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ABSTRACT 
This paper addresses the problem of estimating the worst-case end-

to-end delay for a flow in a tandem of FIFO multiplexing nodes, 

following up our previous work [12]. We show that, contrary to the 

expectations, the state-of-the-art method for computing delay 

bounds, i.e. upper bounds on the worst-case delay, called the Least 

Upper Delay Bound (LUDB) methodology, may actually be larger 

than the worst-case delay even in simple cases. Thus, we first de-

vise a method to compute improved delay bounds. Then, in order 

to assess how close the derived bounds are to the actual, still un-

known, worst-case delays, we devise a method to compute lower 

bounds on the worst-case delay. Our analysis shows that the gap 

between the upper and lower bounds is quite small in many practi-

cal cases, which implicitly validates the upper bounds themselves. 

Categories and Subject Descriptors 

C.4 [Computer systems organization] Performance of systems – 

design studies, performance attributes. 

General Terms 

Algorithms, Performance, Design. 

Keywords 

Network Calculus, FIFO-multiplexing, Delay Bound. 

1. INTRODUCTION 
The ability to provision reliable real-time services in a scalable 

way is the key to the deployment of the next generation Internet. It 

is now commonly agreed that per-aggregate resource management 

is to be employed in order to be able to scale to large networks and 

large number of users. Two noticeable examples of architectures 

employing per-aggregate resource management are Differentiated 

Services (DiffServ [2]), and Multi-Protocol Label Switching 

(MPLS, [4]), both standardized by the IETF. In the former, flows 

traversing a domain are aggregated (or multiplexed) in a small 

number of classes or Behavior Aggregates (BA), whose forwarding 

treatment is standardized, and QoS is provisioned on a per-

aggregate basis at each node. In the latter, flows are aggregated 

into Forwarding Equivalence Classes (FECs) and forwarding and 

routing are performed on a per-FEC basis.  

The performance evaluation of real-time services in networks em-

ploying per-aggregate resource management is however particu-

larly challenging. Real-time services require in fact firm QoS guar-

antees, usually formulated by computing an end-to-end delay 

bound, i.e. an upper bound on the maximum end-to-end delay. 

Obviously enough, a delay bound is as good as it is tight, i.e. close 

to the actual maximum delay that can theoretically be experienced 

by a bit of the flow. We refer to the latter as the worst-case delay 

(WCD). However, while it is fairly simple to compute the WCD 

under per-flow resource management (see, for example, [3], Chap-

ter 2), computing it in networks employing per-aggregate resource 

management appears to be considerably more complex. During the 

last decade, several results have appeared in the literature on this 

subject, all based on Network Calculus ([3], [5]-[8]), a theory for 

deterministic network performance analysis. The aim of these 

works is to compute delay bounds in feed-forward networks, which 

are known to be stable for any utilization below 100% [3]. For in-

stance, recent works [16], present tools and techniques for comput-

ing end-to-end delay bounds for flows in feed-forward networks of 

blind multiplexing nodes. “Blind” means that no assumption is 

made regarding the flow multiplexing criterion: for instance, both a 

FIFO multiplexing scheme and a strict priority multiplexing 

scheme in which the tagged flow (i.e., the one being analyzed) is 

always multiplexed at the lowest priority fit this definition. Smaller 

bounds can be obtained by explicitly assuming that a FIFO multi-

plexing scheme is in place at the node. As regards FIFO multiplex-

ing, some recent works [9]-[12] describe a methodology for com-

puting per-flow delay bounds in tandem networks of rate-latency 

nodes traversed by leaky-bucket shaped flows. The method, called 

Least Upper Delay Bound (LUDB), is based on the well-known 

Network Calculus theorem that allows a parametric set of per-flow 

service curves to be inferred from per-aggregate service curves at a 

single node. It consists in i) applying the above theorem iteratively, 

so as to obtain a parametric set of end-to-end service curves for a 

flow, ii) computing a parametric expression for the delay bound, and 

iii) minimizing over the set of parameters so as to obtain, in fact, the 

least upper bound. End-to-end analysis and global minimization are 

the two points of strength of LUDB. As shown in [11]-[12], we are 

actually able to derive end-to-end service curves only for a particular 

class of tandems, called nested tandems, where the path traversed by 

a flow a is either entirely included into the path of another flow b or 

has a null intersection with it. Non-nested tandems, instead, have to 

be partitioned into a number of nested sub-tandems, which have to be 

analyzed separately. Then, per sub-tandem delay bounds are com-

puted and summed up to obtain the end-to-end delay bound.  

LUDB has been shown to yield tighter bounds with respect to both 

per-node analysis, and another end-to-end methodology, described 

in [13], which does not use global minimization. However, despite 
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LUDB being the state-of-the-art solution to the problem, it is still 

unknown, in the general case, whether the bounds thus computed 

are actually equal to the WCD. As far as sink-tree tandems are 

concerned, it was proved in [10] that the LUDB is actually equal to 

the WCD. However, whether this is true for generic tandems is still 

an open question.  

In this paper, we first provide a negative answer to the above ques-

tion. Contrary to the expectations, the LUDB method may actually 

yield loose bounds even in very simple tandems. We prove this by 

counterexample: we devise a method, called Flow Extension, that 

can be used in conjunction to the LUDB methodology, so as to 

compute smaller delay bounds, at least in some cases. This result is 

significant for two reasons: on one hand, it improves delay bound 

computation in many cases; on the other hand, its significance from 

a theoretical standpoint lies in proving that the NC theorem that is 

at the core of the LUDB method is not always sufficient to describe 

the worst-case behavior of FIFO networks. 

This said, assessing how tight the computed bounds are becomes an 

important issue. Being unable so far to identify a provable worst-

case scenario, we propose heuristics to approximate it. More spe-

cifically, we construct a set of scenarios where a flow experiences a 

large delay, which is itself a lower bound on the WCD, and we 

provide an algorithm to compute this lower bound. The interval 

between the lower and the upper bounds serves as an estimate of 

the tightness of the upper bound itself.  

The rest of the paper is organized as follows: Section 2 reports the 

necessary Network Calculus background. In Section 3 we give a 

formal problem statement, and we describe the LUDB methodol-

ogy in Section 4. In Section 5 we prove that the LUDB may actu-

ally be larger than the WCD, also describing how to compute 

smaller bounds than the LUDB. In Section 6, we present an algo-

rithm for computing a lower bound on the WCD, and we describe 

the tool that allows one to compute the upper and the lower bounds 

in Section 7, along with two non-trivial case studies. Finally, con-

clusions are reported in Section 8. 

2. NETWORK CALCULUS BACKGROUND 
Network Calculus is a theory for deterministic network analysis 

[3],[5]-[8]. The concept of service curve is introduced in Network 

Calculus as a general means to model a network element in terms 

of input and output flow relationships, i.e., how the element trans-

forms an arriving stream of packets into a departing stream. To this 

aim, data flows are described by means of the cumulative function 

� �R t , defined as the number of bits seen on the flow in time inter-

val > @0,t . Function � �R t  is wide-sense increasing, i.e. 

� � � �R s R td  if and only if s td . Henceforth, we only consider 

wide-sense increasing functions. Specifically, let � �A t  and � �D t  

be the Cumulative Arrival and Cumulative Departure functions 

characterizing the same data flow before entering a network ele-

ment, and after having departed, respectively. Then, the network 

element can be modeled by the service curve � �tE  if 

 � � � � � �^ `
0
inf

s t
D t A t s sE

d d
t � �  (1) 

for any 0t t . The flow is said to be guaranteed the (minimum) 

service curve E . A service curve may be seen as the Cumulative 

Departure Function of an initially empty system which is fed an 

infinite burst of traffic at time zero. The infimum on the right side 

of (1), as a function of t , is called the min-plus convolution of A  

and E , and is denoted by � �� �A tE� . Min-plus convolution has 

several important properties, including being commutative and 

associative. Furthermore, convolution of concave curves is equal to 

their minimum. Several network elements, such as delay elements, 

links, and regulators, can be modeled by corresponding service 

curves. For example, network elements which have a transit delay 

bounded by M  can be described by the following service curve: 

 � �
0

t
t

t
M

M
G

M
�f t

 ®
�¯

 

More interestingly, it has been shown that many packet schedulers 

can be modeled by a family of simple service curves called the 

rate-latency service curves, defined as follows: 

 � � > @,R t R tTE T
�

 � �  

for some 0T t  (the latency) and 0R t  (the rate). Notation > @x
�

 

denotes ^ `max 0, x . Assume that some queues are managed by a 

scheduler, which provides them with rate-latency service curves. 

Then the service of each queue has a bounded lag (equal to its 

latency) with respect to when that queue is served at a constant-rate 

in a single-queue system. A fundamental result of Network Calcu-

lus is that the service curve of a feed-forward sequence of network 

elements traversed by a data flow is obtained by convolving the 

service curves of each of the network elements.  

Guaranteeing performance bounds to traffic flows requires that the 

arrivals be somewhat constrained. In Network Calculus this feature 

is modeled by introducing the concept of arrival curve. A wide-

sense increasing function D  is said to be an arrival curve (or, 

equivalently, an envelope) for a flow characterized by a cumulative 

arrival function A  if it is:  

 � � � � � �A t A tW D W� d � , for all tW d . 

As an example, a flow regulated by a leaky-bucket shaper, with 

sustainable rate U  and burst size V , is constrained by the affine 

arrival curve 

 � � � � ^ `, 0
1

t
t tV UJ V U ! � � � . 

Function ^ `1
expr

 is equal to 1 if expr is true, and 0 otherwise. 

By combining together arrival and service curve characterizations 

of data traffic and network elements, respectively, it is possible to 

derive relevant performance bounds. Specifically, end-to-end delay 

bounds can be derived. In fact, assume that an element (or network 

of elements) is characterized by a service curve E  and that a flow 

traversing that node is constrained by the arrival curve D . Then, if 

the node serves the bits of this flow in FIFO order, the delay is 

bounded by the horizontal deviation 

 � � � � � �^ `
0

, sup inf 0 :
t

h d t d tD E D E
t

ª ºt � d¬ ¼�  (2) 

Intuitively, h  is the amount of time the curve D  must be shifted 

forward in time so that it lies below E . From (2) it follows that 

� � � �1 2 1 2, ,h hE E D E D Ed � t . Notation 1 2E Ed  means that 

� � � �1 2t t tE E� d . 

A well-known result related to a tandem of N  rate-latency nodes 

,i iRT
E , 1 i Nd d , traversed by a ,V UJ  constrained flow follows 

from (2), i.e., the end-to-end delay bound is given by 

 ^ `
1 1

N i i

i i N
d RT V

 d d
 � �¦  (3) 

if iRU d  for any i . Notation �  denotes the minimum operation.  

2.1 FIFO multiplexing 
Regarding FIFO multiplexing, a fundamental result, first derived in 

[7], is reported in [3], Chapter 6. It allows one to compute a service 
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curve for a single flow based on the aggregate service curve and on 

the arrival curve of the interfering flow as follows: 

Theorem 2.1 (FIFO Minimum Service Curves [3]).  

Consider a lossless node serving two flows, 1 and 2, in FIFO or-

der. Assume that packet arrivals are instantaneous. Assume that 

the node guarantees a minimum service curve E  to the aggregate 

of the two flows. Assume that flow 2 has 2D  as an arrival curve. 

Define the family of functions: 

 � � � � � � ^ `1 2, 1eq

t
t t t WE W E D W

�

! ª � � º �¬ ¼  

For any 0W t  such that � �1 ,eq tE W  is wide-sense increasing, then 

flow 1 is guaranteed the (equivalent) service curve � �1 ,eq tE W . 

Theorem 2.1 describes an infinity of equivalent service curves, 

each instance of which (obtained by selecting a specific value for 

the W  parameter), is a service curve for flow 1, provided it is wide-

sense increasing. For ease of notation, we write � �� �, ,E tE D W  to 

denote the equivalent service curve obtained from applying 

Theorem 2.1 to a service curve � �tE , by subtracting from it arrival 

curve � �tD W� . Hereafter, we omit repeating that curves are func-

tions of time (and, possibly, of other parameters such as W ) when-

ever doing so does not generate ambiguity.  

As an example, if the node is rate-latency, i.e. � � � �,Rt tTE E , and 

flow 2 is leaky-bucket shaped, i.e. � � � �
2 22 ,t tU VD J , then Theorem 

2.1 yields the following set of equivalent service curves for flow 1 

([3], [9]). 

 � �� � � � � �
^ `

2 2

2 2

2

, , 1
t

E t R t
R

W

V U T W
E D W U T

U

�

!

ª º§ � � ·
 � � �« »¨ ¸

�« »© ¹¬ ¼
 (4) 

The curves are also shown in Figure 1, from which the following 

two observations can be made: 

a) � �2, ,E E D W  is not necessarily a rate-latency curve. More spe-

cifically, it can be either a rate-latency curve (if 2 RW T Vd �  ) or 

a different kind of curve, namely an affine curve shifted to the right 

(if 2 RW T V! � ). 

b) not all the curves obtained from Theorem 2.1 are actually rele-

vant. For instance, all the curves obtained for 2 RW T V� �  lie 

entirely below the one obtained for 2 RW T V � , and are there-

fore useless for computing performance bounds.  

T 2 RV

2

R

V
W T� �

2

R

V
W T! �

2

R

V
W T �

W

� �2 2

2R

V U T W
T

U

� �
�

�

2R
R

V
W T
ª º§ ·� �¨ ¸« »

© ¹¬ ¼ R

2R U�

 
Figure 1. The set of equivalent service curves for flow 1 

It has been proved in [10]-[12] (to which the interested reader is 

referred for more details and proofs) that pseudoaffine curves effec-

tively describe the service received by single flows in FIFO multi-

plexing rate-latency nodes. We call a pseudoaffine curve one which 

can be described as: 

 ,

1
x xD

x n

V US G J
d d

ª º
 � « »¬ ¼

�  (5) 

i.e., as a multiple affine curve shifted to the right. Note that, since 

affine curves are concave, (5) is equivalent to: 

 ,
1

x xD
x n

V US G J
d d

ª º � « »¬ ¼
�  

We denote as offset the non negative term D , and as leaky-bucket 

stages the affine curves between square brackets. We denote with 
*

SU  (long-term rate) the smallest sustainable rate among the leaky-

bucket stages belonging to the pseudoaffine curve S , i.e. 

� �*

1,...,
min x

x n
SU U

 
 . We denote with 3  the family of pseudoaffine 

curves. A rate-latency service curve is in fact pseudoaffine, since it 

can be expressed as , 0,R RT TE G J � . A three-stage pseudoaffine 

curve is shown in Figure 2. 

D

1
V

2
V

3
V

1
U

2
U

3
U

� �tS

 
Figure 2. Example of a three-stage pseudoaffine curve 

The alert reader will notice that, for any value of W , all the curves 

obtained from (4) are pseudoaffine. Although more general than 

rate-latency curves, pseudoaffine curves are still fairly easy to 

manage from a computational standpoint: it can be easily shown 

that the convolution of two pseudoaffine curves is a pseudoaffine 

curve, whose offset is the sum of the offsets of the operands, and 

whose leaky-bucket stages are the leaky-bucket stages of both oper-

ands. Furthermore, Theorem 2.1 can be specialized for the case of 

pseudoaffine service curves and leaky-bucket arrival curves as 

follows:  

Corollary 2.2 ([10]):  

Let S  be a pseudoaffine service curve, with offset D  and n  leaky-

bucket stages ,x xV UJ , 1 x nd d , and let ,V UD J , with *

SU Ut .  If a 

node guarantees a minimum service curve S  to the aggregate of 

the two flows, and flow 2 has D  as an arrival curve, then the fam-

ily of functions � �^ `, , , 0E s sS D t , with: 

 � �
1 1

1 ,

, ,
i i x

x x
i n i ni i x

D s x n s

E s
V V V V V V

U U U
U U U

S D G J� �

d d d d

 ½ª º� ª º� �° °� � � d d � � � �« » ® ¾« »
¬ ¼ ¬ ¼° °¯ ¿

ª º
« » � « »
« »¬ ¼

� ,  

or, equivalently, 

 � � � � � �^ ` � �, , ,
1

, ,
x x x

h s s h D
x n

E s D S U D S V V U U
S D G J� � � � � �

d d

ª º
 � « »¬ ¼

�  (6) 

are pseudoaffine equivalent service curves for flow 1. 

It can be proved that the set � �^ `, , , 0S E s sS D t� is a proper 

subset of � �^ `, , , 0E E D W W7  t , i.e. it does not include some 

equivalent service curve that would be computed through Theorem 

2.1. However, it does include those equivalent service curves 

which are relevant for computing delay bounds. More specifically, 

for each curve \x S�7 , there exists a curve y S�  such that 

y xt . Therefore, all the performance bounds that can be found by 
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applying Theorem 2.1 can also be found by applying Corollary 2.2. 

With reference to the example of Figure 1, Corollary 2.2 yields:  

 � �
2 22 ,, , R s R

s
R

E s V U
T

E D G J � �
� �

 �   (7) 

i.e., all the equivalent service curves obtained from Theorem 2.1 

with 2 RW T Vt � . Note that (7) is much more compact than (4). 

3. SYSTEM MODEL 
We analyze a tandem of N  nodes, connected by links. The tandem is 

traversed by flows, i.e. distinguishable streams of traffic. We are 

interested in computing a tight end-to-end delay bound for a specific 

flow, i.e. the tagged flow tf , which traverses the whole tandem from 

node 1 to N . At each node, FIFO multiplexing is in place, meaning 

that all flows traversing the node are buffered in a single queue 

First-Come-First-Served. Furthermore, the aggregate of the flows 

traversing a node is guaranteed a minimum service, in the form of a 

rate-latency service curve, with rate kR  and latency kT , 

1 k Nd d . In the above framework, a flow can be identified by the 

couple � �,i j , 1 i j Nd d d , where i  and j  are the first and last 

node of the tandem at which the flow is multiplexed with the ag-

gregate. We model a flow as a stream of fluid, i.e. we assume that it 

is feasible to inject and service an arbitrarily small amount of traf-

fic at a node, and we leave packetization issues for further study. 

We assume that flows are constrained by a ,V U  leaky-bucket 

arrival curve at their ingress node. Leaky-bucket curves are addi-

tive, i.e. the aggregate of two leaky-bucket shaped flows is a leaky-

bucket shaped flow whose arrival curve is the sum of the two. 

Hence, without any loss of generality, we assume that at most one 

flow exists along a path � �,i j  and we identify it using the path 

� �,i j  as a subscript. It was also proved that, in order to compute 

the end-to-end delay bound, all flows traversing path � �1, N  can be 

considered as if they were one flow, i.e. the tagged flow.  

Based on how the paths of its flows are interleaved, we classify 

tandems as being either nested or non nested. In a nested tandem, 

flows are either nested into one another, or they have null intersec-

tion. This means that no two flows � �,i j , � �,h k  exist for which 

i h j k� d � . Said in other words, let us consider two flows � �,i j , 

� �,h k , with � � � �, ,i j h kz  and i hd . Then either j h� , or k jd . 

In the first case, the two flows span a disjoint set of nodes. In the 

second case, we say that � �,h k  is nested within � �,i j , and we 

write � � � �, ,h k i j� . For example, Figure 3 represents a nested 

tandem of three nodes. Flow � �3,3  is nested within flow � �2,3 . 

Moreover, flows � �1,1 , � �3,3  and � �2,3  are nested within the 

tagged flow � �1,3 .On the other hand, a tandem is non-nested if it 

does not verify the above definition, as the one shown in Figure 4, 

below. In that case, we say that flow � �1,2  intersects flow � �2,3 .  

� �1,3

� �1,1

� �2,3

� �3,3

1 2 3

 
Figure 3. A nested tandem  

� �1,3

� �1,2

� �2,3

1 2 3

 
Figure 4. A non-nested tandem 

Finally, as far as rate provisioning is concerned, we assume that a 

node’s rate is no less than the sum of the sustainable rates of the 

flows traversing it, i.e. for every node 1 h Nd d , 

 � �
� �

,
, :

h

i j
i j i h j

RU
d d

d¦  (8)  

This allows a node’s rate to be utilized up to 100%, thus being a 

necessary condition for stability. Moreover, we assume that the 

buffers are large enough to guarantee that traffic is never dropped. 

4. THE LEAST UPPER DELAY BOUND 

METHODOLOGY 
In this paragraph, we describe the Least Upper Delay Bound 

(LUDB) methodology. We first explain it on nested tandems, and 

extend it to non-nested tandems later on. At a first level of ap-

proximation, LUDB consists in computing all the service curves 

for the tagged flow: we start from the aggregate service curves at 

each node, we apply Corollary 2.2 iteratively in order to remove 

one flow � �,i j { � �1, N  from the tandem, and we convolve the 

service curves of nodes traversed by the same set of flows. Every 

time Corollary 2.2 is used, a new free parameter � �,i j
s  is intro-

duced. Therefore, we compute in fact an infinity of service curves. 

From each of these we can compute a delay bound for the tagged 

flow, hence the minimum among all the delay bounds is the least 

upper delay bound. 

For instance, let us consider again the three-node nested tandem 

shown in Figure 3. Figure 5 shows how to compute the set of end-

to-end service curves for the tagged flow (1,3). We start from the 

aggregate service curves at each node, and we apply Corollary 2.2, 

starting from nodes 1 and 3. Then we convolve the service curves 

obtained for nodes 2 and 3, which are now traversed by the same 

aggregate of flows (1,3) and (2,3). We remove flow (2,3) by apply-

ing once more Corollary 2.2, and we obtain the set of end-to-end 

service curves for the tagged flow through convolution. The service 

curves 
^ `

� � � � � �� �1,3

1,1 3,3 2,3
, ,s s sS  depend on three parameters, � �1,1

s , 

� �2,3
s , � �3,3

s , and they are pseudoaffine for each instance of them.  

2E

� �2,3
D

� �1,3
D � � � �� �1

1,1 1,1
, ,E sE D � � � �� �3

3,3 3,3
, ,E sE D

1E 2E 3E

� �2,3
D

� �1,1
D � �3,3

D

� �1,3
D

� �2,3
D

� �1,3
D � � � �� �1

1,1 1,1
, ,E sE D � � � �� �2 3

3,3 3,3
, ,E sE E D�

� �1,3
D � � � �� �1

1,1 1,1
, ,E sE D � � � �� � � � � �� �2 3

3,3 3,3 2,3 2,3
, , , ,E E s sE E D D�

� �1,3
D � � � �� � � � � �� � � � � �� �1 2 3

1,1 1,1 3,3 3,3 2,3 2,3
, , , , , ,E s E E s sE D E E D D� �

 
Figure 5. An example of application of the LUDB methodology 

The best end-to-end delay bound that we can compute through this 

method, i.e. the LUDB, is the minimum among all the bounds that 

can be computed for each instance of the free parameters. For the 

above example, the problem can be formulated as follows: 

 
� �

^ `
� � � � � �� �� �

� � � � � �

1,3

1,3 1,1 3,3 2,3

1,1 3,3 2,3

min , , ,

, , 0

h s s s

s s s

D S
°
®

t°̄
 (9) 

Now, since 
^ ` � �1,3S  is pseudoaffine and � �1,3

D  is an affine curve, 
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problem (9) is an optimization problem with a piecewise linear 

objective function of x  variables and x  linear constraints, x  

being the number of distinguished flows in the tandem minus one, 

2x N� , i.e. it is a piecewise-linear programming (P-LP) problem. 

In [11], this has been proved to be true for all nested tandems.  

The LUDB methodology cannot be applied directly to non-nested 

tandems, such as the one shown in Figure 4. In fact, in that case, 

there are no two consecutive nodes traversed by the same set of 

flows, since two flows intersect each other. In [11], it was observed 

that a non-nested tandem can always be cut into at most 2Nª º« »  

disjoint nested sub-tandems. Therefore, one can use LUDB to 

compute partial, per sub-tandem delay bounds, and an end-to-end 

delay bound can be then computed by summing up the partial delay 

bounds. For instance, the tandem of Figure 4 can be cut in two 

different ways, i.e. placing the cut before or after node 2. This way, 

two different end-to-end delay bounds can be computed, call them 
aV  and bV , both using LUDB for the sub-tandems. More specifi-

cally, cutting the tandem after node 2 yields the following results 

(see [11] for the computations): 

If � �
1 2

2,3
R RU� � , 

� � � � � � � �

� � � � � �

� � � � � � � � � �

1,3 2,3 2,3 1,31 2 3

1 3 2 3

3

1,2 2,3 1,3

3 2 1

2

1,3 2,3 1,3 2,3 1,3

3 2 1 2 3

1 1 1

1 1

aV
R R R

R

R R R

R

R R R R R

U U U U
T T T

V U U

V U V V U

ª º �§ · § ·
 � � � � � � � �« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

§ ·�
¨ ¸� �
¨ ¸
© ¹

§ ·�§ ·
¨ ¸� � � � � � �¨ ¸¨ ¸ ¨ ¸© ¹ © ¹

 (10) 

Otherwise, 

� � � � � � � �

� � � � � � � �

� � � � � � � � � �

1,3 2,3 2,3 1,31 2 3

2 3 2 3

1,2 2,3 1,3 2,3

2 3 3 1

2 2

1,3 2,3 2,3 2,3 1,3

2 2 3 2 3

1 1 1

1 1

1 1

aV
R R R

R R R R

R R

R R R R R

U U U U
T T T

V U U U

V U U V U

ª º �§ · § ·
 � � � � � � � �« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

ª º§ · § ·
� � � � � �« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

§ · § ·� �
¨ ¸ ¨ ¸� � � � � � �
¨ ¸ ¨ ¸
© ¹ © ¹

 (11) 

On the other hand, cutting the tandem before node 2 yields the 

following results: 

If � �
3 2

1,2
R RU� � , 

� � � �

� � � � � � � � � � � � � �

1,2 1,31 2 3

1 2 3

1,2 1,3 1,2 1,3 1,2 1,3 2,3

1 3 2 1 2 3 3

1

1 1

bV
R R

R R R R R R R

U U
T T T

V U V V U V V

§ ·
 � � � � �¨ ¸¨ ¸

© ¹

§ · § ·
� � � � � � �¨ ¸ ¨ ¸¨ ¸ ¨ ¸

© ¹ © ¹

(12) 

Otherwise, 

� � � � � �

� � � � � � � � � � � �

� � � � � � � �

1,2 1,3 2,31 2 3

2 2 2 3

1,2 1,3 2,3 1,2 1,3 1,2

1 2 3 2 1 2

1,3 2,3 2,3 2,3

2 3 2 3

1 1

1 1 1

1 1

bV
R R R

R R R R R R

R R R R

U U U
T T T

V U U V V U

V U V U

ª º§ ·
 � � � � � � �« »¨ ¸¨ ¸« »© ¹¬ ¼

ª º§ · § ·
� � � � � � � � �« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

§ · § ·
� � � � � �¨ ¸ ¨ ¸¨ ¸ ¨ ¸

© ¹ © ¹

 (13) 

Now, a bV V V �  is an end-to-end delay bound for the tagged 

flow. One can see through straightforward algebraic manipulations 

that both aV  and bV  can actually be the minimum, depending on 

the actual values of the nodes and flows parameters.  

4.1 Tightness of the LUDB 
Assessing whether LUDB yields tight bounds is made particularly 

challenging by the fact that a method for computing the WCD in 

FIFO networks is still missing. In a previous work of ours, [10], 

LUDB was applied to sink-tree tandems, such as the one shown in 

Figure 6 which are in fact nested tandems. In sink-tree tandems, all 

flows are of the kind � �,j N , 1 j Nd d , i.e. they are nested into 

one another progressively. For this class of tandems, we showed 

that the LUDB (which can be computed in a closed form) is actu-

ally equal to the WCD. The proof was obtained by constructing a 

scenario where a bit of the tagged flow experiences a delay equal 

to the LUDB itself.  

� �1,3

� �2,3

� �3,3

1 2 3

 
Figure 6. A sink-tree tandem 

As far as non-nested tandems are concerned, in [11], we showed 

that this method yields better results compared to per-node analy-

sis. However, we also observed that breaking the end-to-end analy-

sis, i.e. computing and summing partial delay bounds, is likely to 

lead to loose end-to-end delay bounds. In fact, this entails assuming 

independent worst-case scenarios at each sub-tandem, which can-

not take place simultaneously. The alert reader will notice that a 

similar argument has been used in the past to prove that the pay 

burst only once principle holds for single flows in per-flow sched-

uling networks (see e.g. [3] for some discussion on this topic). 

Broadly speaking, cutting a tandem into sub-tandems is certainly 

not as bad as cutting it into single nodes (as it is done in per-node 

analysis), but mostly because you need less cuts to obtain the same 

task (one instead of two, in the above example).  

One question that remains open is whether, at least when end-to-

end analysis is possible (i.e., in nested tandems), the LUDB is 

always equal to the WCD. In the next section, we show that this is 

not the case. 

5. A COUNTEREXAMPLE 
Hereafter, we show by counterexample that the LUDB may be 

larger than the WCD, even when end-to-end analysis is possible. 

Since we do not know how to compute the WCD, we can only 

prove this assertion by computing a smaller delay bound than the 

LUDB. The procedure is the following: consider a tandem T , and 

call W  its WCD. Now, assume you are able to build tandem T , 

such that its WCD W  is no smaller than W , i.e. W Wt . Now, 

any delay bound (e.g., the LUDB) is no smaller than the WCD by 

definition. Thus, if V  and V  are delay bounds for T  and T , then 

it is V Wt , i.e. V  is obviously a delay bound for T . However, if 

we find cases when V V� , we can prove that V W! .  

The property that allows us to build such a tandem T  from a given 

tandem T  is called Flow Extension (FE). We first explain it, and 

then exploit it to construct simple counterexamples.  

Hereafter, we denote as � � � �,

k

i j
A t  the Cumulative Arrival Function 

(CAF) for flow � �,i j  at node k , and with � � � �,

k

i j
D t  the Cumula-

tive Departure Function (CDF) for flow � �,i j  at node k . Further-
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more, we denote with � �kA t  and � �kD t  the total CAF and CDF at 

node k . 

Define a scenario g  for an N -node tandem as: 

1) a set of CAFs for all the flows � � � �, 1,i j N�  at their entry 

node, � � � �,

i

i j
A t ;  

2) a set of “node behaviors”, i.e. the way each node i , 1 i Nd d , 

transforms its CAF � �iA t  into its CDF � �iD t , according to 

the related service curve inequality � � � �i i iD t A tEª ºt �¬ ¼ . As 

for the latter, we can describe a node behavior by means of a 

non-negative lead function � �iL t , which is such that 

� � � � � �i i i iD t A t L tEª º � �¬ ¼ . Note that � �iL t  is not necessar-

ily wide-sense increasing. 

In order for a scenario to be feasible, each CAF has to be compati-

ble with the related arrival curve constraint, 

� � � � � � � � � � � �, , ,

i i

i j i j i j
A t A s t sD� d � . Furthermore, each lead function 

has to verify � � � � � �i i i iL t A t A tEª ºd � �¬ ¼  in order for node i  to 

have a causal behavior. 

Theorem 5.1 (Flow Extension, FE)  

Let T  be a tandem of N  nodes, in which there is a flow 

� �, 1j N � . Call T  the tandem obtained from T  by “extending” 

flow � �, 1j N � , i.e. by substituting it with flow � �,j N , all else 

being equal. Call d  and d  the WCD for the tagged flow in T and 

T . Then, it is d dt .  

Proof 

Call *  the set of all feasible scenarios in a tandem. Throughout 

this proof, we express the fact that a quantity depends on scenario 

g�*  by using the conditional notation g , i.e. � � � �,

i

gi j
A t  denotes 

the CAF of flow � �,i j  at node i  under scenario g .   

Call � �i

gd t  the delay experienced at node i  by a bit of the tagged 

flow entering a generic N -node tandem at time t  in scenario g . 

The WCD d  is defined as follows: 

 � �
0

1

max max
N

i

g
g t

i

d d t
�* t

 

 ½ª º
 ® ¾« »

¬ ¼¯ ¿
¦  (14) 

Call ) � *  the subset of scenarios where � � 0NL t  , i.e. those for 

which node N  is lazy. We first show that at least one worst-case 

scenario is included in ) , i.e.: 

 � �
0

1

max max
N

i

g
g t

i

d d t
�) t

 

 ½ª º
 ® ¾« »

¬ ¼¯ ¿
¦  (15) 

Assume by contradiction that: 

 � �
0

1

max max
N

i

g
g t

i

d d t
�) t

 

 ½ª º
! ® ¾« »

¬ ¼¯ ¿
¦  (16) 

and call \x�* )  the scenario where d  is achieved. Consider 

now the scenario y�) , which only differs from x  because 

� � 0NL t  . It is obviously � � � �i i

y xd t d t , 1 1i Nd d � , and 

� � � �N N

y xA t A t . However, if node N  is lazy in y  and not in 

x , it is � � � �N N

y xD t D td , hence � � � � � � � �1, 1,

N N

y xN N
D t D td  since 

the node is FIFO, and � � � �N N

y xd t d tt . Thus, we have found a 

scenario y�)  in which a delay at least no smaller than d  is 

achieved, which contradicts (16). 

Having said this, we move to comparing T  and T , limiting our-

selves to the subset of scenarios in which the last node is lazy. 

Whenever needed, we use the same symbol to denote the same 

quantities in T  and T , adding a bar to the latter ones in order to 

distinguish them. Consider now a generic scenario g�*  for tan-

dem T , and define the corresponding scenario g  in T  as the one 

with the same set of CAFs at the entry nodes of all flows, and the 

same set of lead function at all nodes. Clearly, if the scenario is 

feasible in T , it is also feasible in T , since flows and nodes are 

subject to the same constraints. However, in tandem T , flow 

� �, 1j N �  is extended up to node N . This is exactly like adding, 

as an input to node N , a “virtual” flow � �1,N N� , with 

� � � � � � � �
1

1, , 1

N N

N N j N
A t D t

�
� � .  

For a scenario g�)  in T , the corresponding scenario g�)  is 

such that:  

 � � � �i i

gg
d t d tt , 1 i Nd d .  (17) 

In fact, equality holds in (17) for 1 1i Nd d � , since the two sce-

narios are the same up to node 1N �  included. However, the input 

at node N  in T  is � � � � � � � �1,

N N N

N N
A t A t A t� � , where � � � �1,

N

N N
A t�  

is a wide-sense increasing function. Now, since node N  is lazy 

and FIFO, the delay of each bit in � �NA t  cannot be lower than in 

T , thus � � � �N N

gg
d t d tt .  

Now, for any scenario Tg �*  there exists a scenario 
T

g �*  in 

which the end-to-end delay of  a bit of the tagged flow entering at 

time t  in tandem T  is larger than (or equal to) the one in tandem 

T . Therefore, the same inequality also holds between the respec-

tive WCDs, i.e. d dt .  �  

We now show how to exploit FE to compute smaller bounds than 

the LUDB.  

Example 5.2 

Consider the two-node tandem T  shown in Figure 7, left.  

� �1,2

� �1,1

1 2

T

     

� � � �^ `1,2 , 1,1
1 2

T

 
Figure 7. Two simple tandems. The one on the right is obtained 

by applying FE to the one on the left. 

Build the corresponding tandem T  according to FE (shown in the 

same figure on the right), for which it is W Wt . Consider now 

what delay bound we can compute through LUDB in both tandems. 

In T , it is the following: 

 

� � � �
� �

� � � �

� �

� �

2 1,1 1,2 2 1

1,11 21

2 1,1 1,2 2 1

1,1211
1

2

1,1

i

i

i

i

R R
R R

V
R R

RR
R

R

V V
T U

V V
T U

U

 

 


� � � �°

°
°

 ® � � � t°
° �

�°̄

¦

¦
 (18) 

provided that the following provisioning inequalities hold: 

 � � � �
1

1,1 1,2
R U Ut � , � �

2

1,2
R Ut  (19) 

Otherwise it is infinite.  

On the other hand, the LUDB for the tagged flow in T  is: 

 
� � � �2 1,1 1,2

1 21

i

i
V

R R

V V
T

 

�
 �

�¦ , (20) 

provided that the following provisioning inequalities holds: 

 � � � �
1

1,1 1,2
R U Ut � , � � � �

2

1,1 1,2
R U Ut � , (21) 

otherwise it is infinite. Note that the second inequality in (21),  

related to node 2, is more constraining than the corresponding one 

in (19). 

Now, � �,V V�  is a delay bound in T . However, it is easy to see 

that V V�  in some cases. Table 1 reports the comparison between 

V  and V  in the five different regions in which the rate inequali-
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ties included in expressions (18)-(21) divide the plan 1 2R OR  (also 

shown in Figure 8). 

xxxxx
xxxxx

� � � �1,1 1,2
U U�

� �1,2
U

1R� �1,1
U

� �
2 1

1,1
R RU� !

� �
2 1

1,1
R RU� �

2 1R R!

2 1R R�

III

IV

� � � �1,1 1,2
U U�

2R

V

II

I

 
Figure 8. Regions of the plan 

1 2R OR  and related inequalities.  

In region I, V V� . Thus, the following set of inequalities hold: 

 , , ,V W V W W W V Vt t t �  (22) 

An immediate consequence of (22) is that V W! , i.e. the LUDB is 

not the WCD in that case. 

Furthermore, note that in region III, the rate inequalities are not 

sufficient to decide whether V V�  or V Vt : in fact, both can 

occur depending on the values of the parameters. Again, this means 

that the LUDB is not necessarily the WCD in that region too. � 

Now, when LUDB is applied to a nested tandem, the entire set of 

all the “good” end-to-end service curves that can be computed 

using Theorem 2.1 and convolution is explored, and a global 

minimum is computed. This means that no better bounds can be 

computed by relying on Theorem 2.1 alone. However – quite sur-

prisingly – this is proved not to be sufficient for computing the 

WCD. A likely cause for this is that not all the necessary informa-

tion is retained in the equivalent service curves computed through 

Theorem 2.1. 

Consider, for instance, a single rate-latency node traversed by two 

leaky-bucket shaped flows, as in the example shown in Figure 1, 

and assume that the arrival curve of the two flows are ,i ii V UD J ,  

1 2id d . The LUDB for flow 1 is computed as the solution of the 

following trivial optimization problem: 

 2 1

0
2

min
s

R s
d s

R R

V V
T

U

�

t

 ½ª º� �° °
 � � �® ¾« »�¬ ¼° °¯ ¿

 

The minimum is achieved when s RV , and it is equal to 

� �1 2V RT V V � � . This is also the WCD for flow 1, since it is 

attained by its 1V
th bit in the following worst-case scenario: 

a) both flows are greedy: � � � �i iA t tD , i.e. their CAFs are equal 

to their respective arrival curves. However, the burst of flow 2 

arrives just before that of flow 1.  

b) the node is lazy. 

Call � �1D t  the CDF for flow 1 obtained in the above scenario, 

shown in Figure 9 as a thicker dashed line. Let us compare it to the 

curves � �'

1 ,D t s  obtained by convolving the greedy CAF of flow 1 

with each equivalent service curve derived through Corollary 2.2, 

therein including the “optimum” one. These are shown as thinner 

lines in the same figure, for various values of s , and they represent 

lower bounds to any CDF that can be obtained from that CAF, by 

definition of (equivalent) service curve. However, one can easily 

see that � � � � �'

1 1: ,s D t D t s . This seems to suggest that the 

� �'

1 ,D t s  might not be tight lower bounds themselves. This, in turn, 

would imply that each equivalent service curve alone cannot de-

scribe the behavior of a FIFO node with the necessary accuracy. 

T 2 RV

V

0s  

R

2
R U�

s RV 

1U
� �1

A t

� �1
D t

s RV!

s RV�

1U
1

1 2

R
U

U U
�

�

 
Figure 9. CDFs obtained using equivalent service curves 

Table 1. Different regions of the plan 1 2R OR  and related end-to-end delay bounds 

Region Rate Inequalities V  V  Comparison 

I � � � �
1

1,1 1,2
R U Ut � , 2 1R R!  

� � � �

� �

2 1,1 1,2

211
1

2

1,1

i

i RR
R

R

V V
T

U

 
� �

�
�

¦  � � � �2 1,1 1,2

11

i

i R

V V
T

 

�
�¦  V V�  

II � � � �
2

1,1 1,2
R U Ut � , � �

2 1

1,1
R RU� �  � � � �2 1,1 1,2

1 21

i

i R R

V V
T

 
� �¦  

� � � �2 1,1 1,2

21

i

i R

V V
T

 

�
�¦  V Vd  

III 
� � � �

2

1,1 1,2
R U Ut � , 2 1R R� , 

� �
2 1

1,1
R RU� t  

� � � �

� �

2 1,1 1,2

211
1

2

1,1

i

i RR
R

R

V V
T

U

 
� �

�
�

¦  � � � �2 1,1 1,2

21

i

i R

V V
T

 

�
�¦  It depends 

IV 
� � � �

1

1,1 1,2
R U Ut � , 

� � � �
2

1,1 1,2
R U U� � , � �

2 1

1,1
R RU� t  

� � � �

� �

2 1,1 1,2

211
1

2

1,1

i

i RR
R

R

V V
T

U

 
� �

�
�

¦  
f  V V�  

V 
� �

2

1,2
R Ut , � � � �

2

1,1 1,2
R U U� �  

� �
2 1

1,1
R RU� t  

� � � �2 1,1 1,2

1 21

i

i R R

V V
T

 
� �¦  f  V V�  
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5.1 Practical applications of Flow Extension  
Beside being useful to prove the limitations of Theorem 2.1, FE 

can also be exploited to compute improved delay bounds. How-

ever, its practical usefulness is limited for at least two reasons. The 

first one is represented by the topology restrictions required in 

order to apply Theorem 5.1 (i.e., that there is a flow in the tandem 

that leaves at node 1N � ). Second, in order for it to be of any 

practical use, it requires that the last node be overprovisioned. With 

reference to the previous example, we can observe that, if 

� � � � � �
2

1,2 1,1 1,2
,R U U Uª ª� �¬ ¬ , i.e. in regions IV and V, the WCD in 

tandem T  is infinite, and thus FE is useless in this case.  

This said, we can still find some useful generalization of Theorem 

5.1. The first one is that, given a tandem T , and a set of extensible 

flows  � � � �^ `, 1 1,S j N N{ � � , FE can in fact be applied by ex-

tending any (non empty) subset of flows s S� . Thus we can build 

up to 2 1
S �  different tandems T , for each one of which a delay 

bound can be computed, possibly improving on the LUDB in T  

for some value of the nodes and flows parameters. However, the 

more flows are in s , the more constraining the provisioning ine-

qualities at node N  must be, in order for the related bound in T  to 

be finite. More specifically, the required inequality is the follow-

ing: 

 � �
� � � �

� �
� �

, , 1
, 1, , 1

N

i N i N
i N N i N s

RU U �
� � �

� d¦ ¦  (23) 

Thus, the amount of overprovisioning at node N  may act as a 

constraint on the number of effective ways in which FE can be 

applied (which can therefore be smaller than 2 1
S �  in practice). 

The second generalization is that FE can be applied more than once 

to the same tandem, while obviously tightening the provisioning 

inequalities at each iteration. For instance, in the tandem shown in 

Figure 10, above, FE can be applied a first time by extending flow 

� �1,2 . After convolving the service curves of node 2 and 3, it can 

then be applied again, extending flow � �1,1  up to node 3. 

1

� � � �^ `1,3 , 1,2

� �1,1

1 2 3

� �1,3

� �1,1

1 2 3

� �1,2

� � � � � �^ `1,3 , 1,2 , 1,1

2 3  
Figure 10. Nested tandem and related FE transformations 

Hereafter, we report another example for FE, this time related to a 

non-nested tandem.  

Example 5.3 

Consider the non-nested tandem of Figure 4. We apply FE to it, by 

extending flow � �1,2 , and derive the following delay bound: 

If � � � �1 2 3

2,3
R R RU� � � , then: 

 
� � � � � �3 2,3 1,3 1,2

2 3 11

i

i
V

R R R

V V V
T

 

�
 � �

�¦  (24) 

Otherwise  

 � � � � � �

� �
� �

3 2,3 1,3 1,2

12 31
2 3

1

2,3

i

i
V

RR R
R R

R

V V V
T

U

 

�
 � �

�
� �

�

¦  (25) 

Both (24) and (25) hold provided that � � � � � �
3

1,3 2,3 1,2
R U U Ut � � . 

Note that, unlike in aV  and bV , in V  each burst � �,i j
V  appears 

exactly once. By comparing them with (10)-(13), it is easy to iden-

tify regions in which � �a bV V V� � . For instance, if 3iR  , 

1iT  , 1 3id d , and � �,
3

i j
V  , � �,

1
i j

U  , for all flows, we obtain 

20 3V  , 2 101 9aV  , 2 92 9bV  , so that � �0.65 a bV V V� �� . � 

6. A LOWER BOUND ON THE WORST-

CASE DELAY 
In order to assess how tight the upped bound V  that we can com-

pute through LUDB or FE is, we compute a lower bound v  on the 

worst-case delay. The interval > @,v V  includes the WCD by defini-

tion, and its width V v�  is a measure of the uncertainty on the 

worst-case delay itself. Such a method has already been used to 

assess the tightness of a network calculus bound in [18]. 

Now, any attainable end-to-end delay is by definition a lower 

bound on the worst-case delay, the latter being in fact the maxi-

mum attainable delay. Therefore, we heuristically design a scenario 

which leads to a “large” end-to-end delay for the tagged flow. The 

heuristics used are the same that were proved in [10] to actually 

represent the worst-case scenario for sink-tree tandems. While this 

does not imply that the same holds for generic tandems, it nonethe-

less provides a good motivation. We rely on the following three 

high-level heuristics: 

a) All nodes are lazy, i.e. they delay each bit as long as they can  

b) The tagged flow � �1, N  sends its whole burst � �1, N
V  at time 

0t   and then stops. Therefore, the � �1,N
V th bit of the tagged 

flow experiences a larger delay than the other � �1,
1

N
V � . 

c) Every cross flow � �,i j  sends “as much traffic as possible”, so 

as to delay the � �1,N
V th bit of the tagged flow. 

We measure the delay experienced by the � �1, N
V th bit of the tagged 

flow under these hypotheses. 

Let us take a closer look at hypothesis c) above. Call ,x xa b  the 

time instants when the first and the last bit of the tagged flow ar-

rive at node x . For instance, it is 1 1 0a b  , while x xa b�  for 

1x ! , since all nodes are lazy. Hypothesis c) implies that   

 � � � � � � � � � � � �, , ,

i i i i i i

i j i j i j
A b A a b aD�  �  (26) 

for each flow � �,i j . However, there are infinite CAFs that verify 

(26). For instance, one is the greedy CAF, � � � � � � � �, ,

i i

i j i j
A t t aD � , 

while another one is � � � � � � � �, ,

i i

i j i j
A t F t , with: 

 � � � �
� � � �

� � � � � �

,

,

, ,

i i

i ji

i j
i i i

i j i j

t a t b
F t

b a t b

U

U V

� � � �°
 ®

� � �  °̄
 (27) 

which we call delayed greedy CAF, in which the flow sends its 

burst � �,i j
V  just before the � �1, N

V th bit of the tagged flow arrives at 

node i , as shown in Figure 11. 

ia ib

� �,i j
V

� � � �,

i

i j
F t

t

� �,i j
U

� � � �,

i

i j
t aD �

 
Figure 11. Cumulative arrival functions for flow (i,j) 

Under the hypotheses of the system model, if all the CAFs for the 
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cross flows are either greedy or delayed greedy, both the total CAF 

and the CAF of the tagged flow at each node are piecewise linear, 

and therefore easy to handle algorithmically. We have designed and 

coded an algorithm that manipulates piecewise linear CAFs and rate-

latency service curves, computing the respective CDFs under the 

lazy-node hypothesis (similar to what was done in [16] for blind-

multiplexing networks). The algorithm takes into account the FIFO 

multiplexing and de-multiplexing of flows, thus allowing one to 

separate the contribution of each flow to the total CAF at a node.  

It turns out that, depending on the values associated to the nodes 

and flows parameters, using either the greedy or the delayed greedy 

CAF for the cross flows actually leads to different delays, and it is 

not always possible to establish which of the two is larger without 

actually running the scenarios. Therefore, in order to compute the 

largest possible lower bound on the delay, one needs to test up to 

2M  different scenarios, M  being the number of cross-flows. How-

ever, the computations required for evaluating a single scenario are 

indeed lightweight, so that computing v  is normally faster than 

computing the LUDB. 

In order to give a first example of the effectiveness of the proposed 

algorithm, we apply it to the two examples of Section 5, in which 

improved bounds were computed through FE. The results are: 

- Example 5.2: � �,v V V �  in regions I, II, V, while in regions 

III and IV it is  

 
� � � � � �2 1,1 1,2

1 21
,i

i
v V V

R R

V V
T

 
 � � � �¦  

- Example 5.3: when (24) holds, it is always v V , otherwise 

in (25) it is v V  only when 2 3R Rd , otherwise it is: 

  � � � �

� �

� �

� �

� �3 2,3 1,3 1,2

1 131
3 2

1 1

2,3 2,3

,i

i
v V V

R RR
R R

R R

V V V
T

U U

 
 � � � � �

� �
� �

¦  

This further motivates us to think that, on one hand, FE is effective 

in complementing LUDB, and, on the other hand, that the heuris-

tics behind the computation of the lower bound are effective as 

well. In the next section, we evaluate the LUDB and the lower 

bound in two non-trivial case studies. 

7. NUMERICAL EVALUATION 
We have developed a tool, called DEBORAH (DElay BOund Rat-

ing AlgoritHm), for computing both upper and lower delay bounds 

in tandems, which is available for download at [17]. The tool is 

written in C++, and it takes a text file as an input, which contains 

the rate and latency � �,i iR T  of each node 1 i Nd d  and the leaky-

bucket parameters � � � �� �, ,
,

i j i j
V U  for each flow. At the moment of 

writing, the tools only computes the LUDB for nested tandems, 

whereas the lower bound algorithm shown in Section 6 works for 

both nested and non-nested tandems. The LUDB is computed by 

separating the original P-LP problem into a number of simplexes, 

and solving each simplex separately. Each simplex has M  vari-

ables, M  being the number of � �,i j
s  variables associated to each 

cross flow. The number of constraints C  is upper bounded by the 

following expression: 

 
� �1

1
2

M M
C M

� �
d � �   

The first M  constraints are simply � �,
0

i j
s t  for each cross flow. 

The other constraints are required to isolate each single piece of the 

piecewise linear objective function, and they are always no more 

than the sum of the first M  naturals (much less on average).  

A thorough analysis of the computational complexity of the LUDB 

computation is part of the ongoing work. As a first, preliminary 

observation, we report that the number of required simplexes grows 

fast with the number of flows and nodes in the tandem. Further-

more,  the number of simplexes is influenced not only by the num-

ber of cross-flows, but also on the way they are nested into each 

other. In fact, it may range between M , achieved in a tandem with 

1-hop persistent cross-flows, such as the one analyzed in [9], to !M , 

which is achieved in a sink-tree tandem (although the LUDB can 

actually be computed in a closed-form in both cases, without the aid 

of a software tool). However, in our experiments we found that a high 

percentage of those simplexes (roughly an average of 90%, in the 

cases we analyzed) are actually unfeasible, and can be easily identi-

fied as such, thus saving a considerable computation time. 

Hereafter, we report computations related to two case studies. 

Case study 1 

We analyze a relatively complex nested tandem of 15 nodes and 17 

flows, shown in Figure 12, whose nodes and flows parameters are 

reported in Table 2 and Table 3.  

For this case study, the DEBORAH tool outputs 217.386V  . The 

LUDB was computed by solving 19440 simplexes, 17604 of which 

turned out to be unfeasible. The overall time taken was 6.92 sec-

onds on a 3.0GHz single-core processor, nearly 85% of which 

spent within the simplex solver itself. As a cross-check, we also 

tried FE, by extending flow (12,14) (note that flow (14,14) could 

not be extended due to the rate constraints at node 15). This yielded 

232.541V V ! , in similar computation time. The lower bound 

computation algorithm yielded 190.483v  , in less than 5 s. The 

gap is � � 12.4%V v V� # , which further confirms that the LUDB 

is a good estimate of the WCD.  � 

 

Case study 2 

We analyze a tandem of N  nodes, traversed by the tagged flow 

� �1, N  and by one-hop persistent cross-flows � �,i i , 1 i Nd � , 

shown in Figure 13. We assume that all flows have the same leaky-

bucket arrival curve, with 5V   and 4U  . All nodes have the 

same rate-latency service curve, with 1T   and 2R UU , U  

ranging from 20% to 100%. The LUDB expression for that tandem 

is available in a closed form, and it is equal to (see [9], Theorem 2): 

Table 2. Node parameters 

node R T
1 70 0.3

2 10 0.2

3 40 0.1

4 40 0.1

5 60 0.2

6 55 0.1

7 7 0.2

8 60 0.3

9 60 0.1

10 10 0.2

11 30 0.1

12 40 0.3

13 45 0.1

14 45 0.3

15 7 0.2
 

Table 3. Flow parameters 

flow  V U
1,15 200 1

1,1 100 60

1,3 200 3

1,8 100 2

3,3 200 30

4,4 400 30

4,7 300 2

5,5 300 50

6,6 200 45

8,8 100 55

9,9 300 55

9,11 200 2

11,11 200 20

12,12 100 30

12,14 100 3

13,13 200 40

14,14 100 40
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Figure 14 shows the gap between the LUDB and the lower bound 

as a function of the number of nodes and for various values of U . 

As the figure shows, the gap increases with both N  and U . How-

ever, it tends to reach a limit value as N  grows higher. While the 

exact quota of the gap depends on the actual parameter values, the 

same behavior is always observed. 

Note that we can apply FE to the above tandem when 100%U � . 

For instance, when 8, 20%N U   all the cross flows can be 

extended to the last node, thus yielding a sink-tree tandem with a 

tagged flow � � � �1, 2 ,2N V U{  and cross-flows � � � �, ,i N V U{ , 

2 8id d , for which the LUDB can be computed in a closed form 

applying the formula in [10]. As shown in Table 4, this reduces the 

gap of about 40%. � 

Table 4. Gap between the LUDB and the lower bound for with 

N=8 and U=20% 

tandem LUDB Lower 

Bound 

Gap 

original 10.111 9.75% 

with FE 9.673 
9.125 

5.66% 

N1N �1 2

� �1, N

� �1,1 � �2, 2 � �,N N� �1, 1N N� �

...

 
Figure 13 – Case-study nested tandem 

0

0,1

0,2

0,3

0,4

0,5

2 4 6 8 10 12 14 16

20%

50%

100%

G
a

p

N
  

Figure 14. Gap between the LUDB and the lower bound in the 

case-study tandem 

8. CONCLUSIONS AND FUTURE WORK 
In this paper we have shown that the current Network Calculus theo-

rems related to FIFO multiplexing are not sufficient for computing 

the worst-case delay in tandem networks. The best delay bound that 

can be computed, i.e. the least upper delay bound, can sometimes be 

improved upon, even in very simple cases. We have shown this intro-

ducing a method – called Flow Extension, that allows one to compute 

delay bounds by exploiting topological properties of tandems. We 

have then addressed the question of how close the upper bounds are 

to the (unknown) worst-case delay. We have devised an algorithm 

that computes lower bounds on the worst-case delay. Our preliminary 

analysis shows that, at least for nested tandems, the upper and lower 

bounds appear to be reasonably close. 

This work is being extended at the time of writing. Specifically, we 

are currently extending DEBORAH so as to take into account non 

nested tandems. Furthermore, we are evaluating the tightness of the 

LUDB in a broader set of scenarios. Finally, we are developing 

heuristics to approximate the LUDB in very large nested tandems, 

where solving a too large number of simplexes would not be com-

putationally affordable. 
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