
Consensus in Inventory Games
∗

Dario Bauso
DINFO, Universitá di Palermo
90128 Viale delle Scienze

Palermo, Italy

dario.bauso@unipa.it

Laura Giarré
DINFO, Universitá di Palermo
90128 Viale delle Scienze

Palermo, Italy

giarre@unipa.it

Raffaele Pesenti
DMA, Universitá di Venezia
Dorsoduro 3825/E, I-30123

Venezia, Italy

pesenti@unive.it

ABSTRACT

This paper studies design, convergence, stability and opti-
mality of a distributed consensus protocol for n-player re-
peated non cooperative games under incomplete informa-
tion. Information available to each player concerning the
other players’ strategies evolves in time. At each stage (time
period), the players select myopically their best binary strat-
egy on the basis of a payoff, defined on a single stage, mono-
tonically decreasing with the number of active players. The
game is specialized to an inventory application, where fixed
costs are shared among all retailers, interested in reordering
or not from a common warehouse. As information evolves
in time, the number of active players changes too, and then
each player adjusts its strategy at each stage based on the
updated information. In particular, the authors focus on
Pareto optimality as a measure of coordination of reorder-
ing strategies, proving that there exists a unique Pareto op-
timal Nash equilibrium which verifies certain stability con-
ditions. The main contribution of the paper is the design of
a consensus protocol allowing the distributed convergence
of the strategies to the unique Pareto optimal Nash equilib-
rium. Results may also be extended to externality games,
pollution/congestion games, and cost-sharing games, with
the only constraint of being the strategies binary and with
threshold structure.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
I.6.m [Miscellaneous]: []
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Game theory; Multi-agent systems, Inventory; Consensus
protocols.

∗A journal version of this paper is available as D. Bauso,
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1. INTRODUCTION
In a competitive environment, decision makers may find

convenient to coordinate their strategies to share costs for
using resources, services or facilities. For this reason, there
is a vast literature on game theory devoted to mechanism de-
sign, i.e., to the definition of game rules or incentive schemes
that induce self-interested players to coordinate their strate-
gies so that they converge to Pareto optimal equilibria [1].
The main contribution of this paper is the design of a con-
sensus protocol (see, e.g., [2]) that allows the convergence of
strategies to the desired equilibrium by exploiting stability
properties of Pareto optimal Nash equilibria. In our con-
sensus protocol each player exchanges a limited amount of
information with a subset of other players. We cast this pro-
tocol within the minimal information paradigm to reduce
each player’s data exposure to the competitors. We also
prove that the use of linear predictors increases the proto-
col speed of convergence. It is well known that in a game
with a uniform set up cost allocation rule, optimal policies
have threshold structures. Threshold strategies arise in re-
peated non cooperative games where, at each stage or time
period, the payoff of the players is a monotonic function of
the strategies of the others. Monotonicity of payoffs arises
also in classical economic problems involving an external-
ity (see the literature on pollution/congestion games or ex-
ternality games) or in cost-sharing games [3] modelling the
sharing of airport facilities or telephone systems, drilling for
oil, cooperative farming, and fishing.

As motivating example, we consider a multi-retailer in-
ventory application. The players, namely different compet-
ing retailers, share a common warehouse (or supplier) and
cannot hold any private inventory from stage to stage, i.e.,
inventory left in excess at one stage is no longer utilizable
in the future. The latter fact prevents the retailers from
having large replenishments and stocks. Such a situation
occurs when dealing with perishable goods as, for instance,
the newspapers. The players aim at coordinating joint or-
ders thus to share fixed transportation costs. As typical of
repeated games, the retailers act myopically, that is, at each
stage, they choose their best strategy on the basis of a payoff
defined on single stage.

The rest of the paper is organized as follows. In Section 2,
we develop the game theoretic model of the inventory system
and formally state the problem. In Section 3, we prove that
the desired Pareto optimal Nash equilibrium exists and is
unique. In Section 4 we prove some stability properties of
the the Pareto optimal Nash equilibria. In Section 5, we
design a distributed protocol that allows the convergence
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of the strategies to the Pareto optimal Nash equilibrium.
In Section 6, we analyze the speed of convergence of the
protocol. In Section 7, we introduce a numerical example.
Finally, in Section 8, we draw some conclusions.

2. THE INVENTORY GAME
In this section, we introduce the application, chosen from

the inventory field, which motivates our study. However,
the obtained results may also apply to other examples where
strategies are binary and have a threshold structure. Here-
after, we indicate with the same symbol i both the generic
player and the associated index. We consider a set of n

players Γ = {1, . . . , n} where each player may exchange
information only with a subset of neighbor players. More
formally, we assume that the set Γ induces a single compo-
nent graph G = (Γ, E) whose edgeset E includes all the non
oriented couples (i, j) of players that exchange information
with each other. In this context, we define the neighbor-
hood of a player i the set Ni = {j : (i, j) ∈ E} ∪ {i}.
At each stage k, each player i faces a customer demand
and must decide whether to fulfill it or to pay a penalty pi

(see it, for instance, as a missed revenue); the unfilled de-
mand is lost. Differently, we can review penalty pi as the
cost incurred by the player when, rather than participating
in the game, it fulfills the demand by turning to a differ-
ent supplier. We call active player the one who decides to
meet the demand. The active players receive the items re-
quired by their customer from the common warehouse and
equally divide a fixed transportation cost K. More for-
mally, we define the function si(k) ∈ Si = {0, 1} as the
strategy of player i, for each player i ∈ Γ. We indicate
s(k) = {s1(k), . . . , sn(k)} as the vector of the players’ strate-
gies and s−i = {s1(k), . . . , si−1(k), si+1(k), . . . , sn(k)} as the
vector of strategies of players j �= i. At stage k, si(k) is equal
to 1 if player i meets the demand and equal to 0 otherwise.
Then si(k) has the following payoff defined on single stage

Ji(si(k), s−i(k)) =
K

1+‖s
−i(k)‖1

si(k) + (1 − si(k))pi,
(1)

where ‖s−i(k)‖1 is trivially equal to the number of active
players other than i. At stage k, player i processes two types
of public information: pre-decision information, xi(k), re-
ceived from the neighbor players in Ni, and post-decision in-
formation, zi(k), transmitted to the neighbor players. Player
i selects its strategy si(k) = µi(xi(k)) on the basis of the
only pre-decision information. The information evolves ac-
cording to a distributed protocol Π = {φi, hi, i ∈ Γ} defined
by the following dynamic equations:

xi(k + 1) = φi(zj(k) for all j ∈ Ni) (2)

zi(k) = hi(si(k), si(k − 1), xi(k)), (3)

where the functions φi(·) and hi(·) are to be designed in
Section 5. In the above context, complete information means
that each player i knows the other players’ strategies s−i(k)
and optimizes repeatedly over stages its payoff (1) choosing
as best response the following threshold strategy

si(k) = (‖s−i(k)‖1 ≥ li), (4)

where the threshold li is equal to K
pi

−1 and (‖s−i(k)‖1 ≥ li)

is a boolean function that returns 1 if its argument holds
true, 0 otherwise. Incomplete information means that player i

may only estimate the number ‖s−i(k)‖1 of all other active

players. In the rest of the paper, being χ̂i(k) such an esti-
mate, the best response strategy (4) slightly modifies as

si(k) = (χ̂i(k) ≥ li). (5)

We consider the following problem.
Problem Given the n-player repeated inventory game with

binary strategies si(k) = {0, 1} and payoffs (1), determine
a distributed protocol Π = {φ, hi i ∈ Γ} as in (2), (3) that
allows the convergence of strategies (5) to a Pareto optimal
Nash equilibrium s∗, if exists.

Observe that all results presented in the rest of the paper
require only that the strategies are binary and have a thresh-
old structure. Therefore the structure of the payoff can be
relaxed as long as the best responses maintain a threshold
structure as defined in (4)-(5).

3. A PARETO OPTIMAL NASH EQUILIB-

RIUM
In this section, we prove that a Pareto optimal Nash equi-

librium exists. To this end, here and in the rest of the paper,
we make, without loss of generality, the following assump-
tions:

Assumption 1
The set Γ of players is ordered so that l1 ≤ l2 ≤ . . . ≤ ln.

Assumption 2
There may exist other players i = n+1, n+2, . . . not included
in Γ, all of them with thresholds li = ∞.

Assumption 3
The players in the empty subset of Γ have thresholds li =
−∞.

The last assumption is obviously artificial, but simplifies
the proofs of most results in the rest of the paper. Indeed,
such an assumption allows us to prove the theorems without
the necessity of introducing different arguments in the case
when the set of active players is empty.

3.1 Existence of Nash Equilibria
In a Nash equilibrium s� = {s�

1, . . . , s�
n}, each player i

selects a strategy s�
i such that

Ji(s
�
i , s

�
−i) ≤ Ji(si, s

�
−i) for all si ∈ Si, i ∈ Γ. (6)

Hence, from (4), we obtain the following equilibrium condi-
tions

s
�
i = (‖s�

−i‖1 ≥ li), for all i ∈ Γ. (7)

On the basis of (7), we can state the following necessary
conditions on the existence of a Nash Equilibrium.

Lemma 1
If s� is a Nash equilibrium then:

i) if player i is active, namely s�
i = 1, then all the preced-

ing players 1, . . . , i − 1 are also active, i.e., s�
1 = . . . =

s�
i−1 = 1;

ii) if player i is not active, namely s�
i = 0, then neither all

successive players i + 1, . . . , n are active, i.e., s�
i+1 =

. . . = s�
n = 0.

Let us now introduce two definitions. Definition A set
C ⊆ Γ is compatible if li ≤ |C| − 1 for all i ∈ C.

In a compatible set C, each player finds convenient to
meet the demand if all other players in C do the same.
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Definition A set C ⊆ Γ of cardinality |C| = r is complete
if it contains all the first r players, with r ≥ 0, i.e., C =
{1, . . . , r}.

Note that C = ∅ is both a compatible and a complete set.
Theorem 1

The vector of strategies s�, defined as

s
�
i =

{
1 if i ∈ C

0 otherwise
(8)

is a Nash equilibrium if and only if the set C = {1, . . . , r} ⊆
Γ is both compatible and complete and the following condi-
tion holds

lr+1 > r. (9)

From Theorem 1 we derive the following corollary.
Corollary 1

(Existence of Nash equilibria) There always exists a Nash
equilibrium

s
�
i =

{
1 if i ∈ C

0 otherwise
(10)

where C is the maximal compatible set.
Observe that, if C is the maximal compatible set, it triv-

ially holds

r = |C| = max
λ

{λ ∈ {1, . . . , n} : lλ < λ} . (11)

3.2 Pareto Optimal Nash equilibrium associ-
ated to C

A vector of strategies ŝ = {ŝ1, . . . , ŝn} is Pareto optimal
if there is no other vector of strategies s such that

Ji(si, s−i) ≤ Ji(ŝi, ŝ−i) for all i ∈ Γ, (12)

where the inequality is satisfied by at least one player.
Theorem 2

Let s� be the Nash equilibrium associated to the maximal
compatible set C. If pi �=

K

|C|
for all i ∈ C, then

• Pareto optimality. The vector of strategies s� is Pareto
optimal;

• Uniqueness. The vector of strategies s� is the unique
Pareto optimal Nash equilibrium.

Observe that if and only if pi = K

|C|
for all i, there exists

two Pareto optimal Nash equilibria with equal payoff. They
are associated respectively to the maximal compatible set
C and to the empty set. In the rest of the paper, only the
equilibrium s� associated to the maximal compatible set C

will be called the Pareto optimal Nash equilibrium.

4. STABILITY OF NASH EQUILIBRIA
In this section, we prove the stability of the Pareto optimal

Nash equilibrium under the hypothesis that at each stage
k, each player i knows the number of active players at the
previous stage and then sets χ̂i(k) = ‖s−i(k − 1)‖1. On
the basis of this preliminary analysis, in the next section,
we will be able to study the convergence properties of the
repeated inventory game. Under the above hypothesis on
χ̂i(k), the best response strategy (5) yields the following
dynamic model

si(k) = (‖s−i(k − 1)‖1 ≥ li) for all i ∈ Γ. (13)

Given an equilibrium s� and the associated complete com-
patible set C = {1, . . . , r}, we define a positive (negative)
perturbation at stage 0, the vector ∆s(0) = s(0) − s� ≥ 0
(∆s(0) ≤ 0). In other words, a positive (negative) per-
turbation is a change of strategies of a subset of players
P = {i ∈ Γ \ C : ∆si(0) = 1} (P = {i ∈ C : ∆si(0) =
−1}), called perturbed set. The cardinality of the perturbed
set |P | = ‖∆s(0)‖1 is the number of players that join the
set C (leave the set C). In addition, a positive (negative)
perturbation ∆s(0) is maximal when ‖∆s(0)‖1 = |Γ \ C|,
(‖∆s(0)‖1 = |C|). In this last case, all the players in Γ \ C,
(C) change strategy.

A Nash equilibrium s� is called stable with respect to pos-
itive perturbations if there exists a scalar δ > 0 and k̄ > 0
such that if ‖∆s(0)‖1 ≤ δ, then sk = s� for all k ≥ k̄. Analo-
gously a Nash equilibrium s� is called maximally stable with
respect to positive perturbations if it is stable with respect
to the maximal positive perturbation ∆s(0).

In the following, we introduce some theorems concerning
the stability of Nash equilibria.

Theorem 3
Consider a Nash equilibrium s� associated to a set C =
{1, . . . , r}. The vector of strategies s� is stable with respect
to positive perturbations ∆s(0) : ||∆s(0)||1 = j − r − 1 if all
players i �∈ C, with r < i ≤ j, have thresholds li ≥ i. In
addition, if there exists a player ĵ = arg min{i ∈ Γ\C : li <

i}. The vector of strategies s� is not stable with respect to

positive perturbations ∆s(0) : ||∆s(0)||1 = ĵ − r.
It is immediate to observe that, when player j exists, it

must be j ≥ r + 2, since it must necessarily be lr+1 ≥ r + 1
from condition (9) of Theorem 1. In addition, lj = j − 1
since for all i such that r < i < j there holds li ≥ i by
minimality of j.

Given a Nash equilibrium s� and assuming the existence
of a player j = arg min{i ∈ Γ \ C : li < i}, Theorem 3
establishes that s� is stable with respect to positive pertur-
bation ∆s(0) if ||∆s(0)||1 < j − r − 1 and is not stable if
||∆s(0)||1 ≥ j − r.

Assuming that there exists player j = arg min{i ∈ Γ \C :
li < i}, the following theorem addresses the case ||∆s(0)||1 =
j−r−1. It must be noted that if player j does not exist, re-
sults from Theorem 3 apply and stability of the equilibrium
is guaranteed.

Theorem 4
Consider a Nash equilibrium s� associated to a set C =
{1, . . . , r}. Assume that there exists a player j = arg min{i ∈

Γ\C : li < i} and let î = arg min{i ∈ Γ\C : li = j−1}. The
vector of strategies s� is not stable with respect to positive
perturbations ∆s(0) : ||∆s(0)||1 = j − r − 1 iff at least one
of the following conditions holds:
i) there exist players j+1, . . . , 2j− î−1 with threshold equal
to j − 1,
ii) there exist players j + 1, . . . , 2j − î.

Now, we specialize the previous theorems to the Pareto
optimal Nash equilibrium.

Corollary 2
The unique Pareto optimal Nash equilibrium is maximally
stable with respect to positive perturbations.

Let us conclude this section remarking that the Pareto
optimal Nash equilibrium may not be globally stable with
respect to negative perturbations. It is straightforward to
prove this fact when, e.g., several Nash equilibria exist.
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5. A CONSENSUS PROTOCOL
In this section, we exploit the stability properties intro-

duced in the previous section to design a protocol Π̂ =
{φi, hi, i ∈ Γ} that allows the distributed convergence of
the strategies to the Pareto optimal Nash equilibrium. Con-
sider the graph G induced by the set of players Γ as defined
in Section 2. Let L be the Laplacian matrix of G and use
Lij and Li• to denote respectively the i, j entry and the i-

th row of L. Let us consider the almost-linear protocol Π̂
defined by the following dynamics:

xi(k + 1) = zi(k) + α
∑

j∈Ni

Lijzj(k) + δT (k) (14)

zi(k) = xi(k) + si(k) − si(k − 1) for all k ≥ 1(15)

zi(0) = xi(0) = si(0) (16)

where α is a negative scalar such that the eigenvalues of the
matrix (I + αL) are inside the unit circle, except for the
largest one that is equal to one. We will show that the pre-
decision information xi(k) in (14) is a local estimate of the
percentage of the active players at each stage k− 1. Almost
linearity is due to the non linear correcting term δT (k) acting
any T stages in (14). This term describes the use of linear
predictors, which will be discussed in Section 6. Through-
out this section, we disregard this term by assuming δT (k)
constantly equal to 0. The post-decision information zi(k)
in (15) updates the estimate in the light of the strategy
si(k).
In the following we introduce two lemmas. The first one
states that, at each stage k, the average value Avg(x(k)) =∑

i
xi(k)

n
is the percentage of active players at the previous

stage k − 1. The second lemma states that if no player
changes its strategy for a sufficient number of stages the
pre-decision information xi(k) converges to the Avg(x(k)).

For this last reason, protocol Π̂ may also be referred to as
an average consensus protocol (see, e.g., [2]).
Now, let us initially rewrite the dynamic of the pre-decision
information (14) for k ≥ 1 as

x(k + 1) = (I + αL)(x(k) + s(k) − s(k − 1)) =

s(k) +
∑k

r=0(I + αL)k−rαLs(r).
(17)

To obtain the second term of (17) we substitute in (14) the
value of zi(k) in (15). Then we observe that from (14) it
holds x(1) = s(0)+αLs(0) hence, by induction, if we assume

x(k) = s(k − 1) + α
∑k−1

r=0 (I + αL)(k−1)−rLs(r), we obtain
the last term of (17).

Lemma 2
Given the dynamic of the pre-decision and the post-decision
information vectors as described in (14), (15) and (16) at
each stage k, the following condition holds

Avg(x(k)) =
‖x(k)‖1

n
=

‖s(k − 1)‖1

n
. (18)

Lemma 3
Consider the dynamic of the pre-decision and the post-decision
information vectors as described in (14), (15) and (16) and
assume that no player changes strategy from stage r on, then
there exists a finite integer r̂ ≥ 1 such that, for player i, it

holds xi(r + r̂) = ‖s(r+r̂−1)‖1

n
= ‖s(r)‖1

n
, i.e., xi(r + r̂) is

equal to the percentage of active players at stage r.

In the assumption that no player changes strategy from a
generic stage r on, the above arguments guarantee that each

player i may estimate the percentage of the active players in
a finite number of stages T . Lemma 3 shows that T ≤ r̂− r.
It will be shown in Section 6, that T may be less than r̂ − r

in presence of linear predictors.
Then, at stage r + T player i estimates the number of all
other active players as

χi(r + T ) = ‖s−i(r + T − 1)‖ = ‖s−i(r)‖
= nxi(r + T ) − si(r).

(19)

Now, assume that players can change strategy only at stages
k̂ = qT , q = 0, 1, 2, . . .. At stages k̂ ≥ 1, we can general-
ize (19) as χi(k̂) = nxi(k̂) − si(k̂ − T ). At stage k̂ = 0
let the players estimate all the other players active, i.e.,
χi(0) = n − 1.

Theorem 5
The average consensus protocol Π̂ defined in (14), (15) and
(16) allows the best response strategy (5) to converge in
(n − 1)T stages to the unique Pareto optimal Nash equilib-
rium.

Note that the convergence properties of the protocol es-
tablished in the previous theorem still hold for any initial
estimate zi(0) in (16) that is an upper bound of the |C|.

6. A-PRIORI INFORMATION AND SPEED

OF CONVERGENCE OF THE PROTO-

COL
In this section, we determine the values of both α and T as

functions of the players’ computation capabilities and their
knowledge about the structure of graph G. We show that T

grows linearly with n when players can use linear predictors
and discuss the non linear correcting term δT (k) in (14). Dif-
ferently, in absence of linear predictors (δT (k) = 0 for all k)
the players wait that the pre-decision information converges
to the desired percentage of currently active players; the
number of stages T may become proportional to n2log(n)
or even to n3log(n) depending on the knowledge that play-
ers have on the eigenvalues of the Laplacian matrix L.
Throughout this section we recall the hypotheses of Lemma 3,
i.e., players are interested in determining the value of Avg(s(r)) =
Avg(x(r + 1)) and do not change strategy from stage r on.

6.1 Linear Predictors
With focus on (14) the non-linear correcting term must i)

compensate the linear dynamics −zi(k)− α
∑

j∈Ni
Lijzj(k)

and ii) correct the estimate of the percentage of active play-
ers. For doing so, the non linear correction may take the
form

δT (k) = −zi(k) − α
∑

j∈Ni
Lijzj(k)

+ ρ(xi(k), xi(k − 1), . . . , xi(k − T )).
(20)

Now, we show that it is possible to design ρ linearly as fol-
lows

ρ(xi(r + T ), xi(r + T − 1), . . . , xi(r)) =∑n−1
k=0 γkxi(r + k),

(21)

where γk are the coefficients of the characteristic polynomial
of the matrix I + αL and therefore depend on the structure
of graph G.
The next theorem shows that each player i may determine
the value of Avg(x(r + 1)) in n − 1 stages.
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Theorem 6
Given the protocol Π̂ as in (14), (15) and (16) the number
of stages necessary for the generic player to estimate the

percentage of active players ‖s(k)‖1

n
is T ≤ n−1, if the players

know the characteristic polynomial of the matrix I + αL.
An immediate consequence of the above theorem is that,

in the worst case, no other distributed protocol may deter-

mine the number of active players faster than Π̂, provided
that players know the characteristic polynomial of the ma-
trix I + αL. If G is a path graph, the value of T can never
be less than n, since information takes n− 1 stages to prop-
agate end to end all over the path.
Now, consider the case in which the players have no knowl-
edge on the structure of the graph G, then the values of the
parameters γk cannot be a priori fixed. The next theorem
proves that 2n stages are sufficient for the generic player to
estimate Avg(x(r + 1)).

Theorem 7

Given the protocol Π̂ as in (14), (15) and (16), the num-
ber of stages necessary for the generic player to estimate the

percentage of active players ‖s(k)‖1

n
is T ≤ 2n.

6.2 No Predictors
We now compare the previous results with the ones ob-

tainable when no predictors are used.
Lemma 3 states that, in any case, the pre-decision infor-
mation converges to the desired average value Avg(s(r)) =
Avg(x(r + 1)). We are then interested in deriving after how
many stages a player can determine Avg(x(r+1)) by round-
ing the pre-decision information currently available. To this
end let us consider the following autonomous discrete time
system of order n

x(k + 1) = (I + αL)x(k). (22)

System (22) describes the evolution of the pre-decision in-
formation when players do not change their strategies from
stage r on. Actually, equation (22) is trivially equivalent
to (17) when the players’ strategies are disregarded. Start-
ing from any initial state x(r +1) the system (22) converges
to Avg(x(r + 1)). Then, observe thatAvg(x(r + 1)) must be
equal to a multiple of 1

n
due to its physical meaning. As a

consequence, we could choose T as equal to the minimal k

such that |xi(k+r+1)−Avg(x(r+1))| < 1
2n

for each player
i and let the players determining Avg(x(r + 1)) by simply
rounding xi(k + r + 1) to its closest multiple of 1

n
.

To determine the value of T , consider first the modal de-
composition of the undriven response of system (22) given
by

x(k + r + 1) = (I + αL)k
x(r + 1) =

n∑

i=1

βiλ̄
k
i vi,

where, for i = 1, . . . , n, λ̄i is an eigenvalue of I + αL, vi is
the associate eigenvector, and βi depends on the initial state
according to

x(r + 1) =

n∑

i=1

βivi.

Note that since the smallest eigenvalue of L is always λ1 = 0,
then λ̄1 = 1 and hence β1v1 = Avg(x(r + 1)). Note also
that I + αL is symmetric then, due to the spectral theorem

for Hermitian matrices, all its eigenvectors are ortonormal.
Hence, |βi| = ‖v′

ix(r + 1)‖∞ ≤ ‖vi‖∞‖x(r + 1)‖∞ ≤ 1 since
the initial state x(r + 1) satisfies ‖x(r + 1)‖∞ ≤ 1. We can
now state that (subscript ∞ is dropped)

‖x(k + r + 1) − Avg(x(r + 1))‖ =
‖x(k + r + 1) − β1v1‖ =
‖

∑n

i=2 λ̄k
i βivi‖ ≤

∑n

i=2 ‖λ̄
k
i βivi‖ ≤

∑n

i=2 |λ̄
k
i ||βi|‖vi‖ ≤

≤ |λ̂|k
∑n

i=2 ‖vi‖
2‖x(r + 1)‖ ≤ |λ̂|k(n − 1)

where λ̂ is the eigenvalue of I +αL with the second greatest
absolute value. Indeed, the eigenvalue of I + αL with the
greatest absolute value is λ̄1.
Given the above arguments a conservative condition on T is
to impose |λ̂|T (n − 1) < 1

2n
, from which we obtain

T ≥
−log(2(n − 1)n)

log(|λ̂|)
+ 1. (23)

In condition (23) T depends indirectly on the value of

α through the eigenvalue λ̂. In the following we discuss
how to choose α in order to minimize T and, at the same
time, to guarantee the stability of system (22). In (23), T is

minimized if |λ̂| is minimum, since |λ̂| < 1 for system (22)

to be stable. Note that |λ̂| is equal

|λ̂| = max {|1 + αλn| , |1 + αλ2|} (24)

The optimal α� is then the solution of the following equa-
tion

α� =

argminα |λ̂| = argminα max {|1 + αλn| , |1 + αλ2|}
(25)

It is easy to show that the solutions of the above equation
are

α
� = −

2

λ2 + λn

(26)

λ̂
� = 1 −

2λ2

λ2 + λn

. (27)

Consider now the stability of system (22). System (22) is
stable if |λ̄i| < 1, i = 2, . . . , n, which in turns implies that
|1+αλi| < 1. Since α < 0 and λi > 0, the latter condition is
certainly satisfied if and only if 1+αλn > −1. From this last
inequality, system (22) is stable if and only if − 2

λn
< α < 0.

In this context, note that − 2
λn

< α� < 0.
Let us now introduce the following lemma that collects well-
known properties on the eigenvalues λ2 and λn that turn
useful in the rest of the section.

Lemma 4
Let G1 = (Γ, E1) and G2 = (Γ, E2) be two connected graphs
on the same set of vertices Γ, and let λ2(G1) and λ2(G2) the
second smallest eigenvalues of the Laplacian matrices asso-
ciated to G1 and G2, respectively. Analogously, let λn(G1)
and λn(G2) the greatest eigenvalues of the Laplacian matri-
ces associated to G1 and G2, respectively. Then, the follow-
ing properties hold

1. λ2(G1) ≤ λ2(G2), if E1 ⊆ E2;

2. λn(G1) ≤ λn(G2), if E1 ⊆ E2;

3. λn(G1) = λn(G2) = n, if G1 is complete graph;

4. λ2(G1) = 2(1 − cos(π
n
)), if G1 is a path graph;
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Table 1: Players’ thresholds and initial strategies
players 1 2 3 4 5 6 7 8

li 5 ∞ ∞ ∞ 2 1 4 1
si(0) 1 0 0 0 1 1 1 1

5. λn(G1) = 2(1 + cos(π
n
)), if G1 is a path graph.

An immediate consequence of the previous lemma is that,
if players know λ2 and λn and the graph G is complete,
then α� = − 1

n
, λ̂� = 0, and from (23) we have T = 1,

whereas if G is a path graph, α� = − 1
2
, λ̂� = cos(π

n
), and

hence T → 2n2log(2(n−1)n)

π2 + 1 as n increases. Differently, if
players know neither the structure of the graph G nor the
eigenvalues λ2 and λn. To guarantee the stability of system
(22), condition − 2

λn
< α < 0 must hold for any possible

value of λn. By Lemma 4, the largest λn occurs when G is
a complete graph, where λn = n. Then, α must be chosen
within the interval − 2

n
< α < 0. Now, consider a path

graph. The fastest convergence occurs for the greatest |α|,

and when α → − 2
n

we obtain T → n3log(2(n−1)n)

2π2 + 1 as n

increases.

7. SIMULATION RESULTS
In this section we provide a numerical example and some

simulation results for a set Γ of 8 players implementing the
designed protocol with and without predictors. We will see
that in both cases the strategies converge to the Pareto opti-
mal Nash equilibrium though with different speed of conver-
gence. Fig. 1 reports the induced graph G, whereas Tab. 7
lists the players’ thresholds li and the initial strategies si(0).
Note that at k = 0 the strategies are not in the Pareto op-
timal Nash equilibrium s∗ = {0, 0, 0, 0, 1, 1, 0, 1}.

v5 v7 

v8 

v3 

v1 

v2 

v6 

v4 

Figure 1: An example of graph G for a set Γ of 8
players

Fig. 2 displays the evolution of the pre-decision informa-
tion according the protocol Π̂ defined in (14)-(16) when the
players use the linear predictors as in (20)-(21). Fig. 3 shows
the evolution of the pre-decision information when the linear
predictors are not present.
Both Fig. 2 and Fig. 3 show that at k = 0 players 1 − 5 −
6− 7− 8 are active. At stage k = T all the players estimate
the number of active players as equal to 5. Then, player 1
changes strategy from s1(T − 1) = 1 to s1(T ) = 0 since its
estimate is lower than his corresponding threshold l1 = 5

(circles in Fig. 2-3). At k = 2T , the players’ new estimate
is 4 and player 7 changes strategy, too. Finally, at stage
k = 3T , the players strategies converge to the Pareto opti-
mal Nash equilibrium with ‖s�‖1 = 3.
The difference between the two figures is that, in Fig. 2 the
value of T is 15 whereas in Fig. 3 the value of T is 80.
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Figure 2: Evolution of nxi(k) in presence of linear
predictors as in (20)-(21). The circles indicate when
a player changes strategy.

0 50 100 150 200
−2

0

2

4

6

8

l
1
=1

n
x
1

k

0 50 100 150 200
−2

0

2

4

6

8

l
2
=1

n
x
2

k

0 50 100 150 200
−2

0

2

4

6

8

l
3
=2

n
x
3

k

0 50 100 150 200
−2

0

2

4

6

8

l
4
=4

n
x
4

k

0 50 100 150 200
−2

0

2

4

6

8

l
5
=5

n
x
5

k

0 50 100 150 200
−2

0

2

4

6

8

l
6
=∞

n
x
6

k

0 50 100 150 200
−2

0

2

4

6

8

l
7
=∞

n
x
7

k

0 50 100 150 200
−2

0

2

4

6

8

l
8
=∞

n
x
8

k

Figure 3: Evolution of nxi(k) in absence of linear pre-
dictors. The circles indicate when a player changes
strategy.

8. CONCLUSION
In this paper, we have introduced a consensus protocol

to achieve distributed convergence to Pareto optimal Nash
equilibria, for a class of repeated non cooperative games
under incomplete information. We have considered games
with monotonic payoffs and we have specialized them to
multi-retailer inventory problems, where transportation or
set up costs are shared among all retailers, reordering from
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a common warehouse. The main results concern: i) the
existence and the stability of Nash equilibria, ii) the struc-
ture of the consensus protocol and its convergence proper-
ties. Results may also be extended to externality games,
pollution/congestion games, and cost-sharing games, with
the only constraint of being the strategies binary and with
threshold structure. Further work in this direction would in-
volve the study of information protocols and decision mech-
anisms in presence of stochastic processes.
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