
Estimating the Worst-case Delay in FIFO Tandems
Using Network Calculus

Luca Bisti, Luciano Lenzini, Enzo Mingozzi, Giovanni Stea

Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy

Via Diotisalvi, 2 56122 Pisa, Italy - Ph. +39 050 2217599

{l.bisti, l.lenzini, e.mingozzi, g.stea}@iet.unipi.it

ABSTRACT
This paper addresses the problem of estimating the worst-case end-

to-end delay for a flow in a tandem of FIFO multiplexing nodes,

following up our previous work [12]. We show that, contrary to the

expectations, the state-of-the-art method for computing delay

bounds, i.e. upper bounds on the worst-case delay, called the Least

Upper Delay Bound (LUDB) methodology, may actually be larger

than the worst-case delay even in simple cases. Thus, we first de-

vise a method to compute improved delay bounds. Then, in order

to assess how close the derived bounds are to the actual, still un-

known, worst-case delays, we devise a method to compute lower

bounds on the worst-case delay. Our analysis shows that the gap

between the upper and lower bounds is quite small in many practi-

cal cases, which implicitly validates the upper bounds themselves.

Categories and Subject Descriptors

C.4 [Computer systems organization] Performance of systems –

design studies, performance attributes.

General Terms

Algorithms, Performance, Design.

Keywords

Network Calculus, FIFO-multiplexing, Delay Bound.

1. INTRODUCTION
The ability to provision reliable real-time services in a scalable

way is the key to the deployment of the next generation Internet. It

is now commonly agreed that per-aggregate resource management

is to be employed in order to be able to scale to large networks and

large number of users. Two noticeable examples of architectures

employing per-aggregate resource management are Differentiated

Services (DiffServ [2]), and Multi-Protocol Label Switching

(MPLS, [4]), both standardized by the IETF. In the former, flows

traversing a domain are aggregated (or multiplexed) in a small

number of classes or Behavior Aggregates (BA), whose forwarding

treatment is standardized, and QoS is provisioned on a per-

aggregate basis at each node. In the latter, flows are aggregated

into Forwarding Equivalence Classes (FECs) and forwarding and

routing are performed on a per-FEC basis.

The performance evaluation of real-time services in networks em-

ploying per-aggregate resource management is however particu-

larly challenging. Real-time services require in fact firm QoS guar-

antees, usually formulated by computing an end-to-end delay

bound, i.e. an upper bound on the maximum end-to-end delay.

Obviously enough, a delay bound is as good as it is tight, i.e. close

to the actual maximum delay that can theoretically be experienced

by a bit of the flow. We refer to the latter as the worst-case delay

(WCD). However, while it is fairly simple to compute the WCD

under per-flow resource management (see, for example, [3], Chap-

ter 2), computing it in networks employing per-aggregate resource

management appears to be considerably more complex. During the

last decade, several results have appeared in the literature on this

subject, all based on Network Calculus ([3], [5]-[8]), a theory for

deterministic network performance analysis. The aim of these

works is to compute delay bounds in feed-forward networks, which

are known to be stable for any utilization below 100% [3]. For in-

stance, recent works [16], present tools and techniques for comput-

ing end-to-end delay bounds for flows in feed-forward networks of

blind multiplexing nodes. “Blind” means that no assumption is

made regarding the flow multiplexing criterion: for instance, both a

FIFO multiplexing scheme and a strict priority multiplexing

scheme in which the tagged flow (i.e., the one being analyzed) is

always multiplexed at the lowest priority fit this definition. Smaller

bounds can be obtained by explicitly assuming that a FIFO multi-

plexing scheme is in place at the node. As regards FIFO multiplex-

ing, some recent works [9]-[12] describe a methodology for com-

puting per-flow delay bounds in tandem networks of rate-latency

nodes traversed by leaky-bucket shaped flows. The method, called

Least Upper Delay Bound (LUDB), is based on the well-known

Network Calculus theorem that allows a parametric set of per-flow

service curves to be inferred from per-aggregate service curves at a

single node. It consists in i) applying the above theorem iteratively,

so as to obtain a parametric set of end-to-end service curves for a

flow, ii) computing a parametric expression for the delay bound, and

iii) minimizing over the set of parameters so as to obtain, in fact, the

least upper bound. End-to-end analysis and global minimization are

the two points of strength of LUDB. As shown in [11]-[12], we are

actually able to derive end-to-end service curves only for a particular

class of tandems, called nested tandems, where the path traversed by

a flow a is either entirely included into the path of another flow b or

has a null intersection with it. Non-nested tandems, instead, have to

be partitioned into a number of nested sub-tandems, which have to be

analyzed separately. Then, per sub-tandem delay bounds are com-

puted and summed up to obtain the end-to-end delay bound.

LUDB has been shown to yield tighter bounds with respect to both

per-node analysis, and another end-to-end methodology, described

in [13], which does not use global minimization. However, despite

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ValueTools 2008, October 21-23, 2008, Athens, GREECE.

Copyright © 2008 ICST ISBN #978-963-9799-31-8

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

LUDB being the state-of-the-art solution to the problem, it is still

unknown, in the general case, whether the bounds thus computed

are actually equal to the WCD. As far as sink-tree tandems are

concerned, it was proved in [10] that the LUDB is actually equal to

the WCD. However, whether this is true for generic tandems is still

an open question.

In this paper, we first provide a negative answer to the above ques-

tion. Contrary to the expectations, the LUDB method may actually

yield loose bounds even in very simple tandems. We prove this by

counterexample: we devise a method, called Flow Extension, that

can be used in conjunction to the LUDB methodology, so as to

compute smaller delay bounds, at least in some cases. This result is

significant for two reasons: on one hand, it improves delay bound

computation in many cases; on the other hand, its significance from

a theoretical standpoint lies in proving that the NC theorem that is

at the core of the LUDB method is not always sufficient to describe

the worst-case behavior of FIFO networks.

This said, assessing how tight the computed bounds are becomes an

important issue. Being unable so far to identify a provable worst-

case scenario, we propose heuristics to approximate it. More spe-

cifically, we construct a set of scenarios where a flow experiences a

large delay, which is itself a lower bound on the WCD, and we

provide an algorithm to compute this lower bound. The interval

between the lower and the upper bounds serves as an estimate of

the tightness of the upper bound itself.

The rest of the paper is organized as follows: Section 2 reports the

necessary Network Calculus background. In Section 3 we give a

formal problem statement, and we describe the LUDB methodol-

ogy in Section 4. In Section 5 we prove that the LUDB may actu-

ally be larger than the WCD, also describing how to compute

smaller bounds than the LUDB. In Section 6, we present an algo-

rithm for computing a lower bound on the WCD, and we describe

the tool that allows one to compute the upper and the lower bounds

in Section 7, along with two non-trivial case studies. Finally, con-

clusions are reported in Section 8.

2. NETWORK CALCULUS BACKGROUND
Network Calculus is a theory for deterministic network analysis

[3],[5]-[8]. The concept of service curve is introduced in Network

Calculus as a general means to model a network element in terms

of input and output flow relationships, i.e., how the element trans-

forms an arriving stream of packets into a departing stream. To this

aim, data flows are described by means of the cumulative function

� �R t , defined as the number of bits seen on the flow in time inter-

val > @0,t . Function � �R t is wide-sense increasing, i.e.

� � � �R s R td if and only if s td . Henceforth, we only consider

wide-sense increasing functions. Specifically, let � �A t and � �D t

be the Cumulative Arrival and Cumulative Departure functions

characterizing the same data flow before entering a network ele-

ment, and after having departed, respectively. Then, the network

element can be modeled by the service curve � �tE if

 � � � � � �^ `
0
inf

s t
D t A t s sE

d d
t � � (1)

for any 0t t . The flow is said to be guaranteed the (minimum)

service curve E . A service curve may be seen as the Cumulative

Departure Function of an initially empty system which is fed an

infinite burst of traffic at time zero. The infimum on the right side

of (1), as a function of t , is called the min-plus convolution of A

and E , and is denoted by � �� �A tE� . Min-plus convolution has

several important properties, including being commutative and

associative. Furthermore, convolution of concave curves is equal to

their minimum. Several network elements, such as delay elements,

links, and regulators, can be modeled by corresponding service

curves. For example, network elements which have a transit delay

bounded by M can be described by the following service curve:

 � �
0

t
t

t
M

M
G

M
�f t

 ®
�¯

More interestingly, it has been shown that many packet schedulers

can be modeled by a family of simple service curves called the

rate-latency service curves, defined as follows:

 � � > @,R t R tTE T
�

 � �

for some 0T t (the latency) and 0R t (the rate). Notation > @x
�

denotes ^ `max 0, x . Assume that some queues are managed by a

scheduler, which provides them with rate-latency service curves.

Then the service of each queue has a bounded lag (equal to its

latency) with respect to when that queue is served at a constant-rate

in a single-queue system. A fundamental result of Network Calcu-

lus is that the service curve of a feed-forward sequence of network

elements traversed by a data flow is obtained by convolving the

service curves of each of the network elements.

Guaranteeing performance bounds to traffic flows requires that the

arrivals be somewhat constrained. In Network Calculus this feature

is modeled by introducing the concept of arrival curve. A wide-

sense increasing function D is said to be an arrival curve (or,

equivalently, an envelope) for a flow characterized by a cumulative

arrival function A if it is:

 � � � � � �A t A tW D W� d � , for all tW d .

As an example, a flow regulated by a leaky-bucket shaper, with

sustainable rate U and burst size V , is constrained by the affine

arrival curve

 � � � � ^ `, 0
1

t
t tV UJ V U ! � � � .

Function ^ `1
expr

 is equal to 1 if expr is true, and 0 otherwise.

By combining together arrival and service curve characterizations

of data traffic and network elements, respectively, it is possible to

derive relevant performance bounds. Specifically, end-to-end delay

bounds can be derived. In fact, assume that an element (or network

of elements) is characterized by a service curve E and that a flow

traversing that node is constrained by the arrival curve D . Then, if

the node serves the bits of this flow in FIFO order, the delay is

bounded by the horizontal deviation

 � � � � � �^ `
0

, sup inf 0 :
t

h d t d tD E D E
t

ª ºt � d¬ ¼� (2)

Intuitively, h is the amount of time the curve D must be shifted

forward in time so that it lies below E . From (2) it follows that

� � � �1 2 1 2, ,h hE E D E D Ed � t . Notation 1 2E Ed means that

� � � �1 2t t tE E� d .

A well-known result related to a tandem of N rate-latency nodes

,i iRT
E , 1 i Nd d , traversed by a ,V UJ constrained flow follows

from (2), i.e., the end-to-end delay bound is given by

 ^ `
1 1

N i i

i i N
d RT V

 d d
 � �¦ (3)

if iRU d for any i . Notation � denotes the minimum operation.

2.1 FIFO multiplexing
Regarding FIFO multiplexing, a fundamental result, first derived in

[7], is reported in [3], Chapter 6. It allows one to compute a service

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

curve for a single flow based on the aggregate service curve and on

the arrival curve of the interfering flow as follows:

Theorem 2.1 (FIFO Minimum Service Curves [3]).

Consider a lossless node serving two flows, 1 and 2, in FIFO or-

der. Assume that packet arrivals are instantaneous. Assume that

the node guarantees a minimum service curve E to the aggregate

of the two flows. Assume that flow 2 has 2D as an arrival curve.

Define the family of functions:

 � � � � � � ^ `1 2, 1eq

t
t t t WE W E D W

�

! ª � � º �¬ ¼

For any 0W t such that � �1 ,eq tE W is wide-sense increasing, then

flow 1 is guaranteed the (equivalent) service curve � �1 ,eq tE W .

Theorem 2.1 describes an infinity of equivalent service curves,

each instance of which (obtained by selecting a specific value for

the W parameter), is a service curve for flow 1, provided it is wide-

sense increasing. For ease of notation, we write � �� �, ,E tE D W to

denote the equivalent service curve obtained from applying

Theorem 2.1 to a service curve � �tE , by subtracting from it arrival

curve � �tD W� . Hereafter, we omit repeating that curves are func-

tions of time (and, possibly, of other parameters such as W) when-

ever doing so does not generate ambiguity.

As an example, if the node is rate-latency, i.e. � � � �,Rt tTE E , and

flow 2 is leaky-bucket shaped, i.e. � � � �
2 22 ,t tU VD J , then Theorem

2.1 yields the following set of equivalent service curves for flow 1

([3], [9]).

 � �� � � � � �
^ `

2 2

2 2

2

, , 1
t

E t R t
R

W

V U T W
E D W U T

U

�

!

ª º§ � � ·
 � � �« »¨ ¸

�« »© ¹¬ ¼
 (4)

The curves are also shown in Figure 1, from which the following

two observations can be made:

a) � �2, ,E E D W is not necessarily a rate-latency curve. More spe-

cifically, it can be either a rate-latency curve (if 2 RW T Vd �) or

a different kind of curve, namely an affine curve shifted to the right

(if 2 RW T V! �).

b) not all the curves obtained from Theorem 2.1 are actually rele-

vant. For instance, all the curves obtained for 2 RW T V� � lie

entirely below the one obtained for 2 RW T V � , and are there-

fore useless for computing performance bounds.

T 2 RV

2

R

V
W T� �

2

R

V
W T! �

2

R

V
W T �

W

� �2 2

2R

V U T W
T

U

� �
�

�

2R
R

V
W T
ª º§ ·� �¨ ¸« »

© ¹¬ ¼ R

2R U�

Figure 1. The set of equivalent service curves for flow 1

It has been proved in [10]-[12] (to which the interested reader is

referred for more details and proofs) that pseudoaffine curves effec-

tively describe the service received by single flows in FIFO multi-

plexing rate-latency nodes. We call a pseudoaffine curve one which

can be described as:

 ,

1
x xD

x n

V US G J
d d

ª º
 � « »¬ ¼

� (5)

i.e., as a multiple affine curve shifted to the right. Note that, since

affine curves are concave, (5) is equivalent to:

 ,
1

x xD
x n

V US G J
d d

ª º � « »¬ ¼
�

We denote as offset the non negative term D , and as leaky-bucket

stages the affine curves between square brackets. We denote with
*

SU (long-term rate) the smallest sustainable rate among the leaky-

bucket stages belonging to the pseudoaffine curve S , i.e.

� �*

1,...,
min x

x n
SU U

 . We denote with 3 the family of pseudoaffine

curves. A rate-latency service curve is in fact pseudoaffine, since it

can be expressed as , 0,R RT TE G J � . A three-stage pseudoaffine

curve is shown in Figure 2.

D

1
V

2
V

3
V

1
U

2
U

3
U

� �tS

Figure 2. Example of a three-stage pseudoaffine curve

The alert reader will notice that, for any value of W , all the curves

obtained from (4) are pseudoaffine. Although more general than

rate-latency curves, pseudoaffine curves are still fairly easy to

manage from a computational standpoint: it can be easily shown

that the convolution of two pseudoaffine curves is a pseudoaffine

curve, whose offset is the sum of the offsets of the operands, and

whose leaky-bucket stages are the leaky-bucket stages of both oper-

ands. Furthermore, Theorem 2.1 can be specialized for the case of

pseudoaffine service curves and leaky-bucket arrival curves as

follows:

Corollary 2.2 ([10]):

Let S be a pseudoaffine service curve, with offset D and n leaky-

bucket stages ,x xV UJ , 1 x nd d , and let ,V UD J , with *

SU Ut . If a

node guarantees a minimum service curve S to the aggregate of

the two flows, and flow 2 has D as an arrival curve, then the fam-

ily of functions � �^ `, , , 0E s sS D t , with:

 � �
1 1

1 ,

, ,
i i x

x x
i n i ni i x

D s x n s

E s
V V V V V V

U U U
U U U

S D G J� �

d d d d

 ½ª º� ª º� �° °� � � d d � � � �« » ® ¾« »
¬ ¼ ¬ ¼° °¯ ¿

ª º
« » � « »
« »¬ ¼

� ,

or, equivalently,

 � � � � � �^ ` � �, , ,
1

, ,
x x x

h s s h D
x n

E s D S U D S V V U U
S D G J� � � � � �

d d

ª º
 � « »¬ ¼

� (6)

are pseudoaffine equivalent service curves for flow 1.

It can be proved that the set � �^ `, , , 0S E s sS D t� is a proper

subset of � �^ `, , , 0E E D W W7 t , i.e. it does not include some

equivalent service curve that would be computed through Theorem

2.1. However, it does include those equivalent service curves

which are relevant for computing delay bounds. More specifically,

for each curve \x S�7 , there exists a curve y S� such that

y xt . Therefore, all the performance bounds that can be found by

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

applying Theorem 2.1 can also be found by applying Corollary 2.2.

With reference to the example of Figure 1, Corollary 2.2 yields:

 � �
2 22 ,, , R s R

s
R

E s V U
T

E D G J � �
� �

 � (7)

i.e., all the equivalent service curves obtained from Theorem 2.1

with 2 RW T Vt � . Note that (7) is much more compact than (4).

3. SYSTEM MODEL
We analyze a tandem of N nodes, connected by links. The tandem is

traversed by flows, i.e. distinguishable streams of traffic. We are

interested in computing a tight end-to-end delay bound for a specific

flow, i.e. the tagged flow tf , which traverses the whole tandem from

node 1 to N . At each node, FIFO multiplexing is in place, meaning

that all flows traversing the node are buffered in a single queue

First-Come-First-Served. Furthermore, the aggregate of the flows

traversing a node is guaranteed a minimum service, in the form of a

rate-latency service curve, with rate kR and latency kT ,

1 k Nd d . In the above framework, a flow can be identified by the

couple � �,i j , 1 i j Nd d d , where i and j are the first and last

node of the tandem at which the flow is multiplexed with the ag-

gregate. We model a flow as a stream of fluid, i.e. we assume that it

is feasible to inject and service an arbitrarily small amount of traf-

fic at a node, and we leave packetization issues for further study.

We assume that flows are constrained by a ,V U leaky-bucket

arrival curve at their ingress node. Leaky-bucket curves are addi-

tive, i.e. the aggregate of two leaky-bucket shaped flows is a leaky-

bucket shaped flow whose arrival curve is the sum of the two.

Hence, without any loss of generality, we assume that at most one

flow exists along a path � �,i j and we identify it using the path

� �,i j as a subscript. It was also proved that, in order to compute

the end-to-end delay bound, all flows traversing path � �1, N can be

considered as if they were one flow, i.e. the tagged flow.

Based on how the paths of its flows are interleaved, we classify

tandems as being either nested or non nested. In a nested tandem,

flows are either nested into one another, or they have null intersec-

tion. This means that no two flows � �,i j , � �,h k exist for which

i h j k� d � . Said in other words, let us consider two flows � �,i j ,

� �,h k , with � � � �, ,i j h kz and i hd . Then either j h� , or k jd .

In the first case, the two flows span a disjoint set of nodes. In the

second case, we say that � �,h k is nested within � �,i j , and we

write � � � �, ,h k i j� . For example, Figure 3 represents a nested

tandem of three nodes. Flow � �3,3 is nested within flow � �2,3 .

Moreover, flows � �1,1 , � �3,3 and � �2,3 are nested within the

tagged flow � �1,3 .On the other hand, a tandem is non-nested if it

does not verify the above definition, as the one shown in Figure 4,

below. In that case, we say that flow � �1,2 intersects flow � �2,3 .

� �1,3

� �1,1

� �2,3

� �3,3

1 2 3

Figure 3. A nested tandem

� �1,3

� �1,2

� �2,3

1 2 3

Figure 4. A non-nested tandem

Finally, as far as rate provisioning is concerned, we assume that a

node’s rate is no less than the sum of the sustainable rates of the

flows traversing it, i.e. for every node 1 h Nd d ,

 � �
� �

,
, :

h

i j
i j i h j

RU
d d

d¦ (8)

This allows a node’s rate to be utilized up to 100%, thus being a

necessary condition for stability. Moreover, we assume that the

buffers are large enough to guarantee that traffic is never dropped.

4. THE LEAST UPPER DELAY BOUND

METHODOLOGY
In this paragraph, we describe the Least Upper Delay Bound

(LUDB) methodology. We first explain it on nested tandems, and

extend it to non-nested tandems later on. At a first level of ap-

proximation, LUDB consists in computing all the service curves

for the tagged flow: we start from the aggregate service curves at

each node, we apply Corollary 2.2 iteratively in order to remove

one flow � �,i j { � �1, N from the tandem, and we convolve the

service curves of nodes traversed by the same set of flows. Every

time Corollary 2.2 is used, a new free parameter � �,i j
s is intro-

duced. Therefore, we compute in fact an infinity of service curves.

From each of these we can compute a delay bound for the tagged

flow, hence the minimum among all the delay bounds is the least

upper delay bound.

For instance, let us consider again the three-node nested tandem

shown in Figure 3. Figure 5 shows how to compute the set of end-

to-end service curves for the tagged flow (1,3). We start from the

aggregate service curves at each node, and we apply Corollary 2.2,

starting from nodes 1 and 3. Then we convolve the service curves

obtained for nodes 2 and 3, which are now traversed by the same

aggregate of flows (1,3) and (2,3). We remove flow (2,3) by apply-

ing once more Corollary 2.2, and we obtain the set of end-to-end

service curves for the tagged flow through convolution. The service

curves
^ `

� � � � � �� �1,3

1,1 3,3 2,3
, ,s s sS depend on three parameters, � �1,1

s ,

� �2,3
s , � �3,3

s , and they are pseudoaffine for each instance of them.

2E

� �2,3
D

� �1,3
D � � � �� �1

1,1 1,1
, ,E sE D � � � �� �3

3,3 3,3
, ,E sE D

1E 2E 3E

� �2,3
D

� �1,1
D � �3,3

D

� �1,3
D

� �2,3
D

� �1,3
D � � � �� �1

1,1 1,1
, ,E sE D � � � �� �2 3

3,3 3,3
, ,E sE E D�

� �1,3
D � � � �� �1

1,1 1,1
, ,E sE D � � � �� � � � � �� �2 3

3,3 3,3 2,3 2,3
, , , ,E E s sE E D D�

� �1,3
D � � � �� � � � � �� � � � � �� �1 2 3

1,1 1,1 3,3 3,3 2,3 2,3
, , , , , ,E s E E s sE D E E D D� �

Figure 5. An example of application of the LUDB methodology

The best end-to-end delay bound that we can compute through this

method, i.e. the LUDB, is the minimum among all the bounds that

can be computed for each instance of the free parameters. For the

above example, the problem can be formulated as follows:

� �

^ `
� � � � � �� �� �

� � � � � �

1,3

1,3 1,1 3,3 2,3

1,1 3,3 2,3

min , , ,

, , 0

h s s s

s s s

D S
°
®

t°̄
 (9)

Now, since
^ ` � �1,3S is pseudoaffine and � �1,3

D is an affine curve,

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

problem (9) is an optimization problem with a piecewise linear

objective function of x variables and x linear constraints, x

being the number of distinguished flows in the tandem minus one,

2x N� , i.e. it is a piecewise-linear programming (P-LP) problem.

In [11], this has been proved to be true for all nested tandems.

The LUDB methodology cannot be applied directly to non-nested

tandems, such as the one shown in Figure 4. In fact, in that case,

there are no two consecutive nodes traversed by the same set of

flows, since two flows intersect each other. In [11], it was observed

that a non-nested tandem can always be cut into at most 2Nª º« »

disjoint nested sub-tandems. Therefore, one can use LUDB to

compute partial, per sub-tandem delay bounds, and an end-to-end

delay bound can be then computed by summing up the partial delay

bounds. For instance, the tandem of Figure 4 can be cut in two

different ways, i.e. placing the cut before or after node 2. This way,

two different end-to-end delay bounds can be computed, call them
aV and bV , both using LUDB for the sub-tandems. More specifi-

cally, cutting the tandem after node 2 yields the following results

(see [11] for the computations):

If � �
1 2

2,3
R RU� � ,

� � � � � � � �

� � � � � �

� � � � � � � � � �

1,3 2,3 2,3 1,31 2 3

1 3 2 3

3

1,2 2,3 1,3

3 2 1

2

1,3 2,3 1,3 2,3 1,3

3 2 1 2 3

1 1 1

1 1

aV
R R R

R

R R R

R

R R R R R

U U U U
T T T

V U U

V U V V U

ª º �§ · § ·
 � � � � � � � �« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

§ ·�
¨ ¸� �
¨ ¸
© ¹

§ ·�§ ·
¨ ¸� � � � � � �¨ ¸¨ ¸ ¨ ¸© ¹ © ¹

 (10)

Otherwise,

� � � � � � � �

� � � � � � � �

� � � � � � � � � �

1,3 2,3 2,3 1,31 2 3

2 3 2 3

1,2 2,3 1,3 2,3

2 3 3 1

2 2

1,3 2,3 2,3 2,3 1,3

2 2 3 2 3

1 1 1

1 1

1 1

aV
R R R

R R R R

R R

R R R R R

U U U U
T T T

V U U U

V U U V U

ª º �§ · § ·
 � � � � � � � �« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

ª º§ · § ·
� � � � � �« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

§ · § ·� �
¨ ¸ ¨ ¸� � � � � � �
¨ ¸ ¨ ¸
© ¹ © ¹

 (11)

On the other hand, cutting the tandem before node 2 yields the

following results:

If � �
3 2

1,2
R RU� � ,

� � � �

� � � � � � � � � � � � � �

1,2 1,31 2 3

1 2 3

1,2 1,3 1,2 1,3 1,2 1,3 2,3

1 3 2 1 2 3 3

1

1 1

bV
R R

R R R R R R R

U U
T T T

V U V V U V V

§ ·
 � � � � �¨ ¸¨ ¸

© ¹

§ · § ·
� � � � � � �¨ ¸ ¨ ¸¨ ¸ ¨ ¸

© ¹ © ¹

(12)

Otherwise,

� � � � � �

� � � � � � � � � � � �

� � � � � � � �

1,2 1,3 2,31 2 3

2 2 2 3

1,2 1,3 2,3 1,2 1,3 1,2

1 2 3 2 1 2

1,3 2,3 2,3 2,3

2 3 2 3

1 1

1 1 1

1 1

bV
R R R

R R R R R R

R R R R

U U U
T T T

V U U V V U

V U V U

ª º§ ·
 � � � � � � �« »¨ ¸¨ ¸« »© ¹¬ ¼

ª º§ · § ·
� � � � � � � � �« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

§ · § ·
� � � � � �¨ ¸ ¨ ¸¨ ¸ ¨ ¸

© ¹ © ¹

 (13)

Now, a bV V V � is an end-to-end delay bound for the tagged

flow. One can see through straightforward algebraic manipulations

that both aV and bV can actually be the minimum, depending on

the actual values of the nodes and flows parameters.

4.1 Tightness of the LUDB
Assessing whether LUDB yields tight bounds is made particularly

challenging by the fact that a method for computing the WCD in

FIFO networks is still missing. In a previous work of ours, [10],

LUDB was applied to sink-tree tandems, such as the one shown in

Figure 6 which are in fact nested tandems. In sink-tree tandems, all

flows are of the kind � �,j N , 1 j Nd d , i.e. they are nested into

one another progressively. For this class of tandems, we showed

that the LUDB (which can be computed in a closed form) is actu-

ally equal to the WCD. The proof was obtained by constructing a

scenario where a bit of the tagged flow experiences a delay equal

to the LUDB itself.

� �1,3

� �2,3

� �3,3

1 2 3

Figure 6. A sink-tree tandem

As far as non-nested tandems are concerned, in [11], we showed

that this method yields better results compared to per-node analy-

sis. However, we also observed that breaking the end-to-end analy-

sis, i.e. computing and summing partial delay bounds, is likely to

lead to loose end-to-end delay bounds. In fact, this entails assuming

independent worst-case scenarios at each sub-tandem, which can-

not take place simultaneously. The alert reader will notice that a

similar argument has been used in the past to prove that the pay

burst only once principle holds for single flows in per-flow sched-

uling networks (see e.g. [3] for some discussion on this topic).

Broadly speaking, cutting a tandem into sub-tandems is certainly

not as bad as cutting it into single nodes (as it is done in per-node

analysis), but mostly because you need less cuts to obtain the same

task (one instead of two, in the above example).

One question that remains open is whether, at least when end-to-

end analysis is possible (i.e., in nested tandems), the LUDB is

always equal to the WCD. In the next section, we show that this is

not the case.

5. A COUNTEREXAMPLE
Hereafter, we show by counterexample that the LUDB may be

larger than the WCD, even when end-to-end analysis is possible.

Since we do not know how to compute the WCD, we can only

prove this assertion by computing a smaller delay bound than the

LUDB. The procedure is the following: consider a tandem T , and

call W its WCD. Now, assume you are able to build tandem T ,

such that its WCD W is no smaller than W , i.e. W Wt . Now,

any delay bound (e.g., the LUDB) is no smaller than the WCD by

definition. Thus, if V and V are delay bounds for T and T , then

it is V Wt , i.e. V is obviously a delay bound for T . However, if

we find cases when V V� , we can prove that V W! .

The property that allows us to build such a tandem T from a given

tandem T is called Flow Extension (FE). We first explain it, and

then exploit it to construct simple counterexamples.

Hereafter, we denote as � � � �,

k

i j
A t the Cumulative Arrival Function

(CAF) for flow � �,i j at node k , and with � � � �,

k

i j
D t the Cumula-

tive Departure Function (CDF) for flow � �,i j at node k . Further-

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

more, we denote with � �kA t and � �kD t the total CAF and CDF at

node k .

Define a scenario g for an N -node tandem as:

1) a set of CAFs for all the flows � � � �, 1,i j N� at their entry

node, � � � �,

i

i j
A t ;

2) a set of “node behaviors”, i.e. the way each node i , 1 i Nd d ,

transforms its CAF � �iA t into its CDF � �iD t , according to

the related service curve inequality � � � �i i iD t A tEª ºt �¬ ¼ . As

for the latter, we can describe a node behavior by means of a

non-negative lead function � �iL t , which is such that

� � � � � �i i i iD t A t L tEª º � �¬ ¼ . Note that � �iL t is not necessar-

ily wide-sense increasing.

In order for a scenario to be feasible, each CAF has to be compati-

ble with the related arrival curve constraint,

� � � � � � � � � � � �, , ,

i i

i j i j i j
A t A s t sD� d � . Furthermore, each lead function

has to verify � � � � � �i i i iL t A t A tEª ºd � �¬ ¼ in order for node i to

have a causal behavior.

Theorem 5.1 (Flow Extension, FE)

Let T be a tandem of N nodes, in which there is a flow

� �, 1j N � . Call T the tandem obtained from T by “extending”

flow � �, 1j N � , i.e. by substituting it with flow � �,j N , all else

being equal. Call d and d the WCD for the tagged flow in T and

T . Then, it is d dt .

Proof

Call * the set of all feasible scenarios in a tandem. Throughout

this proof, we express the fact that a quantity depends on scenario

g�* by using the conditional notation g , i.e. � � � �,

i

gi j
A t denotes

the CAF of flow � �,i j at node i under scenario g .

Call � �i

gd t the delay experienced at node i by a bit of the tagged

flow entering a generic N -node tandem at time t in scenario g .

The WCD d is defined as follows:

 � �
0

1

max max
N

i

g
g t

i

d d t
�* t

 ½ª º
 ® ¾« »

¬ ¼¯ ¿
¦ (14)

Call) � * the subset of scenarios where � � 0NL t , i.e. those for

which node N is lazy. We first show that at least one worst-case

scenario is included in) , i.e.:

 � �
0

1

max max
N

i

g
g t

i

d d t
�) t

 ½ª º
 ® ¾« »

¬ ¼¯ ¿
¦ (15)

Assume by contradiction that:

 � �
0

1

max max
N

i

g
g t

i

d d t
�) t

 ½ª º
! ® ¾« »

¬ ¼¯ ¿
¦ (16)

and call \x�*) the scenario where d is achieved. Consider

now the scenario y�) , which only differs from x because

� � 0NL t . It is obviously � � � �i i

y xd t d t , 1 1i Nd d � , and

� � � �N N

y xA t A t . However, if node N is lazy in y and not in

x , it is � � � �N N

y xD t D td , hence � � � � � � � �1, 1,

N N

y xN N
D t D td since

the node is FIFO, and � � � �N N

y xd t d tt . Thus, we have found a

scenario y�) in which a delay at least no smaller than d is

achieved, which contradicts (16).

Having said this, we move to comparing T and T , limiting our-

selves to the subset of scenarios in which the last node is lazy.

Whenever needed, we use the same symbol to denote the same

quantities in T and T , adding a bar to the latter ones in order to

distinguish them. Consider now a generic scenario g�* for tan-

dem T , and define the corresponding scenario g in T as the one

with the same set of CAFs at the entry nodes of all flows, and the

same set of lead function at all nodes. Clearly, if the scenario is

feasible in T , it is also feasible in T , since flows and nodes are

subject to the same constraints. However, in tandem T , flow

� �, 1j N � is extended up to node N . This is exactly like adding,

as an input to node N , a “virtual” flow � �1,N N� , with

� � � � � � � �
1

1, , 1

N N

N N j N
A t D t

�
� � .

For a scenario g�) in T , the corresponding scenario g�) is

such that:

 � � � �i i

gg
d t d tt , 1 i Nd d . (17)

In fact, equality holds in (17) for 1 1i Nd d � , since the two sce-

narios are the same up to node 1N � included. However, the input

at node N in T is � � � � � � � �1,

N N N

N N
A t A t A t� � , where � � � �1,

N

N N
A t�

is a wide-sense increasing function. Now, since node N is lazy

and FIFO, the delay of each bit in � �NA t cannot be lower than in

T , thus � � � �N N

gg
d t d tt .

Now, for any scenario Tg �* there exists a scenario
T

g �* in

which the end-to-end delay of a bit of the tagged flow entering at

time t in tandem T is larger than (or equal to) the one in tandem

T . Therefore, the same inequality also holds between the respec-

tive WCDs, i.e. d dt . �

We now show how to exploit FE to compute smaller bounds than

the LUDB.

Example 5.2

Consider the two-node tandem T shown in Figure 7, left.

� �1,2

� �1,1

1 2

T

� � � �^ `1,2 , 1,1
1 2

T

Figure 7. Two simple tandems. The one on the right is obtained

by applying FE to the one on the left.

Build the corresponding tandem T according to FE (shown in the

same figure on the right), for which it is W Wt . Consider now

what delay bound we can compute through LUDB in both tandems.

In T , it is the following:

� � � �
� �

� � � �

� �

� �

2 1,1 1,2 2 1

1,11 21

2 1,1 1,2 2 1

1,1211
1

2

1,1

i

i

i

i

R R
R R

V
R R

RR
R

R

V V
T U

V V
T U

U

� � � �°

°
°

 ® � � � t°
° �

�°̄

¦

¦
 (18)

provided that the following provisioning inequalities hold:

 � � � �
1

1,1 1,2
R U Ut � , � �

2

1,2
R Ut (19)

Otherwise it is infinite.

On the other hand, the LUDB for the tagged flow in T is:

� � � �2 1,1 1,2

1 21

i

i
V

R R

V V
T

�
 �

�¦ , (20)

provided that the following provisioning inequalities holds:

 � � � �
1

1,1 1,2
R U Ut � , � � � �

2

1,1 1,2
R U Ut � , (21)

otherwise it is infinite. Note that the second inequality in (21),

related to node 2, is more constraining than the corresponding one

in (19).

Now, � �,V V� is a delay bound in T . However, it is easy to see

that V V� in some cases. Table 1 reports the comparison between

V and V in the five different regions in which the rate inequali-

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

ties included in expressions (18)-(21) divide the plan 1 2R OR (also

shown in Figure 8).

xxxxx
xxxxx

� � � �1,1 1,2
U U�

� �1,2
U

1R� �1,1
U

� �
2 1

1,1
R RU� !

� �
2 1

1,1
R RU� �

2 1R R!

2 1R R�

III

IV

� � � �1,1 1,2
U U�

2R

V

II

I

Figure 8. Regions of the plan

1 2R OR and related inequalities.

In region I, V V� . Thus, the following set of inequalities hold:

 , , ,V W V W W W V Vt t t � (22)

An immediate consequence of (22) is that V W! , i.e. the LUDB is

not the WCD in that case.

Furthermore, note that in region III, the rate inequalities are not

sufficient to decide whether V V� or V Vt : in fact, both can

occur depending on the values of the parameters. Again, this means

that the LUDB is not necessarily the WCD in that region too. �

Now, when LUDB is applied to a nested tandem, the entire set of

all the “good” end-to-end service curves that can be computed

using Theorem 2.1 and convolution is explored, and a global

minimum is computed. This means that no better bounds can be

computed by relying on Theorem 2.1 alone. However – quite sur-

prisingly – this is proved not to be sufficient for computing the

WCD. A likely cause for this is that not all the necessary informa-

tion is retained in the equivalent service curves computed through

Theorem 2.1.

Consider, for instance, a single rate-latency node traversed by two

leaky-bucket shaped flows, as in the example shown in Figure 1,

and assume that the arrival curve of the two flows are ,i ii V UD J ,

1 2id d . The LUDB for flow 1 is computed as the solution of the

following trivial optimization problem:

 2 1

0
2

min
s

R s
d s

R R

V V
T

U

�

t

 ½ª º� �° °
 � � �® ¾« »�¬ ¼° °¯ ¿

The minimum is achieved when s RV , and it is equal to

� �1 2V RT V V � � . This is also the WCD for flow 1, since it is

attained by its 1V
th bit in the following worst-case scenario:

a) both flows are greedy: � � � �i iA t tD , i.e. their CAFs are equal

to their respective arrival curves. However, the burst of flow 2

arrives just before that of flow 1.

b) the node is lazy.

Call � �1D t the CDF for flow 1 obtained in the above scenario,

shown in Figure 9 as a thicker dashed line. Let us compare it to the

curves � �'

1 ,D t s obtained by convolving the greedy CAF of flow 1

with each equivalent service curve derived through Corollary 2.2,

therein including the “optimum” one. These are shown as thinner

lines in the same figure, for various values of s , and they represent

lower bounds to any CDF that can be obtained from that CAF, by

definition of (equivalent) service curve. However, one can easily

see that � � � � �'

1 1: ,s D t D t s . This seems to suggest that the

� �'

1 ,D t s might not be tight lower bounds themselves. This, in turn,

would imply that each equivalent service curve alone cannot de-

scribe the behavior of a FIFO node with the necessary accuracy.

T 2 RV

V

0s

R

2
R U�

s RV

1U
� �1

A t

� �1
D t

s RV!

s RV�

1U
1

1 2

R
U

U U
�

�

Figure 9. CDFs obtained using equivalent service curves

Table 1. Different regions of the plan 1 2R OR and related end-to-end delay bounds

Region Rate Inequalities V V Comparison

I � � � �
1

1,1 1,2
R U Ut � , 2 1R R!

� � � �

� �

2 1,1 1,2

211
1

2

1,1

i

i RR
R

R

V V
T

U

� �

�
�

¦ � � � �2 1,1 1,2

11

i

i R

V V
T

�
�¦ V V�

II � � � �
2

1,1 1,2
R U Ut � , � �

2 1

1,1
R RU� � � � � �2 1,1 1,2

1 21

i

i R R

V V
T

� �¦

� � � �2 1,1 1,2

21

i

i R

V V
T

�
�¦ V Vd

III
� � � �

2

1,1 1,2
R U Ut � , 2 1R R� ,

� �
2 1

1,1
R RU� t

� � � �

� �

2 1,1 1,2

211
1

2

1,1

i

i RR
R

R

V V
T

U

� �

�
�

¦ � � � �2 1,1 1,2

21

i

i R

V V
T

�
�¦ It depends

IV
� � � �

1

1,1 1,2
R U Ut � ,

� � � �
2

1,1 1,2
R U U� � , � �

2 1

1,1
R RU� t

� � � �

� �

2 1,1 1,2

211
1

2

1,1

i

i RR
R

R

V V
T

U

� �

�
�

¦
f V V�

V
� �

2

1,2
R Ut , � � � �

2

1,1 1,2
R U U� �

� �
2 1

1,1
R RU� t

� � � �2 1,1 1,2

1 21

i

i R R

V V
T

� �¦ f V V�

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

5.1 Practical applications of Flow Extension
Beside being useful to prove the limitations of Theorem 2.1, FE

can also be exploited to compute improved delay bounds. How-

ever, its practical usefulness is limited for at least two reasons. The

first one is represented by the topology restrictions required in

order to apply Theorem 5.1 (i.e., that there is a flow in the tandem

that leaves at node 1N �). Second, in order for it to be of any

practical use, it requires that the last node be overprovisioned. With

reference to the previous example, we can observe that, if

� � � � � �
2

1,2 1,1 1,2
,R U U Uª ª� �¬ ¬ , i.e. in regions IV and V, the WCD in

tandem T is infinite, and thus FE is useless in this case.

This said, we can still find some useful generalization of Theorem

5.1. The first one is that, given a tandem T , and a set of extensible

flows � � � �^ `, 1 1,S j N N{ � � , FE can in fact be applied by ex-

tending any (non empty) subset of flows s S� . Thus we can build

up to 2 1
S � different tandems T , for each one of which a delay

bound can be computed, possibly improving on the LUDB in T

for some value of the nodes and flows parameters. However, the

more flows are in s , the more constraining the provisioning ine-

qualities at node N must be, in order for the related bound in T to

be finite. More specifically, the required inequality is the follow-

ing:

 � �
� � � �

� �
� �

, , 1
, 1, , 1

N

i N i N
i N N i N s

RU U �
� � �

� d¦ ¦ (23)

Thus, the amount of overprovisioning at node N may act as a

constraint on the number of effective ways in which FE can be

applied (which can therefore be smaller than 2 1
S � in practice).

The second generalization is that FE can be applied more than once

to the same tandem, while obviously tightening the provisioning

inequalities at each iteration. For instance, in the tandem shown in

Figure 10, above, FE can be applied a first time by extending flow

� �1,2 . After convolving the service curves of node 2 and 3, it can

then be applied again, extending flow � �1,1 up to node 3.

1

� � � �^ `1,3 , 1,2

� �1,1

1 2 3

� �1,3

� �1,1

1 2 3

� �1,2

� � � � � �^ `1,3 , 1,2 , 1,1

2 3
Figure 10. Nested tandem and related FE transformations

Hereafter, we report another example for FE, this time related to a

non-nested tandem.

Example 5.3

Consider the non-nested tandem of Figure 4. We apply FE to it, by

extending flow � �1,2 , and derive the following delay bound:

If � � � �1 2 3

2,3
R R RU� � � , then:

� � � � � �3 2,3 1,3 1,2

2 3 11

i

i
V

R R R

V V V
T

�
 � �

�¦ (24)

Otherwise

 � � � � � �

� �
� �

3 2,3 1,3 1,2

12 31
2 3

1

2,3

i

i
V

RR R
R R

R

V V V
T

U

�
 � �

�
� �

�

¦ (25)

Both (24) and (25) hold provided that � � � � � �
3

1,3 2,3 1,2
R U U Ut � � .

Note that, unlike in aV and bV , in V each burst � �,i j
V appears

exactly once. By comparing them with (10)-(13), it is easy to iden-

tify regions in which � �a bV V V� � . For instance, if 3iR ,

1iT , 1 3id d , and � �,
3

i j
V , � �,

1
i j

U , for all flows, we obtain

20 3V , 2 101 9aV , 2 92 9bV , so that � �0.65 a bV V V� �� . �

6. A LOWER BOUND ON THE WORST-

CASE DELAY
In order to assess how tight the upped bound V that we can com-

pute through LUDB or FE is, we compute a lower bound v on the

worst-case delay. The interval > @,v V includes the WCD by defini-

tion, and its width V v� is a measure of the uncertainty on the

worst-case delay itself. Such a method has already been used to

assess the tightness of a network calculus bound in [18].

Now, any attainable end-to-end delay is by definition a lower

bound on the worst-case delay, the latter being in fact the maxi-

mum attainable delay. Therefore, we heuristically design a scenario

which leads to a “large” end-to-end delay for the tagged flow. The

heuristics used are the same that were proved in [10] to actually

represent the worst-case scenario for sink-tree tandems. While this

does not imply that the same holds for generic tandems, it nonethe-

less provides a good motivation. We rely on the following three

high-level heuristics:

a) All nodes are lazy, i.e. they delay each bit as long as they can

b) The tagged flow � �1, N sends its whole burst � �1, N
V at time

0t and then stops. Therefore, the � �1,N
V th bit of the tagged

flow experiences a larger delay than the other � �1,
1

N
V � .

c) Every cross flow � �,i j sends “as much traffic as possible”, so

as to delay the � �1,N
V th bit of the tagged flow.

We measure the delay experienced by the � �1, N
V th bit of the tagged

flow under these hypotheses.

Let us take a closer look at hypothesis c) above. Call ,x xa b the

time instants when the first and the last bit of the tagged flow ar-

rive at node x . For instance, it is 1 1 0a b , while x xa b� for

1x ! , since all nodes are lazy. Hypothesis c) implies that

 � � � � � � � � � � � �, , ,

i i i i i i

i j i j i j
A b A a b aD� � (26)

for each flow � �,i j . However, there are infinite CAFs that verify

(26). For instance, one is the greedy CAF, � � � � � � � �, ,

i i

i j i j
A t t aD � ,

while another one is � � � � � � � �, ,

i i

i j i j
A t F t , with:

 � � � �
� � � �

� � � � � �

,

,

, ,

i i

i ji

i j
i i i

i j i j

t a t b
F t

b a t b

U

U V

� � � �°
 ®

� � � °̄
 (27)

which we call delayed greedy CAF, in which the flow sends its

burst � �,i j
V just before the � �1, N

V th bit of the tagged flow arrives at

node i , as shown in Figure 11.

ia ib

� �,i j
V

� � � �,

i

i j
F t

t

� �,i j
U

� � � �,

i

i j
t aD �

Figure 11. Cumulative arrival functions for flow (i,j)

Under the hypotheses of the system model, if all the CAFs for the

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

cross flows are either greedy or delayed greedy, both the total CAF

and the CAF of the tagged flow at each node are piecewise linear,

and therefore easy to handle algorithmically. We have designed and

coded an algorithm that manipulates piecewise linear CAFs and rate-

latency service curves, computing the respective CDFs under the

lazy-node hypothesis (similar to what was done in [16] for blind-

multiplexing networks). The algorithm takes into account the FIFO

multiplexing and de-multiplexing of flows, thus allowing one to

separate the contribution of each flow to the total CAF at a node.

It turns out that, depending on the values associated to the nodes

and flows parameters, using either the greedy or the delayed greedy

CAF for the cross flows actually leads to different delays, and it is

not always possible to establish which of the two is larger without

actually running the scenarios. Therefore, in order to compute the

largest possible lower bound on the delay, one needs to test up to

2M different scenarios, M being the number of cross-flows. How-

ever, the computations required for evaluating a single scenario are

indeed lightweight, so that computing v is normally faster than

computing the LUDB.

In order to give a first example of the effectiveness of the proposed

algorithm, we apply it to the two examples of Section 5, in which

improved bounds were computed through FE. The results are:

- Example 5.2: � �,v V V � in regions I, II, V, while in regions

III and IV it is

� � � � � �2 1,1 1,2

1 21
,i

i
v V V

R R

V V
T

 � � � �¦

- Example 5.3: when (24) holds, it is always v V , otherwise

in (25) it is v V only when 2 3R Rd , otherwise it is:

 � � � �

� �

� �

� �

� �3 2,3 1,3 1,2

1 131
3 2

1 1

2,3 2,3

,i

i
v V V

R RR
R R

R R

V V V
T

U U

 � � � � �

� �
� �

¦

This further motivates us to think that, on one hand, FE is effective

in complementing LUDB, and, on the other hand, that the heuris-

tics behind the computation of the lower bound are effective as

well. In the next section, we evaluate the LUDB and the lower

bound in two non-trivial case studies.

7. NUMERICAL EVALUATION
We have developed a tool, called DEBORAH (DElay BOund Rat-

ing AlgoritHm), for computing both upper and lower delay bounds

in tandems, which is available for download at [17]. The tool is

written in C++, and it takes a text file as an input, which contains

the rate and latency � �,i iR T of each node 1 i Nd d and the leaky-

bucket parameters � � � �� �, ,
,

i j i j
V U for each flow. At the moment of

writing, the tools only computes the LUDB for nested tandems,

whereas the lower bound algorithm shown in Section 6 works for

both nested and non-nested tandems. The LUDB is computed by

separating the original P-LP problem into a number of simplexes,

and solving each simplex separately. Each simplex has M vari-

ables, M being the number of � �,i j
s variables associated to each

cross flow. The number of constraints C is upper bounded by the

following expression:

� �1

1
2

M M
C M

� �
d � �

The first M constraints are simply � �,
0

i j
s t for each cross flow.

The other constraints are required to isolate each single piece of the

piecewise linear objective function, and they are always no more

than the sum of the first M naturals (much less on average).

A thorough analysis of the computational complexity of the LUDB

computation is part of the ongoing work. As a first, preliminary

observation, we report that the number of required simplexes grows

fast with the number of flows and nodes in the tandem. Further-

more, the number of simplexes is influenced not only by the num-

ber of cross-flows, but also on the way they are nested into each

other. In fact, it may range between M , achieved in a tandem with

1-hop persistent cross-flows, such as the one analyzed in [9], to !M ,

which is achieved in a sink-tree tandem (although the LUDB can

actually be computed in a closed-form in both cases, without the aid

of a software tool). However, in our experiments we found that a high

percentage of those simplexes (roughly an average of 90%, in the

cases we analyzed) are actually unfeasible, and can be easily identi-

fied as such, thus saving a considerable computation time.

Hereafter, we report computations related to two case studies.

Case study 1

We analyze a relatively complex nested tandem of 15 nodes and 17

flows, shown in Figure 12, whose nodes and flows parameters are

reported in Table 2 and Table 3.

For this case study, the DEBORAH tool outputs 217.386V . The

LUDB was computed by solving 19440 simplexes, 17604 of which

turned out to be unfeasible. The overall time taken was 6.92 sec-

onds on a 3.0GHz single-core processor, nearly 85% of which

spent within the simplex solver itself. As a cross-check, we also

tried FE, by extending flow (12,14) (note that flow (14,14) could

not be extended due to the rate constraints at node 15). This yielded

232.541V V ! , in similar computation time. The lower bound

computation algorithm yielded 190.483v , in less than 5 s. The

gap is � � 12.4%V v V� # , which further confirms that the LUDB

is a good estimate of the WCD. �

Case study 2

We analyze a tandem of N nodes, traversed by the tagged flow

� �1, N and by one-hop persistent cross-flows � �,i i , 1 i Nd � ,

shown in Figure 13. We assume that all flows have the same leaky-

bucket arrival curve, with 5V and 4U . All nodes have the

same rate-latency service curve, with 1T and 2R UU , U

ranging from 20% to 100%. The LUDB expression for that tandem

is available in a closed form, and it is equal to (see [9], Theorem 2):

Table 2. Node parameters

node R T
1 70 0.3

2 10 0.2

3 40 0.1

4 40 0.1

5 60 0.2

6 55 0.1

7 7 0.2

8 60 0.3

9 60 0.1

10 10 0.2

11 30 0.1

12 40 0.3

13 45 0.1

14 45 0.3

15 7 0.2

Table 3. Flow parameters

flow V U
1,15 200 1

1,1 100 60

1,3 200 3

1,8 100 2

3,3 200 30

4,4 400 30

4,7 300 2

5,5 300 50

6,6 200 45

8,8 100 55

9,9 300 55

9,11 200 2

11,11 200 20

12,12 100 30

12,14 100 3

13,13 200 40

14,14 100 40

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

1 1

2 2

U
V N

U

V
T

U
ª º� § · � � � �¨ ¸« »�© ¹¬ ¼

Figure 14 shows the gap between the LUDB and the lower bound

as a function of the number of nodes and for various values of U .

As the figure shows, the gap increases with both N and U . How-

ever, it tends to reach a limit value as N grows higher. While the

exact quota of the gap depends on the actual parameter values, the

same behavior is always observed.

Note that we can apply FE to the above tandem when 100%U � .

For instance, when 8, 20%N U all the cross flows can be

extended to the last node, thus yielding a sink-tree tandem with a

tagged flow � � � �1, 2 ,2N V U{ and cross-flows � � � �, ,i N V U{ ,

2 8id d , for which the LUDB can be computed in a closed form

applying the formula in [10]. As shown in Table 4, this reduces the

gap of about 40%. �

Table 4. Gap between the LUDB and the lower bound for with

N=8 and U=20%

tandem LUDB Lower

Bound

Gap

original 10.111 9.75%

with FE 9.673
9.125

5.66%

N1N �1 2

� �1, N

� �1,1 � �2, 2 � �,N N� �1, 1N N� �

...

Figure 13 – Case-study nested tandem

0

0,1

0,2

0,3

0,4

0,5

2 4 6 8 10 12 14 16

20%

50%

100%

G
a

p

N

Figure 14. Gap between the LUDB and the lower bound in the

case-study tandem

8. CONCLUSIONS AND FUTURE WORK
In this paper we have shown that the current Network Calculus theo-

rems related to FIFO multiplexing are not sufficient for computing

the worst-case delay in tandem networks. The best delay bound that

can be computed, i.e. the least upper delay bound, can sometimes be

improved upon, even in very simple cases. We have shown this intro-

ducing a method – called Flow Extension, that allows one to compute

delay bounds by exploiting topological properties of tandems. We

have then addressed the question of how close the upper bounds are

to the (unknown) worst-case delay. We have devised an algorithm

that computes lower bounds on the worst-case delay. Our preliminary

analysis shows that, at least for nested tandems, the upper and lower

bounds appear to be reasonably close.

This work is being extended at the time of writing. Specifically, we

are currently extending DEBORAH so as to take into account non

nested tandems. Furthermore, we are evaluating the tightness of the

LUDB in a broader set of scenarios. Finally, we are developing

heuristics to approximate the LUDB in very large nested tandems,

where solving a too large number of simplexes would not be com-

putationally affordable.

9. REFERENCES
[1] R. Braden, D. Clark, S. Shenker, “Integrated Services in the Inter-

net Architecture: an Overview”, IETF RFC 1633, June 1994.

[2] S. Blake, et al., “An Architecture for Differentiated Services,”

IETF RFC 2475, 1998.

[3] J.-Y. Le Boudec, P. Thiran, Network Calculus, Springer-

Verlag LNCS vol. 2050, 2001.

[4] E. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label

Switching Architecture”, IETF RFC 3031, January 2001

[5] R.L. Cruz. “A calculus for network delay, part i: Network

elements in isolation”. IEEE Transactions on Information

Theory, Vol. 37, No. 1, March 1991, pp. 114-131.

[6] R.L. Cruz. “A calculus for network delay, part ii: Network

analysis”. IEEE Transactions on Information Theory, Vol. 37,

No. 1, March 1991, pp. 132–141.

[7] R. Agrawal, R. L. Cruz, C. Okino, R. Rajan, “Performance

Bounds for Flow Control Protocols,” IEEE/ACM Transactions

on Networking, Vol. 7, No. 3, June 1999, pp. 310-323.

[8] C. S. Chang, Performance Guarantees in Communication

Networks, Springer-Verlag, New York, 2000.

[9] L. Lenzini, E. Mingozzi, G. Stea, “Delay Bounds for FIFO

Aggregates: a Case Study”, Elsevier Computer Communica-

tions Vol. 28 Issue 3, February 2005 pp. 287–299.

[10] L. Lenzini, L. Martorini, E. Mingozzi, G. Stea, “Tight End-to-

end Per-flow Delay Bounds in FIFO Multiplexing Sink-tree

Networks", Performance Evaluation, Vol. 63, October 2006,

pp. 956-987.

[11] L. Lenzini, E. Mingozzi, G. Stea, "End-to-end Delay Bounds

in FIFO-multiplexing Tandems", VALUETOOLS'07, Nantes

(FR), October 23-25, 2007

[12] L. Lenzini, E. Mingozzi, G. Stea, "A Methodology for Com-

puting End-to-end Delay Bounds in FIFO-multiplexing Tan-

dems", to appear on Performance Evaluation

[13] M. Fidler, V. Sander, “A Parameter Based Admission Control

for Differentiated Services Networks”, Elsevier Computer

Networks, Vol. 44, No 1, January 2004, pp. 463-479.

[14] R. L. Cruz. “Sced+: Efficient management of quality of ser-

vice guarantees”, proc. of IEEE Infocom’98, San Francisco

(USA), 29 March-April 1998, pp. 625-634.

[15] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, J.-Y.

Le Boudec, “Delay Jitter Bounds and Packet Scale Rate Guar-

antee for Expedited Forwarding”, IEEE/ACM Trans. on Net-

working, Vol. 10, No. 4, August 2002, pp. 529-540.

[16] J. B. Schmitt, F. A. Zdarsky, “The DISCO Network Calculator

- A Toolbox for Worst Case Analysis”, Proc. of

VALUETOOLS '06, Pisa, Italy. ACM, October 2006.

[17] Website of the Computer Networking Group at the University

of Pisa, http://www.info.iet.unipi.it/cng/.

[18] G. Urvoy-Keller, G. Hèbuterne, Y. Dallery, “Traffic Engineer-

ing in a Multipoint-to-point network.”, IEEE JSAC, Vol. 20,

No. 4, May 2002, pp. 834-849

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4388
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4388

