMPS depends slightly on the or-
dering package under test, displaying better results for the
METIS case. From two processes onwards, MUMPS mem-
ory consumption has been lower than for the HSL case, and
scales down acceptably.

In general, memory consumption for a multifrontal solver
(for a full explanation on multifrontal solvers, see for ex-
ample [15]), such as the ones used in this work, is linearly
related to the maximum wavefront (see, for instance, [19]),
which in turn is strongly dependent on the order in which
the elements are assembled. For this reason, ordering algo-
rithms have an enormous impact on the final memory con-
sumption, thus making it very difficult to supply general
rules regarding precise memory requirements.

5.3 Speedup comparison
Fig. 4 shows the speedup comparison among the different

parallelisation options, for the test case. The figure gives
two results, CPU time and speedup, for three different con-
figurations, namely HSL, MUMPS using PORD (labelled
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Figure 2: MUMPS (with PORD and METIS ele-
ment orderings) time comparisons as a function of
the number of processes
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Figure 3: HSL & MUMPS (with different element
orderings) memory usage comparisons

Figure 4: HSL & MUMPS(with different element
orderings) CPU time and speedup

MUMPS in the figure), and MUMPS using METIS.
Since HSL is a sequential library, the HSL configuration

achieves its speedup only through the hand-crafted paralleli-
sation. However, the factorisation and backward substitu-
tion phases are serial, thus limiting the maximum reachable
speedup, as the shape of the curve seems to suggest. For the
test problem, the speedup for 8 processes is roughly 3.

Regarding MUMPS with PORD, it is remarkable that, for
the test problem, MUMPS only outperforms HSL in terms
of CPU time when the number of processes is greater than
3. This behaviour is due to the longer times used by the
factorisation phase when the number of processes is low. As
for the speedup curve, it displays a nearly linear behaviour,
since most part of the code has been parallelised. It reaches
a value of 6 for 8 processes.

MUMPS with METIS achieves the best behaviour even
using only one process. The METIS ordering package is key
to the quasi-linear speedup observed (nearly 8, for 8 pro-
cesses) so it can be deemed fully scalable. This speedup in
MUMPS using METIS is essentially due to a much improved
factorisation process with respect to MUMPS using PORD.

6. CONCLUSIONS
This paper has described the practical experience and the

results obtained after the parallelisation of the previously
existing sequential code of a simulator that performs the
analysis and resolution of general scattering and radiation
problems in an efficient way by implementing FE-IIEE al-
gorithm.

From the computational point of view, FE-IIEE algorithm
consists of a initial phase, where the matrix is factorised, and
an iterative phase, where a system of double integrals is eval-
uated. Both tasks account for the main computational load
of the simulator. The parallelisation of the integrals was per-
formed using the message-passing parallelisation paradigm,
assisted by MPICH2, an implementation of the MPI de facto
standard, and consisted essentially in distributing the exe-
cution of the loops to the different processes, thus yielding
very reasonable results. The parallelisation of the factorisa-
tion of the FEM matrix was attempted by replacing HSL li-
brary (originally used in the sequential version) by MUMPS
library, designed to be run in a parallel environment (using
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MPI). MUMPS has proved to be very efficient for the fac-
torisation phase of our test problem, which runs faster than
HSL when more than 3 processes are involved. Moreover,
MUMPS was recompiled to take advantage of METIS, show-
ing that the behaviour of the program notably improved in
terms of wall time.

An important advantage of using MUMPS, independently
of the ordering package used, is that memory consumption
is distributed among all the processes. However, this dis-
tribution is not completely balanced. Actually, process 0 is
in charge of assembling and storing the FEM matrix before
factorisation, and for this reason, it consumes slightly more
memory than the rest of the processes. Even taking this
into account, the use of a cluster such as the one used in
this work (endowed with rather limited resources) permits
the successful solution of much bigger problems than if a
pure sequential solver, such as HSL, were used.

It is interesting to remark, as a lesson learnt, that the
performance of our sequential simulator has been greatly
improved with no too much effort by using an existing tool,
such as MUMPS solver, which conveniently replaced the se-
quential solver with a parallel one, thus dramatically increas-
ing the size of the problems that can be attacked and, as a
by-product, improving the speed performance.

Moreover, our sequential simulator turned out to be ame-
nable to a simple and performant parallelisation since a big
part of the computational load was due to a convolution-
type operation, which was very easy to distribute among
the processes with virtually no communication cost added.
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