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ABSTRACT

There are a group of problems in networking that can most natu-

rally be described as optimization problems (network design, traf-
fic engineering, etc.). There has been a great deal of research de-

voted to solving these problems, but this research has been con-
centrated on intra-domain problems where one network operator
has complete information and control. An emerging field is inter-

domain engineering, for instance, traffic engineering between large
autonomous networks. Extending intra-domain optimization tech-

niques to inter-domain problems is often impossible without the
measurements and control available within a domain.

This paper presents an alternative: we propose a method for traf-
fic engineering that doesn’t require sharing of important informa-
tion across domains. The method extends the idea of genetic al-

gorithms to allow symbiotic evolution between two parties. Both
parties may improve their performance without revealing their data,

other than what would be easily observed in any case. We show the
method provides large reductions in network congestion, close to

the optimal shortest path routing across a pair of networks. The
results are highly robust to measurement noise, the method is very
flexible, and it can be applied using existing routing.

1. INTRODUCTION
Global optimization is the natural approach to many problems in

networking. For instance network design, traffic engineering, and
routing are all optimization problems. We typically seek the solu-

tion with the global minimum cost (where cost may be an abstract
measure).

However, in the Internet there is no one authority which can
perform such an optimization. The Internet is broken into many

Autonomous Systems (ASes), each of which is managed indepen-
dently, and so any optimization must be distributed. Furthermore,
these individual sub-networks are often unwilling to co-operate,

and so cannot attain the global optimum. For these reasons many
problems in network are treated as game-theory problems with self-

ish participants, each trying to optimize for their own benefit alone.
Games with selfish participants have been often studied, for ex-

ample, the Prisoner’s Dilemma [1]. In this game, the prisoners
could maximize their joint beneficial outcome if they co-operate,
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but the game is such that if one prisoner acts selfishly (and con-
fesses), he can minimize losses. If both confess, their fate is sealed.
Unfortunately (for the prisoners, if not society) they cannot trust

each other, and so they will not co-operate, and the mutual outcome
is then the worst possible (for the prisoners).

These games were not invented for the benefit of criminals await-
ing prosecution, but rather because many situations in business, and

in particular in network management can be modelled the same
way. Corporations are often assumed to follow a selfish model (as
a result of their requirement to return benefit to their stock holders),

and hence network operators are likewise assumed to follow such a
model.

The key point at which we differ from the literature is that we ar-
gue that network operators are not "selfish". Rather, they are often

willing to co-operate as long as they can be assured they will not be
exploited. For instance current Internet routing relies on a certain
amount of co-operation to ensure smooth operation. The Prisoner’s

Dilemma is easily resolved if both prisoners can trust each other —
neither confesses and they’re released. Likewise, mutually trust-

ing network operators are often willing to co-operate to improve
performance.

Attaining trust is non-trivial. Trust relationships between indi-
viduals are not sufficient, as individuals change jobs, and responsi-
bilities. We need trust between corporate entities. This can some-

times be achieved through intense legal negotiation, but it seems
unlikely that flexible, multilateral agreements can be achieved in

this manner. Another approach is to have an independent third
party that acts as an arbiter. Such approaches also require complex

negotiation, and/or careful legislation. Again, flexibility is lacking.
This paper describes an alternative based in part on the idea

of privacy-preserving distributed computation. Such computation

can be used to create methods for joint optimization between net-
works, without the type of “risky” co-operation that most previ-

ous methods of joint optimization require. We focus here on the
inter-domain Traffic Engineering (TE) problem. In particular, our

method is aimed at allowing TE to proceed without the providers
sharing information that they consider private. This prevents the
partners in the optimization exploiting information gained about its

competitors, prevents gaming of the situation, and provides a basis
for trust.

We exploit two key ideas: firstly, we use an optimization heuris-
tic based on the metaphor of Darwinian evolution, commonly called

a Genetic Algorithm (GA). GAs proceed by describing the opti-
mization variables using a series of “genes”. A population is cre-
ated, allowed to compete, and the most successful are allowed to

reproduce. We call our approach GATEway (Genetic Algorithm
Traffic Engineering). GAs are ideally suited to cases where the ob-

jective function is hard to compute, and we use this here by extend-
ing the metaphor to allow symbiosis between pairs of providers.
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In nature, symbiotic organisms jointly evolve, but they don’t need

to share genetic material to do so. Analogously, GATEway allows
two providers to optimize their routing without sharing the details

of their own networks (their genes). Despite this secrecy, we show
that on Rocketfuel networks GATEway dramatically improves per-
formance as compared to existing provider routing, and selfish rout-

ing procedures. In fact, GATEway provides results within 5% of
a reasonable lower-bound on the possible performance, and about

40% better than closest equivalent selfish routing.
As in biology, some information sharing is still required even

in the above approach, primarily in the form of fitness functions.
The fitness of each member of the population must be evaluated
(in biology this would be implicit in whether individuals survive to

breed). We then use techniques from the secure distributed com-
putation community to substantially reduce even this modicum of

information sharing. This allows the above optimization to be con-
ducted without leaking any direct information about the providers,

for instance, they do not need to share topology, link capacity, in-
ternal traffic, or routing details. In fact, in the strictest version of
GATEway, the providers share almost no information at all, though

there is a penalty to be paid for such parsimony. Ironically, despite
sharing less information, the communication cost increases.

Applying symbiosis to GAs represents a new approach to secure
distributed computation. Previously, many of the algorithms ap-

plied for secure distributed computation have been based on Yao’s
two-party protocol, which can compute any polynomial time func-

tion. We show here that we can find approximate solutions to NP-
hard problems. The problem we consider here is quite specific, but
there are many other fields where similar issues are encountered.

Our approach is quite generic, and so may be applicable to other
problems both in network engineering, and outside.

We further address some of the practical problems of using such
a protocol. We demonstrate the flexibility of the approach by us-

ing alternative optimization objectives, and we also find that the
method is highly insensitive to measurement noise. Additionally,
we illustrate how this type of traffic engineering could be imple-

mented using today’s technology, demonstrating that such an ap-
proach is practical within today’s networks.

2. BACKGROUND AND RELATED WORK

2.1 Traffic Engineering
There are many tasks in network operations which fall under the

heading of optimization. In this paper we shall concentrate on Traf-
fic Engineering (TE), the process of balancing one’s traffic across
the existing links in a network. One may think of this as optimizing

the routing parameters of a network, such that the resulting rout-
ing is “beneficial” in some sense. The routing parameters deter-

mine, for each source-destination pair, the fraction of traffic going
on different paths from the source to the destination. Many TE

techniques have been presented (for examples see [2–15]). The
majority of the TE literature concerns intra-domain TE. That is,
optimization of routing parameters within a single network. There

are many approaches to this problem, though the two most preva-
lent are given below.

Explicit path where the traffic is arbitrarily routed to satisfy the re-
sults of a multi-commodity flow optimization [16, Chapter 17]. Ex-

plicit path routing is generally instantiated through MPLS (Multi-
Protocol Label Switching) or IP-in-IP encapsulation [17].
Shortest-path where the routing uses shortest-paths, but the link

weights are arbitrarily chosen as the result of some optimization.
Shortest path routing is appealing because it can be implemented

easily using today’s most commonly used Interior Gateway Proto-
cols (IGPs) In these protocols each link is associated with a positive

weight, and path length is defined as the sum of the weights of all

the links on that path. Traffic is routed along the shortest paths. In

cases of ties the flow is generally split roughly evenly across Mul-
tiple Equal-Cost Paths (MECP).

Explicit path optimization has less constraints, and therefore must
achieve a superior solution to the shortest-path optimization. Naively,
one supposes that explicit path optimization will perform signifi-

cantly better. However, there is now substantial literature support-
ing shortest-path optimization. It has been shown that (for realistic

networks) one can get within a few percent of the performance of
explicit path routing [6], even where the inputs contain prediction

or inference errors [13, 15]. What’s more shortest-path optimiza-
tion can choose sets of weights that perform well over a range of
traffic (say the variations over the course of a day) [9, 15] or under

link failures [14, 18, 19].
Either technique is appropriate within a single network, but both

have flaws for inter-domain TE, a topic of recent interest [17, 20–
28]. The Internet has a broad two-level hierarchy in its routing, sep-

arating intra-domain routing from inter-domain routing. BGPv4
(the Border Gateway Protocol version 4) is the de facto standard
for inter-domain routing. When considering inter-domain routing,

one must consider the interactions between IGP and BGP [29, 30].
Inter-domain MPLS solutions could in theory avoid some of the

problems of interaction, but there are still practical complexities
in using MPLS in inter-domain routing [26, 27]. Shortest-paths

routing cannot be used because it might violate BGP policies. For
example, peering agreements typically prohibit transit traffic (i.e.

traffic that use backbone B to transit between two points on back-
bone A), but shortest-path routing allows transit.
There is another problem: traditional traffic engineering algo-

rithms require complete topology and traffic information from all
networks. ISPs are typically unwilling to share information such as

their topology, link capacities, internal traffic volumes, and routing
policies, particularly with potential competitors. As noted in [27]

optimization methods which do not have complete information of-
ten fall short in performance. Similarly [31] shows that if ISPs co-
operate in determining inter-domain routing they can achieve better

performance. Can we still attain this improved performance if the
ISPs will not share information? It is this problem that we concen-

trate on here. How may we perform inter-domain traffic engineer-
ing without sharing detailed topological and traffic information?

This is the major difference between our work and the majority of
the literature on TE.
The primary problem we consider here is a connected pair of

ISPs who wish to optimize the routing of traffic on their joint net-
work. We do not separate the problem into separate intra- and inter-

domain TE problems, but regard the joint TE problem. The most
closely related works to our own are [31, 32]. Our results agree

completely with [31] in that ISPs may gain much larger benefits
from TE if they cooperate. We attempt to go further in providing
secrecy for the parties. In [31] the providers must reveal opaque

preference classes per flow. These certainly hide a great deal of
the internal information of a network, but still open the network to

indirect inference about its properties if not very carefully imple-
mented. We aim to show just how little information needs to be

shared to perform a joint optimization, and the tradeoffs between
sharing information and performance.
GATEway is pragmatic in the sense that we aim to solve the

problem in a way implementable using current routing protocols
without modification. The primary constraint this applies to our

work is that we use BGP for inter-domain routing. BGP provides
quite good means to control outgoing traffic, but only limitedmeans

to control an ISP’s incoming traffic. However, if two network op-
erators jointly control their outgoing traffic the effect is control in
both directions. In [31] this is achieved through negotiation of the
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exit points. We shall also aim to control exit points for traffic,

though the choices will only be negotiated implicitly. We will refer
to the type of routing solution we consider as pinned-exit routing,

because the ISPs pin the exit point of particular flows. However, we
will use shortest-path routing within an ISP, and we will not allow
path sharing other than across MECPs.

2.2 Privacy Preserving Computation
The problem we consider comes under the heading of secure

distributed computation, i.e. computing some function of several

pieces of data without explicitly combining data (and thus revealing
it). Another term used to describe this would be privacy-preserving

multiparty computation (we use the terms synonymously).
The area of secure distributed computation has been heavily in-

fluenced by Yao’s two party protocol [33, 34], which is a protocol

between two peers that can compute any polynomial-time function
pair (fx(x,y), fy(x,y)), where x and y are the inputs and fX(·)
and fY (·) are the functions of interest to the two partiesX and Y ,
respectively. The impressive thing about the protocol is that nei-

ther party learns the other’s input data, or their output, i.e. X only
learns fX , not fY or y. The classic example of Yao’s protocol is the
computation of the minimum of two values. The protocol requires

two rounds of communication and hasO(n) computation and com-
munication cost (where the numbers are represented in n bits).
However, the protocol is not always efficient, and so many tech-
niques have been developed to improve computational complexity

and communications costs for specific problems. This area is now
well developed – see [35] for a listing of a number of significant
papers. Relatively little work has been done on privacy preserving

computation for Internet applications. Brickell and Shmatikov [36]
provide an algorithm to solve the shortest-paths through a pair of

connected networks, and Machiraju and Katz [32] consider the flow
maximization problem for a pair of networks. Note though that

these both have polynomial time algorithms for the non-distributed
problem. Yao’s two party protocol, and related approaches provide
methods for computing polynomial time functions. The problems

here are NP hard.
Also importantly, note that in some problems, even though an

algorithm leaks no side-information, X or Y might still derive in-
formation the inputs from the output alone. A good example is the

shortest-path problem: the privacy-preserving algorithm for short-
est paths on a pair of connected networks is strictly privacy pre-
serving [36]. However, knowledge of the output (shortest-paths) is

sufficient to derive information about the weights of the joint net-
work [37]. There is an important distinction between ensuring that

the computation is private as opposed to the results being some-
thing that the two parties are willing for their partner to know.

On the other hand some of the input data may be easily observ-
able by both parties in any case. For instance, in the shortest-path
example when the routing is implemented we could simply mea-

sure it. Hence leakage of this information is inconsequential. Given
these two features, we do not concern ourselves with strict privacy-

preservation here. Instead, we seek to minimize the leakage (by the
algorithm or solutions) of information that could not be otherwise

observed by the participants. It is no longer a formal, provable def-
inition (as is strict privacy-preservation) but it’s consistent with the
aims of potential participants in GATEway.

2.3 Assumptions
Most approaches to inter-domain traffic engineering can be char-

acterized as selfish (where one provider acts unilaterally to im-

prove its own performance), or as co-operative where the providers
are willing to share information and co-operate (exceptions be-

ing [31, 32]). In GATEway we aim to get the best of both worlds.

Note, we may still assume that the providers are selfish, but not in

quite the same sense meant elsewhere. They will seek to maximize
their own gains. However, in the approach we propose, we change

the outcome of problems such as the Prisoner’s Dilemma by intro-
ducing a type of trust. If the prisoners can trust each other, then
they can achieve the global optimum. Note that both are still acting

selfishly, but given the additional information, the correct selfish
choice is also the global optimum.

The model we assume for network operators is sometimes called
"semi-honest". It assumes that the providers are not malicious, i.e.

they will not deliberately aim to cause damage other network oper-
ators, without any positive gain for themselves. They will not act
like a “Dog in the Manger” (Aesop). Such participants are some-

times called “honest but curious”, because they may seek to find
out information, and exploit this information to their own benefit

(and possibly to the detriment of other operators). This is a fair as-
sumption because the current Internet relies on this characteristic.

One large operator could cause considerable problems for others
were they to act maliciously — it has, for instance, happened by
accident on more than one occasion.

2.4 GAs
The concept of a Genetic Algorithm (GA) (see [38] and the vast

number of publication since) is based on the metaphor of Dar-

winian evolution — survival of the fittest. The idea, in brief, is
to create a population of solutions to a problem, and then let them

reproduce and evolve such that we tend to keep better solutions to
the problem.
One key advantage of a GA is that the fitness need not be speci-

fied in closed form. For instance, GAs are often used in optimizing
strategies for games where the fitness is determined by competition

between the members of a population. This advantage is key in our
application because it allows the parties involved in the computa-

tion to share only limited information about fitnesses, rather than
the details of each others networks.
We extend the use of biological metaphors in GATEway to the

use of the term symbiosis. In biology, symbiosis (sometimes mutu-
alism) refers to two different organisms that form a mutually bene-

ficial union. A classical example occurs in coral reefs [39]. Coral
polyps are a small colonial organism that build large endo-skeletal

reefs out of calcium carbonate. However, they get the majority of
their food supply from photo-synthetic algae (called zooxanthellae)
which reside inside them, and incidentally provide them with their

attractive coloration. The algae gain a safe home, while the coral
polyps gain a food supply – both parties benefit from the interac-

tion. Typically such organisms co-evolve to this state, i.e. both
evolve together jointly (ancient corals did not exhibit this relation-

ship). Co-evolution is not restricted to symbiotic relationships —
it can also occur for competitors for instance — but the point of
interest here is that the two organisms don’t need to share genetic

material to perform such a co-evolution. We may exploit this in
GATEway.

3. EVALUATION METHODOLOGY

3.1 Test networks
We have tested GATEway on two sets of topology data. Random

networks, and Rocketfuel networks. While we also use random
networks to validate GATEway these tests are omitted, primarily

because of space restrictions, but also because they are consistent
with, and add little to the findings on more realistic topologies.

The Rocketfuel topologies [37] consist of a large number of net-
works and their peering links mapped primarily using traceroutes.

The network maps produced are not perfect, however, they rep-
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Table 1: The Rocketfuel networks used in this study.

ASN Name PoPs (degree ≥ 2) links

1 Genuity 24 74
701 UUNet 48 368

1239 Sprint 33 130
2914 Verio 47 176

3356 Level 3 46 536
3561 Cable & Wireless 59 592
7018 AT&T 35 136

resent the best current maps showing both the intra-domain and
inter-domain topologies of a significant number of large networks.

We concentrate on a group of tier-1 networks, based primarily in
North America (though some have significant components in Eu-

rope, Asia and the Pacific). We choose these because they all peer
with each other with multiple physical connections. In addition,

these networks are the largest, and thus provide the best test of the
scalability of GATEway. The result is that we consider 7 networks,
which each interconnect resulting in 21 possible pairs on which to

trial the method. Additionally, there is little point in trying to opti-
mize routing for degree one nodes (there is only one link they can

use), and so we eliminate such nodes from the networks under con-
sideration. The networks used, and their parameters are shown in

Table 1.
The Rocketfuel data do not contain link bandwidths, and so in

the absence of this information, we shall use the simplest possible

assumption of equal bandwidth links (as in [27]). One exception
to this policy is that we will investigate the impact of varying the

peering link capacities because these links are often considerably
different from backbone links in a number of respects, as a result

of being created through negotiations between multiple parties.

3.2 Traffic generation
The units of traffic we shall manipulate will be flows. A flow

represents the traffic between some source and destination during
some time interval. We shall ignore time dependence here for sim-

plicity. Sources and destinations of traffic in IP networks are groups
of IP addresses, often with a common prefix. Note though, that the

groupings we use here are arbitrarily decided by the network op-
erators, i.e. they do not have to correspond to a particular prefix,
customer, router, or other logical structure in the network. The only

constraint is that we will not divide flows when routing them, other
than across intra-domain MECPs.

For simplicity, we shall use flows aggregated to the level of traf-
fic between PoP pairs. Note that this is not a requirement for the

method. In general an operator might wish to conceal the addresses
allocated to particular PoPs, or simply the number of PoPs in the
network. Hence, they could use arbitrarily de-aggregated prefixes,

(for instance break the ISPs address space into /24’s), or they could
aggregate address space allocated to routers. The choice depends

on the balance between complexity and the level of optimization
required (finer granularity requires more computation, but perhaps

allows a greater degree of optimization).
We need to synthesize traffic matrices for our simulations, and

so we extend the simple from [40]. We generate the traffic demand

matrix between nodes using a gravity model with randomly chosen
local traffic vectors. That is, we generate the independent exponen-

tial random variables

Xk
i,m = the traffic at PoP i in networkm in direction k,

where k ∈ {in, out}. The demand matrix elements giving the traf-

fic from i to j in networksm and n areDm,n(i, j) = X
(in)
i,m X

(out)
j,n .

Although this method is extremely simple, it was shown in [40] to

match real traffic-matrix statistics well.

3.3 Performance metrics
We evaluate the performance by measuring maximum utiliza-

tions. However, the maximum utilization on its own may reveal

only the size of the traffic, which is being generated via a random-
ization process. In order to create a basis for fair comparisons we
will output the performance (the maximum utilization) relative to

the measured routing in the Rocketfuel data. Results are reported
as a percentage relative to this maximum utilization (smaller values

indicate better performance).

4. WEIGHT OPTIMIZATION USING

GENETIC ALGORITHMS
The problem of intra-domain traffic engineering can be expressed

thus: find the network routing parameters that balances loads on the
existing links in a “beneficial” way. There is a very simple approach

to solving the intra-domain traffic engineering problem, namely by
using the shortest-path routing with a set of optimized link weights.

This has the advantage of being easily implemented using current
IGPs.

We call this approach the shortest-path link-weight optimization
problem and it has been extensively studied [4–12, 15]. Despite
the apparent limitation of shortest-paths routing, the method has

been shown (for realistic networks) to perform almost as well as
the most general approaches to routing available, and to have many

other advantages (see Section 2.1 for more details).
Take a network described by a graph G = (N , E), where N is

the set of nodes and E is the edges of the graph. We denote the
number of nodes in the graph byN and the number of edges by E.
We seek to choose a functionw : E → IR+, giving the link weights

of each link, such that when we solve the All-Paths Shortest Path
(APSP) problem, the solution minimizes the maximum utilization

of the links in the network. We use the notation we, ce, and fe to
denote link e’s weight, capacity, and load, and the link utilization
is defined to be ue = fe/ce . Given a set of link weights, the APSP
routing is the routing that minimizes for all i, j ∈ N the distances
dij =

P

e∈pij
we between nodes i and j, where pij is the set of

links along the path chosen between i and j.
The problem of finding an optimal weight setting is NP hard [6],

and so wemust find heuristic approaches to the solution of the prob-
lem. Several proposed heuristic are based on GAs [7,8,11]. We use

a slightly different GA here in order to make it easier to general-
ize to the joint TE problem. The chromosome for each member of
the population is a vector containing we for each edge. We restrict

these elements to be represented byK bits, restricting the range of
values to we ∈ [0, 1, . . . , 2K − 1]. The GA algorithm is then:

1. initialization: create (randomly) an initial set of N
solutions called the population, P = {xi}

2. while not finished
a. evaluate fitness: f(xi) of each xi ∈ P
b. generate a new population: the offspring

i. selection: select two parents from the population
based on fitness.

ii. crossover: combine the parents genes to form off-
spring.

iii. mutation: with a probability q mutate each gene.
c. replace old population with offspring.

However, in designing a GA there is a great deal of flexibility in
each of the mechanisms listed here. We take the approach here of

using simple techniques with the aim of demonstrating the concept
rather than providing the best possible optimization algorithm:

1. Crossover: We a single (random) point crossover.
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2. Mutation: We perform mutation gene by gene independently,

with some small probability q.

3. Selection: Selection is determined from the fitness function
f(·) based on the maximum utilization of a given routing f(xi) =
1/max e∈E ue, and Roulette Wheel Selection, i.e., given a set
of solutions {xi}, we select a member of the population with
probability pi = f(xi)/

P

i∈P f(xi).

4. Termination criteria: We terminate the algorithm after a fixed
number G of generations.

In addition, there are many tweaks one can apply to GAs to im-

prove performance. The only one we use here is elitism, i.e. the
retention of the best member of the population during each genera-

tion with no crossover or mutation. This results in a non-increasing
maximum fitness for each generation (a property not guaranteed
otherwise).

We use the measured routing as an initial value, seeded into the
population. This initial value does not have quite the same impor-

tance as in many other optimization techniques, because it replaces
only one of the initial population. Note we confine our weight val-

ues to a smaller range of integers than the Rocketfuel data, so our
initial solution may have different routing from the measured rout-
ing, and hence our results will not all start at 100% performance.

4.1 Validation of the GA approach
We tested the above approach on a range of simulated networks

in order to choose reasonable parameter settings (results omitted

because of space restrictions). Our main parameters are the prob-
ability of mutation q = 0.01, the population size P = 50, the
number of bits to use in representation of a weight K = 4, and 2
elite solutions were retained. We compared our results to those of
Fortz and Thorup (FaT) using their code, performing G = 10000
iterations for both algorithms. Figure 1 (a) shows the relative per-
formance of our approach, and FaT with respect to the performance

on the measured routing on the Rocketfuel networks. Both ap-
proaches produce similar improvements (though FaT performs 2%

better overall). Figure 1 (b) shows the computation times. The GA
times are better by 27% on average. Although these computation
times are not insignificant in some cases, weight optimization tech-

niques have a number of advantages. For instance, Roughan et
al. [15] showed that one could get a large part of the improve-

ment of weight optimization using a much smaller number of it-
erations, thereby creating a potentially favourable tradeoff between

time and performance — we demonstrate the same phenomena in
Section 5.3.1. Furthermore, [15] also showed that weight optimiza-
tion could be performed to create a set of weights that were robust

over a period of at least 24 hours (taking into account prediction
errors, and daily variations). Hence, significant computation times

can be amortised over such periods.
In some cases we observe that the performance of both algo-

rithms was somewhat limited. For instance, in Figure 1, the perfor-
mance improvement for ASN 7018 was only around 70%. In this
particular case we investigated the reason, which was that there

were two components of the graph that were poorly connected. In
particular, three PoPs in Florida were connected to the rest of the

North American nodes via a single pair of links. Given only two
links, the opportunities for load balancing are somewhat limited. In

the real network this would be reflected in the fact that the two links
in questions would either have increased capacity, or the poorly
connected network segment would have little traffic. This appears

to be a relatively common occurrence in the Rocketfuel topologies,
and hence we wished to assess how much our results were biased

by such features. To do so, we excise the 3 Florida nodes (and
8 edges) from the AT&T network, and perform the optimization

on this new network. The results are shown in Figure 1 under the
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Figure 1: Simple weight optimization using the GA for G =
10000, and Fortz and Thorup (FaT) also using 10000 iterations.
The results show the mean relative performance for 30 random

simulations, and compute times.

heading ASN 7018a. Clearly a great improvement was obtained for
the reduced network. In the remaining work in this paper we will

continue to work with ASN 7018a, the Rocketfuel topology with-
out the Florida nodes, but we leave the other topologies untouched,
thus providing some contrast as to the impact of this issue.

4.2 Computational complexity
The algorithm proceeds in a number of iterations G, with popu-

lation size P , hence its computational cost is proportional to PG,
but the critical factor in the computational cost is the cost of evalu-

ating the fitness function, which requires the solution to the APSP
problem. We use a simple implementation of the Floyd-Warshall

algorithm to perform this step (the algorithm has O(N3) computa-
tional complexity) and Figure 7 confirms cubic complexity.

5. SYMBIOTIC OPTIMIZATION
The previous section considered optimization over only a single

network, and similar results have been described elsewhere. We
now describe the generalization of this approach to a pair of net-

works joined together at a set of peering links. The GA algorithm
is extended to allow joint evolution of two “symbiotic” populations
of solutions, one for each ISP. As in biological symbiosis the par-

ticipants don’t have to share all their genetic material. However,
there is some information leakage in our initial approach, and we

consider how to limit it in Section 6.

5.1 The problem
The problem we wish to solve here is the problem of optimizing

the routing of two connected networks. In principle this is no more

complex than optimizing one large network (comprised of the two
inter-connected networks). However, business constraints restrict
the type of routing allowed. For instance, transit routing is not al-

lowed between peers. One peer cannot use another network’s back-
bone to transit its traffic across the country using its own network

only at the end points. Hence the simple generalization of shortest-
path routing to the joint network created from inter-connecting the

two peers will create unacceptable solutions.
Furthermore, as noted earlier, we wish to limit the exchange of

information between the two peers. The joint shortest-path solu-

tion would require each network to share its topology, and traffic
in detail. More precisely, take two networks G1 = (N1, E1), and
G2 = (N2, E2), which are inter-connected by a set of peering links
Q, where for q ∈ Q we have q = (n1, n2) where n1 ∈ N1 and

n2 ∈ N2. We can create a joint network G = (N , E), where
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N = N1 ∪N2, and E = E1 ∪ E2 ∪Q. We shall use the solution to
the shortest-path (SP) link-weight optimization problem on a joint
network as a basis of comparison, because we have substantial ev-

idence [6, 9, 15] that it will be close to the best possible routing
solution. To be clear, in this solution (which we call joint SP), the
peering links have no special role, and we do not attempt to prevent

transit traffic. Hence the solution is an unrealizable idealization, but
we use it as a loose lower bound on performance, for comparison.

At the other end of the spectrum, we will also compare results
with selfish routing, where each provider optimizes its own routing

with information it can measure itself. This selfish solution will be
poor because each provider cannot anticipate the changes the other
will make to its inbound traffic. On the other hand, GATEway

1. can be computed with limited sharing of information;

2. prevents transit; and

3. is reasonably simple to implement with standard routing
protocols (e.g. shortest-path IGPs and BGP).

We do this using the mechanism of exit point pinning. Given a

traffic flow from network 1 to 2, we would choose a particular exit
point, and pin this flow so that it uses that exit point. There are a

number of mechanism one could use to implement such a pinning
(see Section 5.5), and the pinning could be performed at a variety
of granularities. As we have previously discussed, we shall con-

sider PoP level flows. We also simplify by pinning based solely on
source or destination, not both. In the examples we show source

based routing, as it is slightly simpler to explain, though desti-
nation based routing (which is an equivalent, though transposed

problem) would be easier to implement. For example, traffic from
node i in network 1, to node j in network 2, would be pinned to
peering link q(i) ∈ Q (note we can specify a peering link by its

end points q = (k, m), k, m ∈ N or its index in the set, e.g.
q = j ∈ [1, . . . , Q]). The exit point chosen for a given traffic flow
is not necessarily the closest to the point of origin, so this is not hot-
potato routing, but we do not need the full flexibility of a scheme

like TIE [17].
Before we can continue, we must also briefly discuss the dif-

ference between Origin-Destination (OD) demand matrices, and

Ingress-Egress (IE) traffic matrices. As noted earlier we will sim-
ulate using an OD demand matrix generated via a gravity model,

which specifies the traffic from origin to destination in the joint
network G, and so is a N × N matrix, where N = N1 + N2 and

Ni = |Ni| is the number of nodes in network i. Denote the OD
matrix by D where its elements D(i, j) are the traffic from origin
i to destination j, and we can writeD in the form

D =

„

D1,1 D1,2

D2,1 D2,2

«

,

whereDm,n is the matrix whose elementsDm,n(i, j) give the traf-
fic from node i to j in networksm and n.
The IE traffic matrix describes the traffic matrix as seen inter-

nally on a single one of the networks, which is not the same as the
demands (see [41] for detailed explanations of this phenomena).
For instance, for network 1, the observed traffic matrix will not be

D1,1. Using pinning, we can easily construct an IE traffic matrix
T (k) for network k from the OD matrix. We simply take, for ex-
ample

T (1)(i, j) = D1,1(i, j) +

N2
X

m=1

D1,2(i, m)I(q(i) = (j, ∗))

+

N2
X

m=1

D2,1(m, j)I(q(m) = (∗, i)),

for all nodes i, j ∈ N1, where ∗ is a wildcard, and I(·) denotes an

indicator function, i.e. I(A) = 1 if A is true, and 0 otherwise. The

computation for T (2) is similar. Notice that the matrices T (i) may

not follow a gravity model even where D does. Computing T (1)

takesO(N3
1 +N2

1 N2) operations, and so the resulting computation
is of similar order to the shortest-paths computation. The demands
D1,2 andD2,1 are measurable by either party using flow collection.

The internal demands Di,i do not have to be shared.
In addition, we need to be able to compute the traffic on each

peering link q, which we can do by

r
(1,2)
j =

N1
X

k=1

N2
X

m=1

D1,2(k, m)I(q(k) = j),

r
(2,1)
j =

N2
X

k=1

N1
X

m=1

D2,1(k, m)I(q(k) = j),

where r
(1,2) and r

(2,1) are vectors of the loads on peering links.

Both providers know the capacity of peering links.
Network operator i can now compute the APSP, and hence com-

pute the internal links loads on network Gi using only local infor-
mation: the IE traffic matrices, a set of exit points, and link weights
on Ei.

5.2 GA solution
Consider the problem above. We wish to find a solution that

limits the sharing of information to the necessary minimum, and yet

allows optimization to take place. We shall apply the metaphor of
symbiosis here, allowing each network to co-evolve without sharing

all their genetic material.
We start by specifying the chromosomes — there will be four.

For each network we use one chromosome to describe its weights,
and another to describe the pinning positions. We separate the two
groups of information as we may wish to perform cross-over and

mutation in different ways for each type of gene. More specifically,
each member of the population will be described by the vectorswi,

and qi, giving the links weights, and pinned exit points, respec-
tively, for networks i = 1, 2. As before, the weights are restricted
to [1, . . . , 2K − 1] and qi ∈ [1, . . . , Q], where there are Q peering
links. Network operator i holds wi and qi. The values of the pin-
nings are shared, but the network weights are not, thereby keeping

secret each networks’ internal topology.
Each network uses the traffic matrices, pinnings, and its own in-

ternal weights to compute its own internal link utilization, and the
peering link utilization. The information necessary to compute the

joint fitness function (the maximum utilizations) is shared, so that
each network knows the joint fitness of all members of the popu-
lation. From this each performs selection, sharing the seeds used

in pseudo-random number generation such that they each select the
same population members. The two then perform cross-over, and

mutation independently (only on the chromosomes they hold).

5.3 Evaluation

5.3.1 Performance

We first compare the joint SP optimization, with the symbiotic
solution, and selfish pinned-exit routing. We perform 10 realisa-

tions of each pair of networks (a total of 210 simulations), and
show the Cumulative Distribution Function (CDF) in Figure 2. The
performance of the symbiotic approach is very close to that of the

joint SP problem (despite that solution being unrealisable). On
the other hand the selfish routing results are profoundly worse (in

about a third of cases the provider is actually worse off after apply-
ing selfish routing). Table 6 summarizes the average performance.

Figure 3 shows the performance after each iteration for a specific
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network pair. Most importantly we learn from this graph that the

majority of improvements in performance occur early on in the op-
timization. Hence, one could find useful tradeoffs between perfor-

mance and speed. The graphs for other provider pairs also support
this view. Additionally, we considered how various characteristics
of the networks influenced performance. Figure 4, shows that the

performance was correlated with the network size. We speculate
that this is because larger networks provide more opportunities for

route diversity, which may be beneficial for shortest-path routing
optimization (we see a similar phenomena in Section 5.4 for larger

networks).
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Figure 2: The CDFs showing the performance of the TE tech-
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to the joint network size.

5.3.2 Peering vs internal links
In the work above, we have deliberately kept things simple in

having all link capacities equal. However, anecdotally, peering
links are often supposed to be smaller than internal links. Peering
links are built through negotiation between competitors. Neither

party wishes to pay for the links, and so they are sometimes al-
lowed to reach a state of congestion before any action is taken to

upgrade the links. In comparison, anecdotal evidence suggests that
most major backbones are relatively lightly utilized, and are likely

to remain so under due to the requirements for failover capacity.

Figure 5 shows the relative performance of the algorithm as peer-

ing link capacity varies with respect to backbone capacity. The fig-
ure shows the maximum link utilization relative to the measured

routing for the Rocketfuel networks 1239, and 7018 averaged over
10 simulations. The figure also shows the maximum peering link,
and internal link utilizations. For normalized peering link capaci-

ties below about 0.4 the performance of the algorithm is dominated
by the peering link performance, i.e. the maximum link load occurs

on a peering link. Under such circumstances, the relative perfor-
mance is dominated by a bin-packing problem, which unsurpris-

ingly can be solved significantly better than the measured routing.
On the other hand, as the peering capacity increases, the network
performance becomes dominated by the internal link capacities. In

particular, note that the performance approaches the individual per-
formance of network 1239.
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Figure 5: Maximum utilizations of the network, internal links,

and peering links as the normalized peering capacity varies.

5.3.3 Alternative metrics
The algorithm above has been shown to find a good min-max

link utilization solution to the routing problem. However, network

operators may not share this goal; they may wish to optimize other
objective functions. A key advantage of GAs is their flexibility with

respect to objective functions. We have tested our approach against
the metrics drawn from [6, 9] and shown that in this case we also
see good performance gains, if anything even faster (results omitted

because of space limitations).

5.3.4 Robustness
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Figure 6: Robustness results for Rocketfuel networks 1239 and

7018, averaged over 100 simulations.

TE is typically applied predictively, i.e. one measures the net-

work, determines the routing to be used, and then this is applied
in some future time interval where the traffic may not be identi-
cal to that measured. In addition, measurements themselves may

contain errors, for instance where sampling or inference is used in
data collection. Hence, robustness to measurement or prediction

noise is a highly desirable characteristic of any TE algorithm. One
of the advantages of optimal weight assignment is robustness to

noise [5, 13, 15].
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We test the robustness of GATEway by determining the optimal

(or near optimal) routing using the symbiotic GA, but then measur-
ing its performance on a network where a different traffic matrix

is applied. For each initial OD demand matrix D(i, j), we mea-
sure performance on a traffic matrix with multiplicative noise, i.e.

Derr(i, j) = D(i, j) [1 + σN(i, j)] , whereN(i, j) is an indepen-
dent standard normal random variable, for each i and j, where we
vary σ such that the standard deviation of the noise relative to the
initial traffic varies from 0 to 20%. For each of the 10 initial traffic
matrices we repeat this experiment 10 times, adding different noise

each time, for a total of 100 experiments. Figure 6 shows the results
for the Rocketfuel networks 1239 and 7018. The figure shows both

the average performance, and the worst case performance (max).
Even the worst performance over the set of 100 experiments shows
great insensitivity to the errors. Similar results are observed for

other values of peering capacity. It may seem surprising that the re-
sults are quite so insensitive to the input traffic, but this is roughly

consistent with the results of [5, 13, 15], which showed remarkable
insensitivity to noise in the simple weight assignment problem.

5.3.5 Computational Complexity
The issues surrounding computational complexity of this algo-

rithm are essentially the same as those for the simple intra-domain
problem, resulting inO(N3) complexity. Note though that the size
of the network on which we evaluate shortest paths is the individ-
ual networks, not the joint network, and so the computational time
is O(N3

1 + N3
2 ) which is much faster than the O((N1 + N2)

3)
computational time for the joint network. Given two equal sized
networks the reduction in computation time is a factor of 4. Fig-

ure 7 confirms the algorithms’ complexities.

5.3.6 Communications Cost

The implementation of this algorithm as a distributed algorithm
requires a transfer of information between the two peers. The in-

formation to be transferred consists of:

1. The pinning points for each member of the population, for

each generation.

2. The information needed to compute the fitness function (in our
case, the maximum link utilizations).

The information require to compute fitnesses is small compared to
the pinning information. The pinning information requires vectors

of size Ni to be transmitted for each network i, for each member
of the population, and at each generation. Hence the communi-
cation volume is O(NmaxPG). Note also that each value to be
transmitted is an integer in the range [1, . . . , Q], where Q is typi-
cally small (< 16), and can therefore be represented with around
4 bits without compression. However, after an initial random se-
lection, the pinning vectors are not random, but are the result of a

highly non-random process of evolution, and so are quit compress-
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Figure 8: Performance of multi-party GA as a function of the

number of participants, relative to performance for two partic-

ipants.

ible. We tested this by writing the population of pinning vectors for

each network to a file (for the example considered above with the
two networks ASN 7018 and 1239), and using gzip to compress the
files. Compression ratios of around 4:1 were achieved within 10-

15 generations. Thus the pinning data can be communicated with
around 2 bits per value. Given parameter values used here (for in-

stance P = 50, Q ∼ 10, N ∼ 50), the communications cost is
< 1 kB per generation.

5.3.7 Other violations of assumptions
The largest assumption in all of this work is the “honest but cu-

rious” assumption. It is a fair assumption — the current Internet
relies on this as well, given the relatively insecure nature of inter-
domain routing at present. However, it is interesting to consider

what happens if this assumption is violated. Imagine that one of
the ISPs either lies about, or is mistaken in the data it provides to

the algorithm, or chooses not to follow the routing determined by
the algorithm. It is a simple matter then for the other ISP to mea-

sure the traffic across its peering links using flow capture, and from
this determine that a problem has occurred. If the problem reduces
their performance, then they may either renegotiate a new routing

(via our algorithm or otherwise), or go back to their old routing,
so they are no worse off than before commencing the use of this

algorithm. The other ISP may possibly be better off in the short run
through its dishonest behavior, but in the long run they are unlikely

to make any more gains than they would by violating current BGP
policies.

5.4 Multiple-party optimizations
The extension of this work to more than one party is quite straight-

forward. N peers (in the sense of neighbouring networks that do
not allow transit) can perform the same type of optimization, such
that each network retains the information about its own link weights,

and shares appropriate pinnings with each peer. Given the GAs
ability to cope with arbitrary fitness functions, the generalization is

obvious. Figure 8 shows relative performance of the optimization
as the number of participants increases. Again this seems to be a

result of the increased diversity of routes in a larger network.

5.5 Implementation
The GA would use a protocol independent of the routing proto-

col. The optimization only requires concrete instantiation in rout-
ing once an optimal solution has been determined. There are two

approaches to instantiate the derived routing using standard, ex-
isting routing mechanisms. Firstly, tunnelling techniques such as

MPLS, or IP over IP encapsulation allow explicit choice of exit
points. Such techniques have already been proposed for use in [17].

Alternatively, one could use BGPmechanisms to alter exit points.
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Mechanisms such as local preference, and MEDs are used to con-

trol exit points. These apply control across a whole network (e.g.
the exit point for all source nodes for a particular destination would

be the same), which implies a destination based pinning. We showed
that such a pinning would still provide excellent gains in perfor-
mance. Even if BGP is used, only exit points are changed, so an-

nouncements outside the AS are not needed, and iBGP convergence
times will be much shorter than eBGP convergence times.

6. PRIVACYMAXIMIZATION
The above approach to joint network optimization limits infor-

mation sharing, but there is still some leakage through the pinning
vectors and fitness functions. The joint fitness calculation requires
the ISPs to share maximum utilization data. This problem is alle-

viated in part through the use of the utilization metric of [6, 9], but
can be improved further.

One of the advantages of the GAs is that the fitness function can
be arbitrarily chosen. All we really need to know are the selec-

tion probabilities for each member of the population of possible
solutions. We have a polynomial-time algorithm for constructing
these probabilities, and therefore Yao’s two party protocol applies.

This is now a well researched area (for instance see some of the
reference at [35]), and so, given space limitations, we only briefly

describe the approach. There are three steps: firstly, we must solve
the APSP for each network, given its internal weights. This can be

done internally by each provider. Then these routes must be used
to compute the load on each link from the OD demands. For in-

ternal links fe =
PN

i,j=1 D(i, j)I(e ∈ pij). This can be directly
computed where i, j ∈ Nk, but for i ∈ Nk and j ∈ Nm, k �= m
we need to break the indicator into two parts

I(e ∈ pij) =
X

k

I(e ∈ pik)I(q(i) = (k, ∗))

+
X

m

I(e ∈ pmj)I(q(i) = (∗, m)),

where q(i) is the peering link for traffic originating at node i. The
number of bits for D(i, j) is O(nN2) where we represent the val-
ues withn bits, while for the indicator functions there areO(EN2+
N log Q) bits. Yao’s protocol’s communications cost is linear in
the number of bits [34], and so requiresO(nN2+EN2+N log Q)
overhead. The above computation has to be performed for each

edge, so given that typically E > n, and we can write the com-
plexity as O(E2N2). The third step is to compute the maximum
of these values, for which a standard version of Yao’s protocol is

sufficient, and with comparably negligible overhead (as is the over-
head of computing the peering link loads). Additionally, secure

operations can be composed, hiding intermediate data. Hence it is
possible to perform a step of the symbiotic algorithm which satis-

fies the definition of privacy preserving, in the sense that the two
ISPs need not share (i) utilization data, (ii) pinning data, (iii) any
other details of their internal network. We call this solution privacy-

max and note its performance is the same as the previous symbiotic
solution. The cost for using this approach is an increased commu-

nications cost associated with performing Yao’s protocol.
An alternative to strict privacy preservation via Yao’s protocol

is to separate selection into the two networks. More precisely,
each network computes its own fitness function, and each uses this
to select one parent for cross-over. The two networks share the

pinning information which is needed to compute link utilizations
(again Yao’s protocol could be used here to avoid this information

being shared). However, the two network use completely indepen-
dent fitness functions — the fitness functions need not even be the

same, thus avoiding any need to share this information. There is

a cost in performance. The method (which we refer to as “sym-

biotic 2”), doesn’t perform as well as the simpler algorithm. The
results for this independent symbiosis are shown in Figures 2 and 3,

and Table 6 summarizes the performance of all methods considered
here. The average performance after 5000 generations is 68.4% as
compare to 51.5% for the previous algorithm, though still a consid-

erable improvement on the selfish solution. The performance re-
duction occurs because, although we still use elitism, each network

chooses its own elite member of the population without knowledge
of the fitness function of the other network. As a result, the chosen

elite members of the population are not necessarily elite from the
point of view of the other network or a joint fitness function. Hence
performance (as measured by the joint maximum utilization) is no

longer monotonic. Figure 3 shows this non-monotonicity. The final
solution is actually worse than some of the solutions chosen along

the way, but without knowledge of the joint fitness, we have no way
to know this, and choose the better solution.

Table 2: Comparison of approaches. Communications cost for

the privacy-maximization approach are a worst case, with the

likely cost being significantly smaller.

Approach Shared data Communications cost Perf.

joint SP Gi, ci,wi,D O(N2 + EK) 46.6%
symbiotic qi,maxe∈Ei

ue O(GPNmax log Q) 51.5%
symbiotic 2 qi, O(GPNmax log Q) 68.4%

privacy-max sel.prob.s p(xi) O(GPE2N2) 51.5%
selfish none zero 91.2%

Note that the results for “symbiotic 2” also illustrate another im-
portant point. In these examples we use different fitness functions
in the two networks. The fitness are computed independently, so

this is easily incorporated.

7. CONCLUSIONS AND FUTUREWORK
This paper presents GATEway, a set of algorithms for joint TE

between two networks who do not wish to make disclosure of infor-
mation about their networks. We demonstrate a distinct advantage
to combining information, but we present methods here that allow

combination of data, without needing to share it. Such approaches
could have a significant impact on the way network operators inter-

act.
The approach we have proposed here for a specific problem is ac-

tually quite general. It could be applied to other network problems,
for instance inter-ISP capacity planning, and perhaps it is also pos-
sible to extend these methods outside of the networking world. The

important point is that GAs make the approach inherently flexible
to a range of problems where information sharing is undesirable.
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