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ABSTRACT
We address the question of understanding the effect of the
underlying network topology on the spread of a virus and
the dissemination of information when users are mobile per-
forming independent random walks on a graph. To this end
we propose a simple model of infection that enables to study
the coincidence time of two random walkers on an arbitrary
graph. By studying the coincidence time of a susceptible and
an infected individual both moving in the graph we obtain
estimates of the infection probability.

The main result of this paper is to pinpoint the impact of
the network topology on the infection probability. More pre-
cisely, we prove that for homogeneous graph including regu-
lar graphs and the classical Erdös-Rényi model, the coinci-
dence time is inversely proportional to the number of nodes
in the graph. We then study the model on power-law graphs,
that exhibit heterogeneous connectivity patterns, and show
the existence of a phase transition for the coincidence time
depending on the parameter of the power-law of the degree
distribution.

Keywords
random graphs, complex networks, communication systems,
wireless networks.

1. INTRODUCTION
In recent years there have been a surge of hand-held wireless
computing devices such as PDAs together with the prolif-
eration of new services. These portable computing devices
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are equipped with a short-range wireless technology such as
WiFi or Bluetooth. Despite providing a great deal of flexi-
bility this ability to wirelessly connect to other devices, and
to transfer data on the move, attracted the attention of virus
writers who exploit such features for lauching computer-
virus outbreaks that take advantage of human mobility [2,
22, 24].

Over the past couple years, there have been indeed reports
of malicious code that take advantage of bluetooth vulnera-
bilities such as the Cabir worm that was detected during the
World Athletics Championship [25] and another at a com-
pany that has been reported by CommWarrior [26]. Despite
their small scales, these incidents bode more threats taking
advantage of events and locations where individuals gather
in close proximity [32, 33].

In much of the literature on mathematical epidemiology, the
members of the population are assumed to occupy fixed lo-
cations and the probability of infection passing between a
pair of them in a fixed time interval is taken to be some
function of the distance between them. Mean-field (aka ho-
mogeneous mixing) models are a special case where an in-
fected individual can potentially infect an number of random
individuals chosen uniformly at random among the popula-
tion [10]. Recently there have been an increasing interest
in understanding the impact of the network topology on the
spread of epidemics in networks with fixed nodes, see [14,
17].

In this work, we consider a different model in which the
agents are mobile and can only infect each other if they are
in sufficiently close proximity. The model is motivated both
by certain kinds of biological epidemics, whose transmission
may be dominated by sites at which individuals gather in
close proximity (e.g. workplaces or public transport for a
disease like SARS, cattle markets for foot-and-mouth dis-
ease, etc.) and by malware spreading between wireless de-
vices via Bluetooth connections, for example.

Related work. In what follows we briefly describe some of
the relevant related work on modelling epidemic spreading in
mobile environments. To our knowledge the first attempts
to model virus spreading in mobile networks relies on the
use of a non-rigorous mean-field approximations (similar to
the classical Kephart-White model [21]) that incorporates
the mobility patterns of users. In [30], the authors derive
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a threshold for the persistence of the epidemic by comput-
ing the average number of neighbours of a given node. Us-
ing a similar approach but with different mobility patterns,
Nekovee et al. [28, 29] explore the evolution of the num-
ber of devices that are infected in terms of the contact rate
between users.

A related line of work studying the dissemination of infor-
mation in opportunistic networks [6] focuses on the follow-
ing analogous problem: Suppose that a set of mobile agents
with wireless communication capabilities, forming a tempo-
rary network without the aid of a fixed infrastructure, are
interested in a piece of information that is initially held by
one user. The information is transmitted between users who
happen to be in each others range. As in the case of static
networks [31], one may be interested in the time it takes for
the rumour to be known to all users. To this end we need
to understand how information is transmitted between an
informed and an ignorant user. Our work gives some insight
on the impact of the network structure on the likelihood of
successfully transmitting the rumour.

Our contribution. In contrast to the previous work which
has focused on Euclidean models and homogeneous mobil-
ity patterns, in this work we consider a model wherein the
different locations that a user can reach have varying popu-
larity.

More precisely, we consider a simple and stylised mathemat-
ical model of the spread of infection as follows. There is a
finite, connected, undirected graph G = (V, E) on which the
individuals perform independent random walks: they stay
at each vertex for an exponentially distributed time with
unit mean, and then move to a neighbour of that vertex
chosen uniformly at random. The infection can pass from
an infected to a susceptible individual only if they are both
at the same vertex, and the probability of its being passed
over a time interval of length τ is 1−exp(−βτ), where β > 0
is a parameter called the infection rate. We shall consider
a single infected and a single susceptible individual and ask
what the probability is that the susceptible individual be-
comes infected by time t. This probability has been studied
in the case of a complete graph in [11]. Here, we extend
their results to a much wider class of graphs.

It is simplistic to consider just a single infective and a single
susceptible individual. Nevertheless, insights gained from
this setting are relevant in the“sparse” case, where the num-
ber of both infected and susceptible individuals is small and
inter-contact times are fairly large. In that case, it is not
a bad approximation to consider each pair of individuals in
isolation. The “dense” setting will require quite different
techniques and is not treated here.

Random walks on graphs. Motivated by applications
in Physics, Biology, Social Sciences and Computer Science,
there has been an ever increasing interest in analysing the
properties of interacting particles or agents moving on a fi-
nite network. In particular, random walks play a central
role in computer science, spanning a wide range of areas in
both theory and practice, including distributed computing
[5]. In fact many distributed algorithms use random walks

as a building block. Applications in networks include token
management [9], load balancing [19], small-world routing
[13, 23], search [18], information propagation and gathering
[20], network topology monitoring [16] and group communi-
cation in ad-hoc networks [12]. The paper [27] provides a
survey of the properties of a random walk on a finite graph.

There have been fewer work related to multiple interact-
ing mobile agents on a finite network. In [8] the authors
propose a number of these dynamics and study their as-
ymptotic properties on regular graphs. Aldous [1] derives
an upper bound for the expected meeting time of two inde-
pendent copies of Markov chain as a function of the hitting
time for a single chain. Coppersmith et al [9] provide an up-
per bound for the expected meeting time of a variant of the
problems of two random walks on a general graph whereby
an adversary tries to keep the tokens apart.

Organisation of the paper. The rest of the paper is
organised as follows. In Section 2, we present our model
and the family of networks we will consider. Besides we
state our main results that relate the coincidence time of
the two walkers to the stationary distribution of a random
walk on a graph. In Section 3 we give a detailed proof of our
main result on the probability of infection for regular graphs,
the Erdös-Rényi graph and power-law networks. Section 4
summarises our contribution and suggests further extensions
of our work.

2. MODELS AND RESULTS
We now describe the model precisely. Let Xt, Yt ∈ V denote
the positions of the susceptible and infected individuals re-
spectively at time t. We model (Xt, t ≥ 0) and (Yt, t ≥ 0)
as independent continuous-time Markov chains (CTMCs) on
the finite state space V , with the same transition rate matrix
given by

qxy =

8<: 1
degree(x)

if (x, y) ∈ E,

0 if y 6= x and (x, y) /∈ E,
−1 if y = x

where degree(x) is the number of neighbours of x (nodes y
such that (x, y) ∈ E) in the graph G.

We define the coincidence time up to time t, denoted τ(t),
as the total time up to t during which both walkers are at
the same vertex, i.e.,

τ(t) =

Z t

0

1(Xs = Ys)ds. (1)

Let I(t) denote the indicator function that the initial sus-
ceptible becomes infected by time t. Then, conditional on
τ(t), we have

E(I(t) | τ(t)) = 1 − exp(−βτ(t)), (2)

where β > 0 is the infection rate. Let γ(t) = E(I(t)) be the
probability that the initial susceptible becomes infected by
time t.

We are interested in estimating the coincidence time τ(t)
and the infection probability γ(t) for different families of
graphs.
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Observe that the Markov chains Xt, Yt have invariant dis-
tribution π given by

πx =
degree(x)P

v∈V degree(v)
(3)

and that they are reversible, i.e., πxqxy = πyqyx for all x, y ∈
V .

We consider the case when these chains are started indepen-
dently in the stationary distribution and provide estimates
on the coincidence time and the infection probability, for
arbitrary graphs.

Theorem 1. Suppose X0 and Y0 are chosen independently
according to the invariant distribution π. Then, we have

E[τ(t)] =
X
v∈V

π2
vt

γ(t) ≤ 1 − exp
�
−βt

X
v∈V

π2
v

�
.

Proof. Observe that, for all s ≥ 0,

P(Xs = Ys) =
X
v∈V

P(Xs = Ys = v)

=
X
v∈V

π2
v ,

because Xs and Ys are independent, and are in stationarity.
Hence, it is immediate from (1) that

E[τ(t)] =

Z t

0

X
v∈V

π2
vds

=
X
v∈V

π2
vt .

Next, taking expectations in (2) with respect to the condi-
tioning random variable τ(t), we have

γ(t) = 1 − E[exp(−βτ(t))]

≤ 1 − exp(−βE[τ(t)])

= 1 − exp
�
−βt

X
v∈V

π2
v

�
,

where the inequality follows from Jensen’s inequality. 2

We now introduce some terminology and define some exam-
ples of graph models that we shall consider.

For two functions f(·) and g(·) on the natural numbers, we
write f(n) ∼ g(n) to mean that their ratio tends to 1 as
n tends to infinity. We write f(n) = O(g(n)) if f(n)/g(n)
remains bounded by a finite constant, f(n) = o(g(n)) if
f(n)/g(n) tends to zero, and f(n) = Ω(g(n)) if g(n) =
O(f(n)). For a sequence of events An indexed by n ∈ N,
we say that they occur with high probability (whp) if P(An)
tends to 1 as n tends to infinity.

Examples

Complete graphs. Consider the complete graph on n nodes,
namely the graph in which there is an edge between every

pair of nodes. Thus, degree(v) = n − 1 and πv = 1/n for
all v ∈ V , so we have by Theorem 1 that E[τ(t)] = t/n.
This result should be intuitive by symmetry. Lemma 1 also
gives us an upper bound on the infection probability, γ(t) ≤
1 − exp(−βt/n). Roughly speaking, this says that it takes
time of order n/β for the susceptible individual to become
infected; for t � n/β, the probability of being infected is
vanishingly small. Again, this is consistent with intuition.

Regular graphs A graph G = (V, E) is said to be r-regular
if degree(v) = r for all v ∈ V . Thus, a complete graph is
regular with r = n − 1. It is readily verified that πv = 1/n
for all v ∈ V if G is r-regular for any r ≥ 2. (If r = 1,
then G is a matching and is not connected.) Hence, if G is
connected, we have the same estimates for τ(t) and γ(t) as
for the complete graph, which is a special case corresponding
to r = n − 1.

The next examples we consider will be families of random
graphs widely used in practice to model networks.

Erdős-Rényi random graphs The Erdős-Rényi graph G(n, p)
is defined as a random graph on n nodes, wherein each edge
is present with probability p, independent of all other edges.
We consider a family of such random graphs indexed by n,
and take p to be a function of n chosen so that np > c log n
for some constant c > 1. We also condition on the graph
being connected. For p as above, the probability of connec-
tivity tends to 1 as n tends to infinity, so conditioning on
connectivity does not alter any of the estimates we shall de-
rive later for the coincidence time on such graphs. In this
model, the node degrees are identically distributed Binomial
random variables with parameters (n − 1, p). In particular,
they concentrate around the mean value of np, and have ex-
ponentially decaying tails away from this value. Thus, while
Erdős-Rényi graphs are not exactly regular, they exhibit
considerable homogeneity in node degrees.

Power law random graphs In contrast to the above graph
models, many real-world networks exhibit considerable het-
erogeneity in node degrees, and have empirical degree dis-
tributions whose tails decay polynomially; see, e.g., [3, 15].
This observation has led to the development of generative
models for graphs with power-law tails [3, 4] as well as
random-graph models possessing this property [7]. For def-
initeness, we work with the model proposed in [7], but we
believe that similar results will hold for the other models as
well.

In the model of [7], each node v is associated with a pos-
itive weight wv, and edges are present independently with
probabilities related to the weights by

P((u, v) ∈ E) =
wuwv

W
where W =

X
x∈V

wx. (4)

We assume that W ≥ w2
max, so that the above defines a

probability. It can be verified that E[degree(v)] = wv and so
this model is also referred to as the expected degree model.
The model allows self-loops. The Erdős-Rényi graph G(n, p)
is a special case corresponding to the choice wv = np for
all v ∈ V . If the weights are chosen to have a power-law
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distribution, then so will the node degrees. The follow-
ing 3-parameter model for the ordered weight sequence is
proposed in [7], parametrised by the mean degree d, the
maximum degree m, and the exponent γ > 2 of the weight
distribution:

wi = m
�
1 +

i

i0

�− 1

γ−1

, i = 0, 1, . . . , n − 1, (5)

where

i0 = n
� d(γ − 2)

m(γ − 1)

�γ−1

. (6)

Note that W =
Pn−1

i=0 wi ∼ nd.

We consider a sequence of such graphs indexed by n. The
maximum expected degree m and the average expected de-
gree d may, and indeed typically will, depend on n. In mod-
els of real networks, we can typically expect d to remain
bounded or to grow slowly with n, say logarithmically, while
m grows more quickly, say as some fractional power of n. In
this paper, we only assume the following:

d ≥ δ > 0, d = o(m), m ≤
√

nd,
m

d
= o
�
n

1

γ−1

�
. (7)

Here, δ is a constant that does not depend on n. In other
words, the average expected degree is uniformly bounded
away from zero. The third assumption simply restates the
requirement that w2

0 ≤ W , so that (4) defines valid proba-
bilities. The last assumption ensures that i0, defined in (6),
tends to infinity.

We now describe our results about these models.

Theorem 2. Consider a sequence of graphs G = (V, E)
indexed by n = |V |. On each graph, consider two indepen-
dent random walks with initial condition X0, Y0 chosen in-
dependently from the invariant distribution π for the random
walk on that graph.

We have E[τ(t)] = t/n for regular graphs, including the com-
plete graph, on n nodes.

For Erdős-Rényi random graphs G(n, p) conditioned to be
connected, and having np ≥ c log n for some c > 1, we have
E[τ(t)] ∼ t/n, as n tends to infinity.

Finally, consider a sequence of power law random graphs
defined via (4) and (5), and satisfying the assumptions in
(7). Then, we have the following:

nE[τ(t)]

t
∼

8><>:c, if γ > 3,

c(log m), if γ = 3,

c(m.d)3−γ , if 2 < γ < 3,

where c > 0 is a constant that may depend on γ, but not on
n, m or d.

3. PROOF OF THEOREM 2
If the graph G is regular, then, by (3), πv = 1/n for all v ∈
V . Hence, the claim of the theorem follows from Theorem
1.

In order to estimate E[τ(t)], we need to computeX
v∈V

π2
v =

P
v∈V degree(v)2�P
v∈V degree(v)

�2 . (8)

Define

D =
X
v∈V

degree(v) =
X

u,v∈V

Auv, (9)

where Auv = 1((u, v) ∈ E), and

Xv = degree(v)(degree(v) − 1)

=
X
i6=j

AviAvj

D2 =
X
v∈V

Xv. (10)

We will derive the first and second moments of the variables
D and D2. It then suffices to use Chebyshev’s inequality to
establish concentration results for both variables D and D2.
By (8) and Theorem 1, and the fact that

P
v∈V degree(v)2 =

D2 + D and D =
P

v∈V degree(v), we will have an estimate
of the coincidence time that holds whp.

We begin by computing the mean and variance of D in
the expected degree model with arbitrary weight sequence
{wi, i = 0, . . . , n − 1}.

For notational convenience, we define

w =
1

n

n−1X
i=0

wi, wk =
1

n

n−1X
i=0

wk
i , k = 2, 3, . . .

We obtain Erdős-Rényi graphs G(n, p) by setting wi = np

for all i, and so, wk = (np)k for such graphs.

Next, consider power-law graphs with weight sequence spec-
ified by (5) and (6). Since i0 tends to infinity by assumption,
we have for such graphs that

wk =
mk

n

n−1X
i=0

�
1 +

i

i0

�− k
γ−1

∼ mk

n

Z n

0

�
1 +

x

i0

�− k
γ−1

dx

= mk i0
n

Z n/i0

0

(1 + x)
− k

γ−1 dx. (11)

Now, straightforward calculations yield that w ∼ d for all
γ > 2, whereas, for k ≥ 2, we have

wk ∼

8>>>>>><>>>>>>: (γ−2)k

(γ−1)k−1(γ−1−k)
dk, if γ > k + 1,

(k−1)k

kk−1
dk log m

d
, if γ = k + 1,

(γ−2)γ−1

(γ−1)γ−2(k+1−γ)
dγ−1mk+1−γ , if 2 < γ < k + 1.

(12)
We can now compute the mean and variance of D, the sum
of node degrees.
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Lemma 1. Consider a random graph G = (V, E) speci-
fied by the expected degree model with an arbitrary weight
sequence {wv, v ∈ V } satisfying W ≥ w2

max, where W =P
v∈V wv. Let the sum of node degrees, D, be defined as in

(9). Then, we have

E[D] = nw,

Var(D) = 2
�
nw −

�w2

w

�2�
−
�w2

w
− w4

nw2

�
, (13)

where n = |V | is the total number of nodes.

In particular, if G is the Erdős-Rényi random graph G(n, p),
then

E[D] = n2p

Var(D) = (2n − 1)np(1 − p) ∼ 2n2p(1 − p), (14)

whereas, if G is a power law random graph satisfying the
assumptions of Theorem 2, then

E[D] = nd while Var(D) ∼ 2nd, whp.

.

Proof. It is immediate from (9) that

E[D] =
X

u,v∈V

P((u, v) ∈ E)

=
X

u,v∈V

wuwv

W
= W,

which establishes the first equality in (13). Next, rewrite (9)
as

D = 2
nX

i=1

nX
j=i+1

Aij +
nX

i=1

Aii,

and observe from the independence of the edges that

Var(D) = 4
nX

i=1

nX
j=i+1

Var(Aij) +
nX

i=1

Var(Aii)

= 2
nX

i=1

nX
j=1

Var(Aij) −
nX

i=1

Var(Aii).

Now, Var(Auv) = P((u, v) ∈ E)(1 − P((u, v) ∈ E)), and so,

Var(D) = 2

nX
i=1

nX
j=1

�wiwj

W
− w2

i w2
j

W 2

�
−

nX
i=1

�w2
i

W
− w4

i

W 2

�
.

Upon simplifying, this yields the second equality in (13).

Now, using the fact that wk = (np)k for Erdős-Rényi graphs
G(n, p), we readily obtain (14).

Next, suppose G is a power-law graph (more precisely, Gn is
a sequence of power law graphs) satisfying the assumptions
of Theorem 2. It follows from (11) that

w4 ∼

8>>>>>><>>>>>>: (γ−2)4

(γ−1)3(γ−5)
d4, if γ > 5,

81
64

d4 log m
d

, if γ = 5,

(γ−2)γ−1

(γ−1)γ−2(5−γ)
dγ−1m5−γ , if 2 < γ < 5,

(15)

while

w2 ∼

8>>>>>><>>>>>>: (γ−2)2

(γ−1)(γ−3)
d2, if γ > 3,

1
2
d2 log m

d
, if γ = 3,

(γ−2)γ−1

(γ−1)γ−2(3−γ)
dγ−1m3−γ , if 2 < γ < 3,

(16)

and w ∼ d for all γ > 2.

By (13), it suffices to show that�w2

w

�2

= o(nd) and
w4

w2 = o(n2d) (17)

in order to show that Var(D) ∼ 2nw ∼ 2nd.

Suppose first that γ > 3. Then, by (16) and the fact that
w = nd,

1

nd

�w2

w

�2

= O
� d

n

�
= o(1),

where the last equality follows by (7), and the fac that d ≤ n.

Now let γ = 3. Then, by (16) and the fact that w = nd,

1

nd

�w2

w

�2

= O
� d

n
log

m

d

�
= O

�m

n

d

m
log

m

d

�
= o(1),

where the last equality follows by (7). On the other hand,
if 2 < γ < 3, then, by (16),

1

nd

�w2

w

�2

= O
�d2γ−5m6−2γ

n

�
= O

�� d

n

�γ−2�
= o(1),

where we have used the inequality m ≤
√

nd from (7) to
obtain the second equality. To obtain the last equality, note
that it follows from (7) that m = o(n) and hence that d =
o(n) as well. We have thus established the first equality in
(17) for all γ > 2. The proof of the second equality is similar
and is omitted. This completes the proof of the lemma. 2

The following corollary is now an easy consequence of Cheby-
shev’s inequality.

Corollary 1. If Gn, n ∈ N is a sequence either of Erdős-Rényi
random graphs or of power-laws random graphs satisfying
the assumptions of Theorem 2, then the sum of node de-
grees D concentrates at its expected value in the sense that
D ∼ E[D] with high probability (whp).

We now establish a similar concentration result for the sum
of squared degrees. To this end, recall that

Xv = degree(v)(degree(v) − 1) =
X
i6=j

AviAvj

D2 =
X
v∈V

Xv.

We have the following:
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Lemma 2. Let D2 be defined as in (10). We then have

E[D2] = nw2 −
�w2

w

�2

Var(D2) ≤ 4nw3 + 2nw2 + 4n
(w2)2

w
. (18)

Proof. We first note that

E[Xv] =
X
i6=j

wiwjw
2
v

W 2

= w2
v

�
1 − 1

W 2

X
i∈V

w2
i

�
= w2

v

�
1 − w2

nw2

�
.

Therefore,

E[D2] =
X
v∈V

E[Xv] = nw2 −
�w2

w

�2

,

which is the first part of (18). Next, for distinct nodes u, v ∈
V , we have

Cov(Xu, Xv) =
X
i6=j

X
k 6=l

Cov(AiuAju, AkvAlv)

= 4
X

i6=v,l6=u

Cov(AiuAuv, AuvAlv)

= 4E[Au,v](1 − E[Au,v])
X
i6=v

E[Aiu]
X
l 6=u

E[Alv].

The second equality above holds because, by the indepen-
dence of edges, the indicator random variables AiuAju and
AkvAlv corresponding to the open triangles (or 2-stars) iuj
and kvl are independent unless two of the edges are the
same; the only way this can happen is if (u, v) is a common
edge and there are 4 possible node labellings corresponding
to each such edge set. Now, recall that E[Au,v] = wuwv/W
and

P
i E[Aiu] = E[degree(u)] = wu. Hence, we see from

the above that

0 ≤ Cov(Xu, Xv) ≤ 4
w2

uw2
v

W
. (19)

Similarly, we obtain

Var(Xu) =
X
i6=j

X
k 6=l

Cov(AiuAju, AkuAlu)

= 4
X

j

X
i6=j

X
l 6=i,j

Cov(AiuAju, AjuAlu)

+2
X
i6=j

Var(AiuAju)

≤ 4
X

j

X
i6=j

X
l 6=i,j

E[AiuAjuAlu]

+2
X
i6=j

E[AiuAju].

Using the fact that distinct edges are independent, we get

Var(Xu) ≤ 4w3
u + 2w2

u. (20)

Now, by (10), (19) and (20)

Var(D2) =
X
u∈V

Var(Xu) +
X
u 6=v

Cov(Xu, Xv)

≤
X
u∈V

(4w3
u + 2w2

u) +
X

u,v∈V

4
w2

uw2
v

W
.

Computing the above sums yields the second part of (18).
2

We now specialise the results to Erdős-Rényi and power law
random graphs, showing that D2 concentrates near its ex-
pected value with high probability.

Lemma 3. Suppose G(n, p) is a sequence of Erdős-Rényi
random graphs indexed by n (where p depends on n but this is
not made explicit in the notation), and that np is uniformly
bounded away from zero. Then D2 ∼ E[D2] ∼ n3p2 whp.

Proof. We have, by Lemma 2 and the fact that wk = (np)k

for the Erdős-Rényi random graph G(n, p), that

E[D2] = n2(n − 1)p2 ∼ n3p2, Var(D2) ≤ 8n4p3 + 2n3p2.

Hence, by Chebyshev’s bound, we obtain for all ε > 0 that,

P(|D2 − E[D2]| > εE[D2]) ≤ Var(D2)

ε2E[D2]2

≤ 1

ε2(n − 1)2p

+
1

ε2n(n − 1)2p2
.

Now, by the assumption that np is bounded away from zero,
(n − 1)2p and n(n − 1)2p2 tend to infinity as n tends to
infinity. Thus, P(|D2 − E[D2]| > εE[D2]) tends to zero for
all ε > 0. This establishes the claim of the lemma. 2

Lemma 4. Suppose Gn, n ∈ N is a sequence of random
graphs satisfying the assumptions in Theorem 2, with γ > 2.
Then, D2 ∼ E[D2] whp, and

E[D2] ∼

8><>:cnd2, if γ > 3,

cnd2(log m), if γ = 3,

cndγ−1m3−γ , if 2 < γ < 3,

Proof. We will show that Var(D2) = o(E[D2]
2), so that the

claim follows by Chebyshev’s bound, as in the proof of the
previous lemma. We will consider separately the parameter
ranges γ ≥ 4, 3 ≤ γ < 4 and 2 < γ < 3, where γ is the ex-
ponent in the power law describing the degree distribution.

In the following, c1, c2, . . . will denote generic positive con-
stants, not necessarily the same from line to line. Recall
that w ∼ d.

Suppose first that γ ≥ 4. Then, by (12), w3 = O(d3 log m
d

)

and w2 ∼ c1d
2. Therefore, by Lemma 2,

E[D2] ∼ c1nd2
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and

Var(D2) = O
�
nd3 log

m

d
+ nd2

�
= O

�
nd3 log

m

d

�
,

where the last equality holds because of the assumption in
(7) that d ≥ δ for some constant δ > 0. Thus, we see that

Var(D2)

E[D2]2
= O

� 1

nd
log

m

d

�
= o(1),

since m ≤ n.

Suppose next that 3 ≤ γ < 4. Then, by (12), w3 = O(dγ−1m4−γ),

while w2 ∼ c1d
2 if 3 < γ < 4 and w2 ∼ c2d

2 log m
d

if γ = 3.
Therefore, by Lemma 2,

E[D2] ≥ c1nd2 − c2d
2 log2 m

d

≥ c1nd2 − c2d
2 log2 n = Ω(nd2), (21)

whereas,

Var(D2) ≤ c1ndγ−1m4−γ + c2nd2 log
m

d
+ c3nd3 log2 m

d

≤ c1ndγ−1m4−γ + c2nd3 log2 m

d
,

= c1ndγ−1m4−γ
�
1 +

� d

m

�4−γ

log2 m

d

�
.

We have used the assumption that d is uniformly bounded
away from zero to obtain the second inequality above. Since
we also assumed in (7) that d = o(m), we have

(d/m)4−γ log2(m/d) = o(1) .

for all γ < 4. Hence, Var(D2) = O(ndγ−1m4−γ). Combin-
ing this with (21), we get

Var(D2)

E[D2]2
= O

� 1

nd

�m

d

�4−γ�
= O

� 1

nd
n(4−γ)/(γ−1)� = o(1).

We have used (7) to obtain the second equality above and
the fact that γ ≥ 3 to obtain the last equality. Moreover,
E[D2] ∼ cnd2 for 3 < γ < 4, whereas E[D2] ∼ cnd2 log(m)
for γ = 3.

Finally, suppose that 2 < γ < 3. Then, by (12), w3 =

O(dγ−1m4−γ) and w2 ∼ c1d
γ−1m3−γ , so that, by Lemma 2,

E[D2] ≥ c1ndγ−1m3−γ − c2(d
γ−2m3−γ)2

≥ c1ndγ−1m3−γ
�
1 − c2

n

�m

d

�3−γ�
.

Now, by (7), (m/d)3−γ = o(n(3−γ)/(γ−1)) = o(n) since γ >
2. Consequently,

E[D2] = Ω(ndγ−1m3−γ).

On the other hand,

Var(D2) ≤ c1ndγ−1m4−γ + c2ndγ−1m3−γ

+c3nd2γ−3m6−2γ

≤ c1ndγ−1m4−γ
�
1 +

c2

m
+ c3

� d

m

�γ−2�
= O(ndγ−1m4−γ).

Hence,

Var(D2)

E[D2]2
= O

�
ndγ−1m4−γ

n2d2γ−2m6−2γ

�
= O

�
1

nm

�m

d

�γ−1
�

Now, by (7), and the fact that γ > 2 we have (m/d)γ−1 =
o(n). Since the maximum degree m is assumed to grow as

a power of n, we have Var(D2)

E[D2]2
= o(1). Note that E[D2] ∼

cndγ−1m3−γ , for 2 < γ < 3.

Using Chebyshev’s inequality, this establishes the claim of
the lemma. 2

To complete the proof of Theorem 2, it suffices to com-
bine the results of lemma 1 and lemma 4 with the fact thatP

v π2
v = D2+D

D2 .

4. CONCLUSION AND FUTURE WORK
In this work we have presented a simple model for the spread
of epidemics where individuals are mobile. In this framework
we were interested in the setting where there are two indi-
viduals one infected and one healthy both performing ran-
dom walks on the network. Our preliminary investigation
highlights the effect of the topology on the spread of an epi-
demic, motivated by networking phenomena such as worms
and viruses, failures, and dissemination of information. Un-
der this natural model, we provided an explicit relationship
between the structure over which the walks are performed
and the coincidence time of the two walkers. To this end we
analysed both homogeneous (regular, complete and Erdös-
Rènyi graphs) and heterogeneous (power-law graphs) net-
works. We pinpointed the existence of a phase transition
for the coincidence time in the case of power-law networks
depending on the parameter of the power-law degree dis-
tribution. We also derived bounds on the probability of
infection.

As a final remark, we propose some several interesting di-
rections to pursue the work presented here. In our present
model individuals are supposed to start their walks in sta-
tionary regime. This can be relaxed since the networks
we study are expanders and thus random walks on such
networks have nice mixing properties as illustrated in [17]
through the computation of the isoperimetric constant of
the underlying graphs. As the probability that more than
two particles meet in the same node is small compared to
pair meetings we anticipate that similar results can be de-
rived when considering k walkers as long as k is small with
respect to n the number of sites in the network.
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