
Perfect Simulation and Non-monotone Markovian Systems

Ana Bušić
INRIA Grenoble - Rhône-Alpes

51, Av. J. Kuntzmann
38330 Montbonnot, France

Ana.Busic@imag.fr

Bruno Gaujal
INRIA Grenoble - Rhône-Alpes

51, Av. J. Kuntzmann
38330 Montbonnot, France

Bruno.Gaujal@inria.fr

Jean-Marc Vincent
Université Joseph Fourier

51, Av. J. Kuntzmann
38330 Montbonnot, France
Jean-Marc.Vincent@imag.fr

ABSTRACT

Perfect simulation, or coupling from the past, is an efficient
technique for sampling the steady state of monotone discrete
time Markov chains. Indeed, one only needs to consider two
trajectories corresponding to minimal and maximal state in
the system. We show here that even for non-monotone sys-
tems one only needs to compute two trajectories: an infi-
mum and supremum envelope. Since the sequence of states
obtained by taking infimum (resp. supremum) at each time
step does not correspond to a feasible trajectory of the sys-
tem, the envelopes might not couple or the coupling time
might be larger. We show that the envelope approach is ef-
ficient for some classes of non-monotone queuing networks,
such as networks of queues with batch arrivals, queues with
fork and join nodes and/or with negative customers.

Categories and Subject Descriptors

I.6 [Computing Methodologies]: Simulation and model-
ing; G.3 [Probability and Statistics]: Markov processes

Keywords

Markov chains, perfect simulation, queuing networks

1. INTRODUCTION
Simulation approaches are alternative methods to esti-

mate the stationary behavior of stochastic systems by pro-
viding samples distributed according to the stationary dis-
tribution, even when it is impossible to compute this dis-
tribution numerically. Propp and Wilson used a backward
coupling scheme [6] to derive a simulation algorithm (PSA:
Perfect Simulation Algorithm), providing perfect sampling
(i.e. which distribution is stationary) of the state of a dis-
crete time Markov chain over a finite state space X . The
main idea is to start trajectories from all x ∈ X at some
time in the past until time t = 0. If the end state is the
same for all trajectories, then the chain has coupled and
the end state has the stationary distribution of the Markov
chain. Otherwise, the simulations are started further in the
past.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ValueTools 2008, October 21 - 23, 2008, Athens, GREECE.
Copyright c©2008 ICST ISBN # 978-963-9799-31-8.

Although the Perfect Simulation Algorithm provides exact
samples for all recurrent finite Markov chains, its complexity
can be high. It suffers from two drawbacks that jeopardize
its applicability for very large chains. The first one is the
fact that the coupling time can be very large. Some work
focused on the computation of the coupling time for certain
classes of Markov chains. It was shown in [3] that Markov
chains, modelling a class of networks of queues with finite
capacities, have a very small coupling time with respect to
the size of the state space.

The second factor in the complexity of PSA is the fact
that one needs to run one simulation per state in X . When
the state space is partially ordered with one minimal and
one maximal element, and the Markov chain is monotone,
Propp and Wilson have shown that it is enough to consider
two trajectories only: one starting from the largest state and
one from the smallest state. Since then, several extensions
were proposed when the state space is partially ordered. In
that case one needs to run one simulation per extremal state.
This is the case for stochastic event graphs, a sub-class of
stochastic Petri nets [1], as well as for heaps of pieces [2].
However, when the Markov chain is not monotone, nothing
has been proposed so far to avoid the construction of one
trajectory per state in X . Meanwhile, non-monotone chains
are very common. In the context of networks of queues,
introducing fork and join nodes or negative customers or
batch arrivals and services destroys the monotonicity of the
underlying Markov chain.

The goal of this paper is to provide a new perfect simu-
lation algorithm (EPSA: Envelope Perfect Simulation Algo-
rithm) that only uses two simulated trajectories for general
non-monotone Markov chains. This is done by computing
from the past, a lower and an upper envelope of all trajecto-
ries of the Markov chain. Whenever the two envelopes cou-
ple, the coupling state is distributed according to the station-
ary distribution of the chain. This new simulation technique
raises new questions. Do envelopes couple with probability
one? Actually, using the construction of envelopes given in
§3, they do not couple in some cases. However, we show in
§5.2 that it is always possible to change the constructive def-
inition of the Markov chain (i.e. the function Φ) so that the
corresponding envelopes will couple. However, the complex-
ity of this construction is quadratic in the size of the state
space.

If envelopes couple, then the EPSA provides perfect sam-
ples for the Markov chain but its complexity can make it
impossible to use in practice. This question is discussed in
details in the paper. We show that, in some cases, the cou-
pling time of the envelopes is similar to the coupling time of
the chain (in §4.1 and §4.2), while in other cases it becomes

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

embarrassingly larger (in §4.3).
When envelopes do not couple, it is still possible to ex-

ploit them because they provide bounds on the stationary
distribution (see §5) or because they can serve as an initial
step in the perfect simulation: use envelopes as long as they
contract the state space and continue with an exhaustive
simulation from that point on (this is called splitting in the
paper, see §5).

E1

M1M2M3M4

E′

2

E2

E3

E4

Figure 1: Markov chains and perfect simulation.

All this extends the limit of applicability of perfect simu-
lation beyond the monotone case, as illustrated in Figure 1.
The set M1 is the set of monotone Markov chains, where per-
fect simulation was known to be very efficient. The set M2

is the set of non-monotone Markov chains, where envelope
perfect simulation can be used efficiently (the coupling time
is similar to the coupling time of the chain). The set M3

is the set of all Markov chains where the envelopes do cou-
ple but take a much larger time to couple than the Markov
chain, while the set M4 is the set where the envelopes do
not couple so that splitting must be used to get samples (or
a new set of events must be constructed to guarantee that
envelopes will couple).

Another contribution of this paper is to provide concrete
examples in the context of queuing networks falling in each of
these sets. The example E1 is any network of finite queues
with monotone routing. Example E2 is a network as E1

with negative customers (the arrival of a negative customer
in a queue destroys one regular customer). Example E′

2 is a
network as E1 with fork and join nodes (a fork splits a cus-
tomer into two independent customers while a join replaces
two customers by a single one). Example E3 is a network
of queues with individual customers as well as batches (cus-
tomers may arrive by batches and may also be served and
routed alone). Finally, example E4 is a network of queues
with only batches larger than two. All these experiments
have been done with the perfect simulation software Ψ2 [10],
freely available at http://psi.gforge.inria.fr.

2. PERFECT SIMULATION
Let {Xn}n∈N

be an irreducible and aperiodic discrete time
Markov chain with a finite state space X and a transition
matrix P = (pi,j). Let π denote the steady state distribution
of the chain: π = πP . The evolution of the Markov chain
can always be described by a stochastic recurrence sequence
Xn+1 = Φ (Xn, en+1), with {en}n∈Z

an independent and
identically distributed sequence of events en ∈ E , n ∈ N.
The transition function Φ : X ×E → X verifies the property
that P (Φ(i, e) = j) = pi,j for every pair of states (i, j) ∈
X × X and a random event e ∈ E .

Let Φn : X ×En → X denote the function whose output is
the state of the chain after n iterations and starting in state
x ∈ X . That is:

Φn (x, e1→n)
def
= Φ (. . . Φ (Φ (x, e1) , e2) , . . . , en) .

This notation can be extended to sets of states: for A ⊂ X ,

Φn (A, e1→n)
def
= {Φn (x, e1→n) , x ∈ A} . In the following, |A|

denotes the cardinality of set A.

Theorem 1 ([6]). There exists � ∈ N such that

lim
n→∞

˛

˛Φn (X , e−n+1→0)
˛

˛ = � almost surely.

The system couples if � = 1. In that case, the value of
Φn(X , e−n+1→0) is steady state distributed.

Algorithm 1: Perfect Simulation Algorithm (PSA)

Data: A function Φ and i.i.d. events {e−n}n∈N

Result: A state x∗ ∈ X generated according to the
stationary distribution of the system

begin
n := 0;
foreach state x ∈ X do S[x] := x;
/* S[x] is the state of the trajectory issued

from x at time −n. */

repeat
foreach state x ∈ X do R[x] := S[Φ(x, e−n)];
S := R;
n := n + 1;

until |{S[x], x ∈ X}| = 1
(x∗ denotes this unique value) ;
return x∗

end

Theorem 1 has an algorithmic counterpart (PSA), given
in Algorithm 1. The main drawback of PSA algorithm is
the fact that one needs to simulate the MC starting with all
states in X , which could be too large for Algorithm 1 to be
used in practice.

Several approaches have been used to overcome this prob-
lem. The main one is already present in [6]. When the state
space X is partially ordered and when the function Φ(·, e) is
monotone for all e, then the Markov chain is monotone and it
is possible to generate a steady state by starting Algorithm 1
with maximal and minimal states only. This technique has
been successfully used in [7] to construct PSA for network
of queues. When Φ(·, e) is not monotone, one can still use
monotone bounds, as in [4].

3. ENVELOPES
The approach proposed here generalizes what has been

done in [5] to simulate non-monotone Markov chains. Its
main advantage is that it does not need any preliminary
assumption on the structure of the Markov chain.

Assume that the state space X is equipped with a lattice
order relation � and consider a new transition function Γ,
called the envelope, defined on the Cartesian product of the
state space :

Γ : X × X × E → X × X ,

for all m, M in X and e in E ,

Γ1(M, m, e)
def
= Φ(M, m, e)

def
= sup

m�x�M

Φ(x, e),

Γ2(M, m, e)
def
= Φ(M, m, e)

def
= inf

m�x�M
Φ(x, e).

Let us call T
def
= supX (resp . B

def
= inf X) the top (resp.

bottom) element of X . The process

(Mn, mn)
def
= Γn(T, B, e1→n)

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

is a Markov chain over the state space X ×X . However, the
upper envelope alone is not a Markov chain (it depends on
the lower envelope), neither is the lower one.

Theorem 2. Assume that (Mn, mn) hits the diagonal D
(i.e. states of the form (x, x)) in finite time:

τe
def
= min



n : Γn(T, B, e−n+1→0) ∈ D

ff

,

then τe is a backward coupling time of the initial Markov
chain Xn. The state defined by Γτe(T, B, e−τe+1→0) has the
steady state distribution of Xn.

Proof. The proof simply uses the fact that if (M0, m0)
def
=

Γn(T, B, e−n+1→0), then the set Φn(X , e−n+1→0) is included
in the set {x : m0 � x � M0}. Consequently, if the latter is
reduced to one point, so is the set Φn(X , e−n+1→0) and the
backward scheme has coupled.

Now, Algorithm 1 can be adapted to the envelope simu-
lation: start the simulation with only two states, T and B,
and iterate using the bi-dimensional function (Φ, Φ).

Algorithm 2: Backward simulation algorithm using en-
velopes (EPSA)

Data: - Φ , {e−n}n∈N

- Γ the pre-computed envelope function
Result: A state x∗ ∈ X generated according to the

stationary distribution of the system
begin

n = 1; M := T ; m := B;
repeat

for i = n − 1 downto 0 do
(M, m) := Γ(M, m, e−i);

n := 2n;
until M = m ;
x∗ := M ;
return x∗;

end

This new algorithm (Algorithm 2) calls for several com-
ments.

1. Everything works the same if Φ (resp. Φ) is replaced
by an upper (resp. lower) bound on the supremum
(res. infimum).

2. The definition of the envelopes is based on the con-
structive definition Φ of the Markov chain. If one
comes up with a new construction Φ′ of the Markov
chain, then the envelopes are modified accordingly.

3. If the function Φ(., e) is non-decreasing for all event
e, then for any m � M , Φ(M, m, e) = Φ(M, e) and
Φ(M, m, e) = Φ(m, e), so that Algorithm EPSA co-
incides with the classical monotone perfect simulation
algorithm for monotone Markov chains.

4. The envelope approach may not gain over the general
PSA because of two problems:

(P1) The assumption that (Mn, mn) hits the diagonal
in Theorem 2 may not hold.

(P2) Even if Theorem 2 applies, the complexity of the
algorithm may be prohibitive. The average com-
plexity of EPSA is O(C(Φ, Φ)·Eτe) where τe is the

number of iterations of the main loop of EPSA
(called the coupling time in the following) and
C(Φ, Φ) is the complexity (number of elementary
operations) to compute Φ and Φ. Meanwhile,
the average complexity of the classical PSA is
O(C(Φ) · |X | · Eτ), where τ is the coupling time
of PSA, |X | the cardinality of the state space and
C(Φ) the complexity of the computation of Φ.

If C(Φ, Φ) is not too high w.r.t. C(Φ) (this is usually the case
in the following examples), then the comparison of the two
methods is essentially a comparison between the coupling
time of EPSA (Eτe) and (|X | · Eτ).

In the following we will focus on problems P1 and P2 in
the context of networks of queues. We show that networks
of queues with negative customers are not monotone, but
envelopes couple with probability one (problem P1) and the
coupling time of the envelope algorithm (P2) remains reason-
able (see §4.1). The same holds when fork and join nodes are
introduced (see §4.2). In these cases, there is a clear gain to
use EPSA over PSA (the complexity is divided by the size
of the state space).
However, if customers arrive by batches, things change dra-
matically, as shown in §4.3. First, envelopes never couple
in some cases. We provide a characterization of the set of
networks of queues with batches that do couple with prob-
ability one. When coupling occurs, the complexity C(Φ, Φ)
of computing the envelopes remains small but the coupling
time Eτe can grow exponentially with the parameters of the
network. We can bypass this by using a split (see §5) where
coupling occurs w.p.1 and the coupling time remains simi-
lar to the coupling time of PSA. Again, the complexity is
divided by the size of the state space in most cases.

4. EPSA FOR NETWORKS OF QUEUES
We consider an open network with N queues Q1, . . . , QN .

Each queue Qi has a finite capacity, denoted by Ci, and a
finite number of servers. The state space of a single queue Qi

is Xi = {0, . . . Ci} and the state space of the network is X
def
=

(X1 × · · · × XN). X is a lattice for the usual product order,
denoted ≤. Its Bottom (resp. Top) element is (0, . . . , 0)
(resp. (C1 . . . , CN)). In the following we will denote by 1i

the vector with null components except the ith one which is
equal to one.

Since the network is open, customers are able to enter and
depart the network. The customers who enter from outside
the network arrive according to a Poisson process. Also, the
service time at any server is exponentially distributed. After
finishing his service at a server, a customer is either directed
to another queue or leaves the network according to a rout-
ing policy. We consider here a quite general class of routing
policies, based on indexes (it includes the classical routing
policies such as deterministic, join the shortest queue, prior-
ity routing and others, see [7]). The set of output queues of
a queue Qi is denoted ∆i. It may include the dummy queue
QN+1 corresponding to the exit of the network. Also, each
queue Qi is equipped with a family Ii of index functions,
one for each queue in ∆i: Ii

k : {0, . . . , Ck} → R. The routing
works as follows: a customer ending its service at Qi in state
(x1, . . . , xN) is sent to queue Qj with

j = arg mink∈∆i
Ii

k(xk).

Under these assumptions the network evolves as a finite dis-
crete time Markov chain, after uniformization. It can be

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

constructed using events ri that correspond to the transfer
of a customer after a service at queue Qi (for i ≤ N) or to
exogenous arrivals (for i = N + 1). The transition function
of event ri, 1 ≤ i ≤ N , is given by:

Φ(x, ri) = x − 1iδxi>0 + 1jδxi>0 δxj<Cj
,

where j = arg mink∈∆i
Ii

k(xk) and δE is the indicator func-
tion of set E. The transition function of event rN+1, corre-
sponding to exogenous arrivals, is given similarly by:

Φ(x, rN+1) = x + 1j δxj<Cj
,

where j = arg mink∈∆N+1
IN+1

k (xk), ∆N+1 is the set of en-

trance queues of the network and IN+1 is the family of index
functions for the dummy queue.

All index functions are assumed to be non-decreasing. In
that case, it is shown in [9] that the Markov chain of the
network is monotone.

If the index functions can be computed in constant time
(for example, they are given as arrays), then the complexity
of the computation of Φ(·, e) is C(Φ) = O(N). Indeed, this
complexity boils down to computing the minimum of at most
N values (to obtain the minimum index).

As for EPSA, the envelopes correspond to the trajectories
of the Markov chain starting with the top (resp. bottom)
element of the state space because of monotonicity of the
chain. This shows that the complexity of computing the
envelopes is the same as the complexity of computing Φ:
C(Φ, Φ) = 2 C(Φ). Also the coupling time of EPSA and the
coupling time of PSA have the same distribution: τe =d τ .
Therefore, the complexity of EPSA is O(N · Eτ) and the
complexity of PSA is O(N · |X | · Eτ), with a clear gain for
EPSA. Actually, in this case EPSA corresponds to the well
known simulation of monotone Markov chains.

4.1 Negative Customers

neg. customer with prob. 0.8

λ1 = 0.8

λ2

C2 = 15

µ2 = 1.5µ1 = 1

C1 = 15

Figure 2: A network with negative customers.

Here, we consider a network with additional events (gi):
negative customers. The arrival of a negative customer in a
queue kills one customer in that queue, if any. The evolution
of the state under the transfer of a negative customer from
Qi is:

Φ(x, gi) = x − 1iδxi>0 − 1jδxi>0 δxj>0,

where j = arg mink∈∆i
Ii

k(xk). In that case, the Markov
chain is no longer monotone. Indeed, consider two queues
in tandem Q1, Q2 with a negative customer leaving Q1 to
join Q2 under two states x = (0, 1) < x′ = (1, 1). Then
Φ(x, g1) = (0, 1) > Φ(x′, g1) = (0, 0), so the event g1 is not
monotone.

The computation of envelopes Φ(M, m, gi) and Φ(M, m, gi)
can be cumbersome because of the value of the argmin of all
states between m and M . However, tight upper and lower
bounds (reached for some index routings) are easy to com-
pute with complexity O(N). For positive customer trans-
fers, the envelopes are the same as before: Φ(M, m, ri) =
Φ(M, ri) and Φ(M, m, ri) = Φ(m, ri). As for a transfer of

a negative customer from queue Qi, if mi = 0 and Mi > 0,
then:

Φ(M, m, gi) ≤ M − 1i,

Φ(M, m, gi) ≥ m −
X

j∈∆j

1jδmj>0,

otherwise:

Φ(M, m, gi) = Φ(M, gi), Φ(M, m, gi) = Φ(m, gi).

As for the coupling time, it is easy to show that the bounds
on the envelopes computed above always couple (the state
where both bounds are equal to 0 can be reached with posi-
tive probability). However, the coupling time of these bounds
is larger than the coupling time of PSA: τ �st τe. However,
the numerical experiments reported here (as well as many
others) suggest that τ and τe have the same order of magni-
tude. We ran simulations for the small network displayed in
Figure 2. The coupling time of PSA and EPSA are reported
in Figure 3 (in the following all data are given with 95 %
confidence intervals).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.5 1 1.5 2 2.5 3

external arrival rate to the second queue

Mean coupling time (steps)

PSA
EPSA

Figure 3: Mean coupling times of PSA and EPSA
algorithms for the network in Figure 2 as a function
of λ2.

The coupling time of EPSA is around 3 times larger than
PSA. This means that EPSA is about 40 times faster than
PSA in this case.
We also ran simulations of the same network without nega-
tive customers. We compared the coupling time for the same
average number of customers in queue 2 (Figure 4).

They remain in the same order of magnitude. This shows
that EPSA is not only much faster than PSA but also very
efficient in absolute terms: the simulation time is similar to
that of a similar monotone system.

4.2 Fork and Join
Here we consider a network with additional types of queues:

forks and joins. A fork queue is such that at service com-
pletion, several customers are sent simultaneously to several
disjoint output queues if none is full, otherwise they are all
lost. A join is a queue with several buffers. The server is
only active when no buffer is empty. A service completion
removes one customer in each buffer. Here again, the addi-
tion of a fork node (or a join node) in the queuing network
makes it non-monotone.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16 18 20

mean number of customers in the second queue

Mean coupling time (steps)

pos
neg

Figure 4: Mean coupling times of EPSA algorithm
for a network with (“neg”) and without (“pos”) neg-
ative customers.

Unlike for negative customers the computation of the ex-
act envelopes is easy and is in O(N) because fork and join
nodes no do interfere with routing (not detailed). EPSA
couples in finite time w.p.1 and experimental results show
that the coupling times τe and τ are very close to each other
(even closer than for negative customers).

4.3 Batch Arrivals
Here, we consider a system of N queues with finite capac-

ities Ci, 1 ≤ i ≤ N , with batch arrivals (made of several
customers) and atomic rejections: if all the customers form-
ing a batch cannot be accepted all together into the desti-
nation queue, then the whole batch is rejected. We have the
following events in the system:

An arrival of batch of size k, 1 ≤ k ≤ K, where K is
the maximal size of a batch and such that, in state x, the
destination queue is given by j = arg miniIi(xi). The new
batch is accepted to queue j if and only if xj + k ≤ Cj .
Otherwise the whole batch is rejected.
Similarly, a departure in queue i, 1 ≤ i ≤ N , of a batch of
size � can only happen if xi ≥ �.

The arrival and the departure of a batch in a queue are not
monotone events. Consider the simple example of a single
queue of size C and two states x = C − 1 and x′ = C − 2
respectively. With an event e corresponding to an arrival of a
batch of size 2, one gets Φ(x, e) = x and Φ(x′, e) = C, so that
x > x′ and φ(x, e) < φ(x′, e), contradicting the monotonicity
property.

Once the transition function for the Markov chains de-
scribing the behavior of a network with batches is defined,
the next question is whether EPSA converges with probabil-
ity one. The case of a single queue is studied in full details
in Appendix A. Based on this, the following can be shown
for networks.

Proposition 1. EPSA couples almost surely if and only
if batch arrivals or departures of size one happen with posi-
tive probability in each queue.

Proof. Let p be the probability that batch arrivals or
departures of size one happen in each queue. Then, un-
der this type of events only, the network has no batches
and is monotone so that envelopes couple. Conversely, if at

least one queue Qi has no arrival and no departure of sin-
gle customers, then the gap between the two envelopes in
Qi cannot become smaller than the smallest batch size (see
Proposition 3 in Appendix A).

If individual customers cannot enter or leave one queue,
the regular PSA using function Φ converges almost surely
as soon as the batch sizes in each queue have no common
divisor and the capacity of the queue is large enough (see
Theorem 3 in Appendix A). So this is a case where PSA can
be applied and EPSA cannot. Section 5 presents a patch for
EPSA in this case.

Proposition 2. The envelopes Φ(x, y, e) and Φ(x, y, e)
can be constructed for any couple of states (x, y), x ≥ y
in time O(N log(C)).

The proof is given in Appendix B. According to this re-
sult, the supremum and the infimum computing cost can be
considered negligible (logarithmic in the state space size).

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

arrival rate

Mean coupling time (steps)

(+1, -1)
(+2, -1)
(+3, -1)
(+5, -1)

Figure 5: Mean coupling times for EPSA in a
(+k,−1) queue with batch arrivals of size k = 1, 2, 3
and 5 respectively, as a function of the arrival rate λ.

The coupling time is a more difficult point. Here, the cou-
pling time of EPSA can either be comparable or be much
larger than the coupling time of PSA, depending on the load
of the queues. This is illustrated by the set of experiments
displayed in Figure 5. EPSA is used to simulate a single
queue with capacity 50 with batch arrivals with rate λ, all
with the same size k, and individual departures (denoted a
(+k,−1) queue). In that case coupling of EPSA is guaran-
teed. When the queue is monotone (k = 1), the coupling
time is always small and is maximum when the arrival rate
λ equals the service rate µ. When the queue is not monotone
(k > 1), the coupling time of EPSA is similar to the mono-
tone case (even marginally smaller) for small values of λ,
but grows extremely fast (even on a logarithmic scale) when
kλ/µ becomes larger than 1. It is straightforward to ex-
plain why this happens. Envelopes can only couple when the
queue becomes empty (see the proof of Proposition 1).When
the load grows, this happens with a very small probability.
Actually, the classical PSA has similar coupling times, for
the same reasons. Again, using EPSA is a clear gain over
PSA, the complexity being roughly divided by |X |. Never-
theless, its simulation time may be too large to be used in
practice in some cases.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

5. BEYOND ENVELOPES
As mentioned before, there are cases where EPSA does

not couple or where its coupling time is too large. In that
case envelopes can still be useful.

5.1 Splitting and Bounds
Even if the two envelopes Φ, Φ cannot couple, they still

may get close. Let L be the smallest possible cardinality of
the set {x ∈ X : Φn(T, B, e1→n) � x � Φ

n
(T, B, e1→n)}.

One way to take benefit from the envelopes in that case
is to continue the simulation once the gap between the en-
velopes reaches L using a classical PSA, simulating the chain
starting with all states between the upper and lower trajec-
tories. This is called splitting in the following. Figure 6
illustrates a successful run of EPSA with splitting (called
EPSAWS, see Algorithm 3).

Algorithm 3: EPSAWS (EPSA With Splitting).

Data: - Φ, {e−n}n∈N
, Γ

- L size of the set that triggers the splitting
Result: A state x∗ ∈ X generated according to the

stationary distribution of the system
begin

n := 1; M := T , m := B ;
S := {x ∈ X , m � x � M};
repeat

i := n − 1;
repeat

(M, m) := Γ(M, m, e−i);
i := i − 1; S = {x ∈ X , m � x � M};

until |S| = L or i < 0 ;
for j = i downto 0 do S := Φ(S, e−j);
n := 2n;

until |S| = 1 ;
return x∗ (such that S = {x∗}) ;

end

−n

X

S

0

B

T

splitting

lower envelope

upper envelope

Figure 6: Splitting.

The main use of EPSAWS is when the state space is too
big to use PSA directly but envelopes can reduce the size of
the space very fast.

Figure 7 reports the coupling times of EPSA, PSA and
EPSAWS for a queue with capacity 20, arrival batches +2
and +3 with probabilities 0.49 and 0.51, and departures of
size one (with rate 1).

In this queue, Theorem 3 says that all three algorithms
converge. In the figure, the coupling time of PSA and EP-
SAWS are the same while EPSA’s coupling time grows very

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.2 0.4 0.6 0.8 1

arrival rate

Mean coupling time (steps)

EPSA
PSA
split

Figure 7: Mean coupling times for PSA, EPSA and
EPSA with splitting for a (+2, +3,−1) queue.

fast when λ/µ is larger than one. In this case EPSAWS has
a clear advantage over the other two algorithms.

Another possibility is to continue to compute the envelopes
after the splitting point instead of all trajectories. When
time zero is reached, we get M0 and m0 that satisfy:

P(M0 � x) ≤ Π(x) ≤ P(m0 � x), x ∈ X ,

where Π(x) is the cumulative stationary distribution func-
tion (cdf) of the Markov chain: Π(x) =

P

y�x πy. Note that
the gap between M0 and m0 may be larger than L. Hope-
fully, it is still small on most trajectories.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

arrival rate

Mean coupling time (steps)

PSA
bounds

Figure 8: Exact values versus bounds for a (+4,−3)
queue.

Figure 8 reports the mean coupling time of EPSAWS and
the mean number of steps needed for envelopes to get closer
than 4, in a (+4,−3) queue with capacity 15. The theory
says that EPSA does not couple here but PSA and EPSAWS
will terminate. Figure 8 shows that the coupling time of
EPSAWS is too large to be useful for large queues. On the
other hand, the time needed for both envelopes to get close
is very small. It allows one to get rather tight upper and
lower bounds on the c.d.f. (given for a (+4,-3) queues with
capacity 100 and λ/µ = 1 in Figure 9).

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Distribution of number of jobs (+4, -3)

lower bound
upper bound

Figure 9: Bounds for the c.d.f. for a (+4,−3) queue.

5.2 Alternative to Splitting: Changing Events
Until now, we supposed that the constructive definition

of the Markov chain Xn+1 = Φ(Xn, e) is fixed. Taking an
alternative description of the chain can reduce the coupling
time significantly, or make envelopes converge if this was not
the case.

If the Markov chain Xn is irreducible and aperiodic, it
is always possible to transform slightly the chain preserving
the stationary distribution such that there exists one state
0 for which the transition matrix verifies P00 > 0. In that
case, choose a spanning tree A on the transition graph of
the chain rooted in 0 [8]. By defining the order on X as
the distance on that spanning tree A to state 0 and defining
an event e which occurs with probability min(i,j) ∈A Pij such
that Φ(x, e) is the next vertex on A after x, and other events
in an arbitrary way such that Xn+1 = Φ(Xn, e), then EPSA
converges with probability one. The reason is that under
event e, the chain is monotone and both envelopes converge
to 0 in that case.

The main drawback of this approach is that the construc-
tion of the spanning tree has a complexity O(|X |2) for an
arbitrary chain, which may be too large in practical cases.

Modifying the events can also be used to improve the cou-
pling time of both EPSA and PSA. We illustrate this on the
example of a single queue with batch arrivals and services.
In the appendix, we consider the natural events to construct
the function Φ: batch arrivals of size k (event a) and batch
services of size � (event d). If gcd(k, �) = 1 and k+� ≤ C+1,
then Lemma 1 in Appendix A implies that the Markov chain
is irreducible and a spanning tree rooted in state 0 can be
constructed. Suppose that arrival rate λ and service rate µ
verify λ ≤ µ. Furthermore, without loss of generality, sup-
pose that λ + µ = 1. An alternative event description (we
denote the corresponding transition function by Ψ) is given
by (a spanning tree is constructed at the same time as the
new events):

Event e1. For each x ∈ X , Ψ(x, e1) = y only if the arc
(x, y) is a part of one shortest path to 0. (If there is more
than one shortest path from x to 0, then chose one of them.)
The rate of event e1 is set to λ.

Event e2. For each x ∈ X , Ψ(x, e2) = Φ(x, d)δΨ(x,e1)=Φ(x,a)

+Φ(x, a)δΨ(x,e1)=Φ(x,d). The rate of event e2 is λ.
Event e3. For each x ∈ X , Ψ(x, e3) = Φ(x, d). The rate of

event e3 is µ − λ. (If λ = µ, there is no event e3.)

Note that we might have more than one choice for event
e1. However, once we have fixed e1, then e2 and e3 are
completely defined. In Table 1 we report simulation times for
example with k = 3, l = 2 and different values of capacity C.
We can notice that alternative event description decreases
significantly the coupling time. However, for this new event
description computing of envelopes becomes more difficult.

Table 1: Mean coupling times (in steps) for natural
and alternative event description for the case: k = 3,
l = 2.

C
p=1/4 p=1/3 p=1/2

nat. alt. nat. alt. nat. alt.
5 150 10 92 13 62 44

10 245 17 143 25 187 82
20 4114 31 696 55 1304 585

5.3 Computing Envelopes
There is a compromise between simulation time and the

complexity due to the number of trajectories that need to
be considered. As seen in the previous paragraph, an al-
ternative event description can decrease the coupling time
of the PSA. However, in this case envelopes become more
difficult to compute. One can relax further the notion of en-
velopes and, instead of taking infimum and supremum states
for all the trajectories, one might prefer taking a state that
is even smaller (resp. greater) than infimum (resp. supre-
mum) state, but that is much easier to compute, as in the
negative customer case.

The question of finding an event representation which is
better than the natural event representation, but for which
envelopes can be computed efficiently (without generating
the state space) remains open for the general case of net-
works of queues.

6. ACKNOWLEDGMENTS
This work was partially supported by ANR-05-BLAN-0009-

02 SMS and ANR-06-SETIN-002 Checkbound.

7. REFERENCES

[1] A. Bouillard and B. Gaujal. Backward coupling in
Petri nets. In Valuetools’06, Pisa, Italy, 2006.

[2] A. Bouillard and B. Gaujal. Backward coupling in
bounded free-choice nets under Markovian and
non-Markovian assumptions. Discrete Event Dynamic
Systems: Theory and Applications, 2008. Accepted.

[3] J. Dopper, B. Gaujal, and J.-M. Vincent. Bounds for
the coupling time in queueing networks perfect
simulation. In Numerical Solutions for Markov Chains
(NSMC’06), pages 117–136, Charleston, 2006. The
2006 A.A. Markov Anniversary Meeting (MAM 2006).

[4] J.-M. Fourneau, I. Y. Kadi, N. Pekergin, J. Vienne,
and J.-M. Vincent. Perfect simulation and monotone
stochastic bounds. In Valuetools’07, Nantes, France,
2007.

[5] B. Gaujal and F. Perronnin. Coupling from the past in
hybrid models for file sharing peer to peer systems. In
Proceedings of the 10th International Conference
HSCC’07, Pisa, Italy, 2007.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

[6] J. G. Propp and D. B. Wilson. Exact sampling with
coupled Markov chains and applications to statistical
mechanics. Random Structures and Algorithms,
9(1-2):223–252, 1996.

[7] J.-M. Vincent. Perfect simulation of monotone systems
for rare event probability estimation. In Winter
Simulation Conference, Orlando, Dec. 2005.

[8] J.-M. Vincent and C. Marchand. On the exact
simulation of functionals of stationary Markov chains.
Linear Algebra and its Applications, 386:285–310,
2004.

[9] J.-M. Vincent and J. Vienne. Perfect simulation of
index based routing queueing networks. Performance
Evaluation Review, 34(2):24–25, 2006.

[10] J.-M. Vincent and J. Vienne. Psi2 a software tool for
the perfect simulation of finite queueing networks. In
QEST’07, pages 113–114. IEEE Computer Society,
2007.

APPENDIX

A. A SINGLE QUEUE WITH BATCHES
This appendix is dedicated to the perfect simulation of

a single queue with batch arrivals and services. It actually
contains the main technical difficulties of the paper.

Consider a single queue with finite capacity C, batch ar-
rivals and batch services. Suppose that the arrival batch
size is always equal to k and service batch size is equal to
�. Function Φ is based on two types of events: arrivals of k
customers simultaneously (ak) and departures of � customers
(d�).

Φ(x, ak) =



x, x > C−k
x+k, x ≤ C−k

Φ(x, d�) =



x, x < �
x−�, x ≥ �.

The envelopes are easy to compute (the complexity is the
same as for Φ):

Φ(M, m, ak) =



(M + k) ∧ C, m ≤ C − k
M, m > C − k

Φ(M, m, ak) =



m + k, M ≤ C − k
(m + k) ∧ ((C + k − 1) ∨ m), M > C − k

Φ(M, m, d�) =



(m − �) ∨ 0, M ≥ �
m, M < �

Φ(M, m, d�) =



M − �, m ≥ �
(M − �) ∨ ((� − 1) ∧ M), m < �.

Proposition 3. If min{k, �} > 1, then the envelopes do
not couple (EPSA never converges).

Proof. Suppose that envelopes couple in finite time t.
By symmetry of the problem, without loss of generality we
can suppose that the coupling occurs after an arrival. Then
at time t − 1 we have mt−1 < Mt−1 and mt = Mt, where
mt = Φ(Mt−1, mt−1, ak) and Mt = Φ(Mt−1, mt−1, ak). We
have three different cases:

• Mt−1 + k ≤ C. Then mt = mt−1 + k < Mt−1 + k =
Mt, which is not possible since we supposed that t is a
coupling time.

• mt−1 + k > C. Then mt = mt−1 < Mt−1 = Mt, which
is also not possible.

• Mt−1 +k > C and mt−1 +k ≤ C. Then consider states
x = Mt−1 and y = x − 1 ≥ mt−1. Then Φ(x, ak) = x

and Φ(y, ak) =



x − 1, x > C − k + 1
x − 1 + k, x ≤ C − k + 1

�= x, so

we obtain again that mt < Mt.

Therefore, the envelopes do not couple.

Lemma 1. The Markov chain is irreducible if and only if
gcd(k, �) = 1 and k + � ≤ C + 1.

Proof. We show first that both conditions are necessary.
If k + � > C + 1, then state � − 1 is absorbing. Indeed,
Φ(�−1, ak) = �−1 since �−1+k > C, and Φ(�−1, dl) = �−1.
If k+� ≤ C +1, then either an arrival or a departure modify
the state of the system.

Suppose that gcd(k, �) = d. Then starting from a state x
we can only go to states y ∈ [0, C] of form ak + b(−�). Let
k = sd and � = rd. Then y = ak + b(−�) = (as − br)d.
If d > 1, then for instance from state 0 we can never reach
state 1.

In order to show that these constraints are also sufficient,
we will show that if gcd(k, �) = d and k + � ≤ C + 1, then
from each state 0 ≤ x ≤ C − d we can reach state x + d and
from each state d ≤ x ≤ C we can reach state x−d. Then if
d = 1 the chain is clearly irreducible. From Bézout’s lemma,
there exist α, β ∈ N such that αk−β� = d. Then state x+d
can be reached from state x by a sequence of α arrivals and
β services as follows:

While (α + β > 0) repeat:

• if (α > 0 and x + k ≤ C) then {α ← α− 1, x ← x + k}

• else {β ← β − 1, x ← x − �}

Note that if α+β > 0, then α = 0 or x+k > C imply β > 0
and x − � ≥ 0. At each iteration α + β is thus decreased by
1, so the above algorithm terminates in finite time. State
x − d can be reached similarly by a sequence of α′ arrivals
and β′ departures such that α′k − β′� = −d.

Lemma 1 implies that it is possible to construct a new
function Φ such that Algorithm 1 converges. The follow-
ing result shows that this is also the case with the original
function Φ based on arrivals and departures.

Lemma 2. PSA converges almost surely if and only if
gcd(k, �) = 1 and k + � ≤ C + 1.

Proof. The proof that the constraints are necessary fol-
lows from Lemma 1. We will show that they are also suf-
ficient. Consider two trajectories starting in points at dis-
tance d > 0. It is sufficient to show that we can decrease
their distance by 1. Indeed, applying the same reasoning
for any two points we can construct a sequence of events
for which the trajectories starting at that two points couple,
decreasing thus the total number of trajectories by 1. Thus
we can eventually construct a sequence of events for which
all trajectories couple. Suppose that � ≤ k. (The other case
is symmetrical.) In order to show that we can decrease a
distance of two trajectories by 1 we will use the following
facts:

1- If d ≥ �, then we can decrease distance by �. We will
call this operator A:

A(d) = d − �, d ≥ �.

Suppose that initial positions of two considered trajectories
are points x and x + d, where 0 ≤ x ≤ C − d. Then an
event sequence corresponding to operator A is given by

˚

x
�

ˇ

successive departures.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

2- If d < �, then there exists a sequence of events corre-
sponding to operator B:

B(d) = � − d, d < �.

For an initial configuration (x, x + d) start first by applying
¨

x
�

˝

successive departures. This gives a new position (y, y +
d) such that 0 ≤ y < �. If y + d ≥ �, then apply one more
departure which modifies distance to � − d. Thus, an event
sequence corresponding to operator B consists of

¨

x
�

˝

+ 1
departures. If y + d < �, then we will show that there is an
event sequence that leads to a new configuration (z, z + d)
such that one of the following is true:

`

z < � and z + d ≥

�
´

or
`

z = y +1). By repeating this a finite number of times
we will end up in a configuration (w, w + d) such that w < �
and w+d ≥ � from which a departure leads to a configuration
with a distance equal to � − d. We proceed as follows:

• i = 0; y0 = y.

• Until z is not found do:

– i ← i + 1.

– Use one arrival followed by a finite number of depar-
tures in order to reach a new configuration (yi, yi +
d) such that yi < �. Note that the arrival does not
modify d since yi−1 + d < � and � + k ≤ C + 1.
Similarly, for a configuration (u, u + d) such that
u ≥ � a departure does not modify d.

– If yi + d ≥ l, then z = yi and we are in case (a).

– Else if yi = y+1, then z = yi and we are in case (b).

We will show that the above algorithm terminates after a
finite number of steps. From Bézout’s lemma it follows that
there exist α, β ≥ 0 such that α(−�) + βk = 1. Consider
the configuration (yβ , yβ + d). We have applied exactly β
arrivals and a finite number η of departures. Thus yβ =
y + η(−�) + βk. Now 0 ≤ yβ < � and α(−�) + βk = 1 imply
η = α.

3- If d < �, then similarly to the above case, there exists
a sequence of events corresponding to operator D:

D(d) = k − d, d < �.

(We only need d < k to get the existence of a corresponding
sequence, but we will always apply operator A when d ≥ �.)

From Bézout’s lemma it follows that there exist γ, δ ≥ 0
such that γ(−�) + δk = −1. A sequence of events allows to
decrease the distance by 1 can be then obtained as follows.
We suppose that initially d < � (otherwise we can apply
operator A):
1- Apply δ times operator B ◦ D. After each step make
sure that we still have d < �. If not, apply operator A
as many times as needed to have d < �. This gives d′ =
δ(k − �) − ζ� + d.
2- Remark that ζ = γ − δ. Thus d′ = d − 1.

Consider now a general case with arrival batch sizes that
belong to a set K = {k1, k2, . . . , kK} and service batch sizes
that belong to a set L = {�1, �2, . . . , �L}. Without loss of
generality we can assume that k1 < . . . < kK and �1 < . . . <
�L. Denote by M = (L ∪ K)\{�1, k1} = {m1, m2, . . . , mM},
with m1 < . . . < mM . Note that M ≤ K + L − 2. Let
g0 = gcd(k1, �1) and

gi = gcd(gi−1, mi), 1 ≤ i ≤ M.

Furthermore, we suppose that gi > 1, for all i < M . If
for i < M we have gi = 1, then we can consider M′ =
{m1, . . . , mi} instead of M.

Proposition 4. The Markov chain is irreducible if
gcd(L ∪ K) = 1 and

max
n

k1 + �1,
M

max
i=1

(gi−1 + mi)
o

≤ C + 1. (1)

Proof. The proof that the above conditions are sufficient
is similar to the proof of Lemma 1. Indeed, only by arrivals
of size k1 and services of size �1 we can reach all the states
of the same equivalence class modulo g0. Suppose now that
mi corresponds to an arrival (the other case is symmetrical).
Then condition gi−1 + mi ≤ C + 1 implies that from each
state x we can go either to a state x− gi−1 ≥ 0 or to a state
x + mi ≤ C. Then similarly to the proof of Lemma 1, it
can be shown that from a state x we can reach all the states
of the same equivalence class modulo gi = gcd{gi−1, mi}.
Since gM = 1, the chain is irreducible.

Similarly to the proof of Lemma 1, the constraint gcd(L∪
K) = 1 is also necessary, since otherwise starting from state
x we can only visit states of type y = x+λd, where λ ∈ Z and
d = gcd(L∪K). Condition k1 + �1 ≤ C + 1 is also necessary
(otherwise state �1 − 1 is absorbing). The other conditions
are not always necessary. Take for instance K = {4, 11},
L = {8, 10} and C = 12. Then it can be easily verified that
the chain is irreducible. On the other hand, g0 = 4, m1 = 10,
but g0 + m1 = 14 > 13 = C + 1.

Theorem 3. PSA converges almost surely if gcd(L∪K) =
1 and C ≥ 3max(L ∪ K).

Proof. Suppose that �1 ≤ k1 (the other case is symmet-
rical). Then we can find a sequence of events corresponding
to operators A and Bm, m ∈ {�1, k1} ∪M:

A(d) = d − �1, d ≥ �1,

Bm(d) = m − d, d < �1, m ∈ {�1, k1} ∪M.

Indeed, for two trajectories starting in points x and x + d,
an event sequence corresponding to operator A is given by
� x

�1
� events d�1 . For operators Bm the event sequence is

slightly more complex, but follows similar steps as in the
proof of Lemma 2. Under condition C ≥ 3maxm∈L∪K m,
it is always possible to translate the two points by 1 to the
right (resp. left) using Bézout’s lemma, without hitting the
boundaries (i.e. without modifying distance d). Thus for
any � ∈ L (resp. k ∈ K) and any two initial states x and
x + d we can always reach a state (y, y + d) such that y < �
and y + d ≥ � (resp. a state (z, z + d) such that z ≤ C − k
and z + d > C − k) with a finite sequence of events. Then
applying an additional event d� (resp. ak) yields a sequence
of events corresponding to operator B� (resp. Bk).

Bézout’s lemma implies that there are α ≥ 0 and βm ∈
Z, m ∈ M∪ {k1} such that:

α(−�1) +
X

m∈M∪{k1}

βmm = −1.

Suppose that we have two trajectories at distance d < �1
(otherwise use operator A). Then a sequence of events that
decreases distance by 1 can be obtained as follows:

For each m ∈ M∪ {k1} apply |βm| times:

• a sequence of events corresponding to operator B�1 ◦Bm

if βm > 0, and Bm ◦ B�1 if βm < 0,

• a sequence corresponding to a finite number of succes-
sive applications of operator A, such that after each
iteration we have a new distance d < �1.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

This gives a new distance

d′ = d +
X

m

βm(m − �1) + γ(−�1) < �1.

Finally, remark that α =
P

m βm + γ. Thus, d′ = d− 1.

B. PROOF OF PROPOSITION 2
Here is the construction of M ′ = Φ(M, m, ak) and m′ =

Φ(M, m, ak) when a batch of k customers are routed into the
system according to the index functions I. It should be clear
looking at the construction of M ′ and m′ below that it can
be done in O(N log C), where C is the maximal capacity of
all queues by using binary search.

For each queue i we first introduce for notational conve-
nience, two functions h(i) and H(i), describing the infimum
and supremum values for the number of customers in queue i
after a batch arrival of size k in queue i, given that the num-
ber of customers in that queue just before the new arrival is
between u and v:

H(i)(v, u) =



(v + k) ∧ C, u ≤ C − k
v, u > C − k

h(i)(v, u) =



u + k, v ≤ C − k
(u + k) ∧ ((C + k − 1) ∨ u), v > C − k.

Let dm and dM be defined as follows:

dm = arg miniIi(m), dM = arg miniIi(M).

We consider all the queues � = 1..N . For each of them, two
different cases have to be considered.

Case 1: I�(m) > IdM
(M). Then obviously � �= dM , since

m ≤ M and I is increasing. For all z, m ≤ z ≤ M , I�(z) ≥
I�(m) > IdM

(M) which implies Φ�(z, ak) = z�, m ≤ z ≤ M,
where Φ = (Φ1, . . . , ΦN). Thus,

m′
� = m�, M ′

� = M�.

Case 2: I�(m) ≤ IdM
(M). We consider first M ′

�. We have
two cases:

• If � = dM , then

M ′
dM

= H(dM)(MdM
, mdM

).

Indeed, for state z = (M1 . . . MdM−1, a, MdM +1 . . . Mn)
we clearly have arg miniIi(z) = dM .

• If � �= dM , then we consider state:

z = (M1, . . . , M�−1, m� + b, M�+1, . . . , MN),

where b ≥ 0 is defined as follows:

I�(m + 1�) ≤ IdM
(M),

...

I�(m + b1�) ≤ IdM
(M),

I�(m + (b + 1)1�) > IdM
(M).

Then ∀α �= �,

I�(z) = I�(m + b1�) ≤ IdM
(M) ≤ Iα(M) = Iα(z),

and arg miniIi(z) = �. Furthermore, state z is a state
with the highest value of the component � among all
the states in which the new batch is sent to queue �.
Thus for the upper envelope, we have:

M ′
� = max{Ml, H

(�)(m� + b, m�)}.

As for the lower envelope, we have the following cases:

• If � �= dm, then m′
� = m�.

• If � = dm and Idm(M) ≤ mini	=dm Ii(m) (note that this
implies dm = dM), then:

m′
dm

= h(dm)(Mdm , mdm).

• If � = dm and Idm(M) > mini	=dm Ii(m) then we con-
sider state

z = (m1, . . . , mdm−1, mdm + c, mdm+1, . . . , mN),

where c ≥ 0 is defined as follows:

Idm(m + 1dm) ≤ min
i	=dm

Ii(m),

...

Idm(m + c1dm) ≤ min
i	=dm

Ii(m),

Idm(m + (c + 1)1dm) > min
i	=dm

Ii(m).

Note that mdm + c is the maximal value of component
dm for which we still always send the new batch to
queue dm. We have:

m′
dm

= min{mdm + c + 1, h(dm)(mdm + c, mdm)}.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4404
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4404

