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ABSTRACT

In this paper, we introduce a new framework supporting
the bottleneck analysis of closed, multiclass BCMP queue-
ing networks with large population sizes. First, we provide a
sufficient and necessary condition establishing the existence
of a single bottleneck. Then, we derive the new framework
proposing efficient algorithms for the identification of queue-
ing networks bottlenecks by means of linear programming.
Our analysis reduces the computational requirements of ex-
isting techniques and, under general assumptions, it is able
to handle load-dependent stations. Theoretical and practi-
cal insights on the asymptotic behavior of multiclass net-
works are investigated as application of the proposed frame-
work.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; D.4.8
[Operating Systems]: Performance—Queueing theory

General Terms

Performance, Theory

Keywords

Multiclass Queueing Networks, Bottleneck Analysis, Load
Dependent, Asymptotic Analysis, Linear Programming

1. INTRODUCTION
An important problem in the context of information tech-

nology (IT) infrastructures is the identification of congestion
points, usually referred to as bottlenecks. Such congestion
points are the resources a designer must invest to obtain
significant improvements and their knowledge provides ac-
curate insights on the performance behavior of a system.
It is well-known that they are the most critical resources
which limit the overall performance. Since the number of
bottlenecks, in general, is much less than the total num-
ber of resources, such qualitative behavior can be obtained
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with a limited computational effort. However, the problem
of their identification is non-trivial because they can shift
across different resources depending on a number of factors,
e.g. the mix of workloads. Moreover, modern computer
systems are dynamic, self-configuring, self-optimizing and,
within this framework, fast and non-intrusive identification
techniques are required.

Closed queueing network models [6] have been widely used
in the literature to perform the above mentioned analysis.
In particular, a number of works have been proposed re-
garding the analysis of closed, BCMP queueing networks [5]
because they are a robust tool able to accurately capture the
performance behavior of service systems (see, e.g., [21] for a
recent work). While for singleclass BCMP models the analy-
sis is well-known and requires little computational effort, no
simple analysis exists for the more difficult case of models
with multiple classes. A recent, extensive survey of exist-
ing identification techniques for multiclass, BCMP models
with load-independent (or fixed-rate) stations can be found
in [22]. Moreover, to the best of our knowledge, nothing
appeared in the literature about the more difficult setting
of BCMP networks with load-dependent stations. This type
of station models a queue where its processing speed de-
pends on the number of customers that it contains and it is
adopted in many applications. In fact, load-dependent sta-
tions can represent the well-known multiple-server queues
or flow-equivalent stations [9, 11] which are used for the
hierarchical modeling of large/multitiered networks. Flow-
equivalent stations are also used to speed up the evaluation
of different network alternatives for input parameters [6] and
they are also important for the approximate solution of non-
BCMP networks (see, e.g., [8, 14, 12, 1]). Furthermore,
load-dependent stations are used to model the performance
behavior of sub-systems which are difficult to treat analyt-
ically. In this case, the parameterization of the processing
speeds is approached through measurements or simulations.

Within this more difficult setting, existing bottleneck anal-
yses cannot be easily generalized. For instance, consider the
recent approach [7]. In that work, the authors consider the
station loadings (or service demands) vectors of a closed
multiclass network as points in an euclidean space and de-
fine the characteristic polytope of a queueing network as
the convex hull of such points. The points belonging to
the boundaries of the convex hull correspond to the network
bottlenecks and for their enumeration the authors essentially
adopt the algorithm [15]. However, this approach hardly ex-
tends to load-dependent stations because, in this case, the
characteristic polytope of a queueing network is not constant
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and its structure strongly depends on the number and the
mix of customers characterizing the population. Moreover,
for each population vector it is difficult to obtain the struc-
ture of this polytope because the distribution of customers
among the stations is not a priori known and must be taken
into account (this is computationally expensive).

In this paper, we introduce a new bottleneck analysis re-
lated to the whole class of closed, multiclass BCMP queue-
ing networks with large population sizes. We assume that
the total number of customers N grows to infinity while
keeping constant the ratio Nr/N for each class of customers
r. Our notion of bottleneck is equal to the well-known one
presented, e.g., in [4]: informally, a bottleneck is a station
which saturates its processing capacity as N → ∞. First,
we provide a necessary and sufficient condition for the exis-
tence of a single bottleneck shared by all customers. Then,
this result is exploited to derive new algorithms able to effi-
ciently identify all networks bottlenecks reducing the compu-
tational requirements of existing techniques. The analysis is
also innovative because it is able to handle load-dependent
stations. This extension holds under general assumptions
without increasing the computational requirements of the
corresponding analysis related to load-independent stations.
As application example of our framework, we introduce new
techniques for the efficient identification of global saturation
sectors (see, e.g., [4]).

The paper is organized as follows. Section 2 introduces
the model under investigation and the necessary definitions
on bottlenecks. In Section 3 we give our first result char-
acterizing the situations in which a single bottleneck exists.
Section 4 exploits this result to derive a new bottleneck anal-
ysis related to BCMP networks with load-independent sta-
tions, and Section 5 extends the analysis to networks with
load-dependent stations. Section 6 presents an application
of the proposed framework to global saturation sectors and,
finally, Section 7 draws the conclusions of this work.

2. MODEL AND BACKGROUND

2.1 Model and Notation
We consider multiclass BCMP queueing networks [5]. There

are M stations and customers are partitioned into R classes.
Stations can be load-independent (LI) or load-dependent
(LD). If not otherwise specified, index r will implicitly range
from 1 to R and indices i and j from 1 to M indexing, respec-
tively, network classes and stations. pij,r is the (constant)
probability that upon completing service at station i a class-
r customer goes to station j. p0i,r and pj0,r are, respectively,
the probability that a class-r customer entering from outside
visits station i and the probability that a class-r customer
leaves the network after completion at station j.

If the network is open, we denote by

• λ0,ir, the mean class-r customers arrival rate from out-
side to station i (it is assumed that customers arrival
process is poissonian)

• λir, the mean class-r customers arrival rate to station
i which can be obtained by solving linear system

λir = λ0,ir +
X

j
λjrpji,r, ∀i, r (1)

If the network is closed, we denote by

• Nr, the (constant) number of class-r customers circu-
lating in the network,

• N = (N1, N2, . . . , NR), the total population vector,

• N = N1+N2+. . .+NR, the total number of customers
without class distinction.

We denote by nir the number of class-r customers in sta-
tion i, by ni = (ni1, ni2, . . . , niR) the population vector in i,
by ni = ni1 + ni2 + . . . + niR the total number of customer
in i, and by matrix

~n =

0

B

@
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...
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1
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=
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the aggregate state of the network. For closed networks, note
that Nr =

P

i
nir . Let also er be the size-R orthogonal unit

vector in direction r.
µir is the mean class-r service rate of station i and the

quantity 1/µir is called mean service time. vir is the mean
number of visits (also called relative arrival rate) of a class-
r customer to station i and can be obtained through linear
system

vir = p0i,r +
X

j
vjrpij,r, ∀i, r. (3)

Since in closed networks p0i,r = 0, for each r the previous
system has only M − 1 independent equations and its solu-
tion is determined up to a multiplicative constant assuming,
for instance, v1r = 1, ∀r, e.g. [6], where 1 denotes the ref-
erence station.

Dir = vir/µir is the mean loading of station i for class-
r customers (also called relative utilization, or service de-
mands) and for a closed network it represents the average
time spent by a class-r customer at station i during its
full execution when using the network alone and visiting
(reference) station 1 once, i.e. v1r = 1. Within a given
class, all the loadings are different and no loading vector
Di = [Di1, . . . , DiR] can be expressed as a linear combina-
tion of others.

Let xi : N → R
+ be an arbitrary positive function of

the number of customers which visit i. xi(n) represents
the LD rate of service of i when there are n customers in
i relative to the service rate when n = 1, i.e. xi(1) = 1.
Analogously, let yir : N → R

+ be the LD rate of service of
class-r customers in station i as function of the total number
of customers it contains relative to the class-r service rate of
i when exactly one (class-r) customer is present, i.e. yir(1) =
1. It is well-known that the model discussed above with
stations providing such types of load-dependencies satisfies
the BCMP assumptions [5]. For simplicity, let

zir(n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

xi(n) If station i relative service rate
depends on the total number of
customers in its queue,

yir(n) If station i relative service rate
depends on the number of class-r
customers in its queue,

(4)
Xir(N), Uir(N), Qir(N) respectively represent the mean

throughput, the mean utilization and the mean queue length
(number of customers) of class-r customers in station i as
function of the population vector N. We assume that the
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previous quantities refer to global quantities if station or
class subscript is removed. For instance, Xr(N) represents
the system throughput for class-r customers (measured at
a reference station) and Ui(N) represents the utilization of
station i due to all classes.

Let β ≡ β(N) = [β1, β2, . . . , βR] be the population mix

vector corresponding to N whose components are such that

βr =
Nr

N
,

X

r

βr = 1. (5)

We study the bottlenecks of multiclass, closed queueing net-
works when N grows to infinity keeping constant the pop-
ulation mix β. When considering a performance index in
the limit, we omit the dependency of β for simplicity of
notation. For instance,

Xr ≡ lim
N→∞

Xr(Nβ)|Nβ∈NR . (6)

2.2 Types of Stations and Bottlenecks
We now introduce the necessary definitions characterizing

the types of stations and bottlenecks considered in the re-
mainder of the paper. The following definitions can be also
found in [4, 7].

As N → ∞, it is well-known that customers tend to ac-
cumulate in different portions of the network depending on
the population mix β. In other words, different population
mixes yield, in general, different bottlenecks.

Definition 1. Within a given mix, station i is called bot-

tleneck if and only if

Ui ≡ lim
N→∞

Ui(N) = 1. (7)

A special type of bottleneck is called natural bottleneck.

Definition 2. Within class r, the class-r natural bottleneck

is the station which satisfies (7) when the network is loaded
with class-r customers only, i.e. imposing βr = 1.

We note that one station can be the natural bottleneck of
multiple classes. If different classes have distinct natural
bottlenecks, it has been shown that the bottlenecks can mi-
grate across different stations depending on the population
mix, e.g. [4].

Definition 3. Station m is called dominated if and only if
there exists a station i 6= m such that

Dir > Dmr, ∀r. (8)

The saturation of m is prevented by i and, thus, m cannot
become a bottleneck for each population mix.

Definition 4. Station m is called potential bottleneck if
and only if it is neither a natural bottleneck nor a domi-
nated station.

Let Φ be the set of non-dominated stations (alternatively,
the set of natural and potential bottlenecks). The belonging
of station i to Φ is a necessary but not sufficient condition
for the saturation of i. In fact, it may happen that there is
no mix such that (in the limit) Ui = 1. Thus, we introduce
the following further definition.

Definition 5. Station i is called masked-off if and only if it
is a non-dominated station and cannot become a bottleneck
for each population mix.

3. COMMON BOTTLENECK EXISTENCE
In this section, we establish a theorem providing a nec-

essary and sufficient condition for the existence of a single
bottleneck and it will be strongly used in the rest of the
paper.

3.1 Underlying Markov Chain
The underlying Markov chain of a BCMP queueing net-

work model is described in [5] where the states of the model
take into account the service discipline adopted by stations,
i.e. FCFS, PS, LCFS-PR or IS, and the probability dis-
tribution of their service times. In that work, a simpler
representation of states is given by aggregating some states.
An aggregate state of the model is given by only consider-

ing the number of per-class customers in the stations, i.e.
matrix ~n. This representation reduces the number of possi-
ble states. Within the BCMP assumptions, it is well-known
(insensitivity property) that any service time distributions
yield the same results of exponential service time distribu-
tions (see [5, 19]) in terms of average performance indices.
Hence, given a BCMP network, we first consider the equiv-
alent network charaterized by a negative exponential distri-
bution for all service times. Within this reduced network, it
is also known that stations with service discipline FCFS, PS
or LCFS-PR yield the same results in terms of average per-
formance indices, and, thus, we can describe the input net-
work assuming that all stations are PS. The behavior of this
network can be described by the underlying Markov chain
built on aggregate states ~n without introducing any degree
of approximation in terms of average performance indices.
We henceforth consider this equivalent representation of the
network because our focus is on the averages of performance
indices. Hence, we introduce the following definition.

Definition 6. Two Markov chains are called equivalent if
there exists a bijection f between their state spaces such
that each pair of states (~n, f(~n)) guarantees that the out-
going transition rate from ~n to ~n′ is equal to the out-going
transition rate from f(~n) to f(~n′), for all states ~n′.

3.2 Asymptotic Equivalence
The following theorem provides a sufficient and necessary

condition for the existence of a common (single) bottleneck.

Theorem 1. Given population N and a closed BCMP

network, let N proportionally grow to infinity. Assuming

that limn→∞ zmr(n) = zmr, consider the open network ob-

tained by the closed one removing a generic station m and

formed by the same routing probabilities pij,r, outside ar-

rival rates λ0j,r = µmrzmrβrpmj,r, pi0,r = pim,r and p0j,r =
pmj,r. Then, the underlying Markov chain of the closed net-

work is equivalent to the underlying Markov chain of the

open network and the open network is ergodic if and only if

in the closed network m is the common bottleneck.

Proof. Given in the Appendix.

We note that the equivalence stated in the theorem be-
tween the closed and the associated open network does not
imply the existence of a probability distribution over the
states of the open network. However, such probability dis-
tribution exists if the open network is ergodic (or, equiva-
lently, if a common bottleneck exists in the closed network)
and, in this case, the equivalence implies that performance
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indices of station i 6= m belonging to the closed network
converge, in the limit, to the ones related to station i of the
open network which are well-understood. Theorem 1 pro-
vides, thus, a possible exact behavior of a closed network in
the limit: if the open network defined in the theorem is er-
godic then the queue length Qi of the closed network, i 6= m,
is finite and, as a consequence, Qm must grow linearly with
N to infinity. This result is analogous to the one presented
in [3, 2] where the authors, however, assume the existence
of a common bottleneck for all population mixes. Observe
that this latter assumption is a sufficient but not necessary
condition for the existence of a single bottleneck.

Checking the ergodicity of the open network (or, equiv-
alently, the existence of a common bottleneck) is straight-
forward. In fact, it sufficies to iterate over all stations m
belonging to Φ and, for each of them, to check whether

Ui < 1, i 6= m. (9)

The restriction to Φ follows from the fact that the applica-
tion of Theorem 1 with respect to a dominated station yields
a non-ergodic open network. If (9) holds true for all i 6= m
and within some station m, then m is the common bottle-
neck. Evidently, in this case performance indices of station
i 6= m converge, in the limit, to the well-known closed-form
formulas of open networks and for the bottleneck we have

lim
N→∞

(Nr − Qmr(N)) =
X

i6=m

Qir, (10)

and the asymptotic class-r throughput of the closed network
is given by

Xr = lim
N→∞

Xr(N) = µmrzmrβr

X

j 6=m

pmj,r (11)

which implies that Umr = βr which is in agreement with the
conjecture presented in [4].

4. BOTTLENECK ANALYSIS
In this section, we introduce the new framework support-

ing the analysis of multiclass, closed BCMP queueing net-
works. We assume that all stations are LI. The generaliza-
tion to networks with LD stations will be proposed in the
next section.

4.1 Searching for Ergodicity
The loadings of the open network defined in Theorem 1

can be exactly computed because the equations in system (3)

become linearly independent. Let us denote by D
(m)
i,r the

mean loading of station i for class-r customers in the open

network when the open network is built removing station m.

D
(m)
i,r can be interpreted as the total average time spent by

a class-r customer at station i in the closed network during
its full execution when using the network alone and visiting
station m 1/(1 − pmm,r) times. Hence,

D(m)
mr =

1

(1 − pmm,r)µmr

. (12)

By definition of loadings, the following relation holds

Dir

Djr

=
D

(m)
ir

D
(m)
jr

. (13)

An important consequence of Theorem 1 is the possibil-
ity of characterizing the whole set of mixes which yield the

saturation of exactly one station. Given a closed network,
for each station m ∈ Φ it sufficies to remove m and build
the associated open network. The β-space which yields the
saturation of only m is given by imposing ergodicity in the
open network, i.e.

X

r

(1 − pmm,r)µmrβrD
(m)
ir =

X

r

βr

D
(m)
mr

D
(m)
ir =

X

r

βr

Dmr

Dir < 1, ∀i ∈ Φ, i 6= m

(14)

with the conditions
P

r
βr = 1, βr ≥ 0. We denote by Bm

the β-space determined by the system of inequalities (14).
Each β ∈ Bm yields the saturation of m only. If Bm is
empty for some m, then it means that there is no mix which
yields the saturation of only m. This situation can only
happen to non-natural bottlenecks: in fact, by definition,
a natural bottleneck saturates when the input mix is er,
for some r. If m is a dominated station, it is easy to see
that Bm = ∅. This proves, in an alternative manner, the
well-known fact that a dominated station never saturates.

4.2 A New Characterization of Bottlenecks
In the following, we will focus the attention only on non-

dominated stations, i.e. set Φ, since the identification of the
dominated ones can be easily performed taking into account
constraint (8). We introduce the following theorem.

Theorem 2. If there exists a mix β which yields the sat-

uration of station m, then there exists a mix β′ which yields

the saturation of only m.

Proof. Given in the Appendix.

In other words, the theorem ensures that if m saturates for
some mix, then it can also saturate alone. The following the-
orem characterizes bottleneck and non-bottleneck stations
in terms of the emptiness of a set of linear constraints.

Theorem 3. Bm is empty if and only if m cannot become

a bottleneck.

Proof. Given in the Appendix.

A first consequence of Theorem 3 is that we can efficiently
understand whether or not the insertion of a new station
(within an existing network) can yield significant changes in
the overall performance, i.e. whether or not it can become a
bottleneck. An other important consequence is that we can
efficiently identify the whole set of stations (say Φ′) which,
within some mix, can become bottlenecks. Formally,

Φ′ ≡ Φ \ {m : Bm is empty} . (15)

By Theorem 2, we observe that each station belonging to Φ′

can also saturate alone.
To check the emptiness of Bm, i.e. the β-space generated

by (14), we can exploit well-known linear programming tech-
niques by running, for instance, the Simplex algorithm [16]
which is non-polynomial with respect to the input size but
very efficient for practical purposes.

This analysis is summarized in Algorithm 1 where M =
{1, 2, . . . , M} denotes the set of network stations indices (in-
cluding the dominated ones).
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Algorithm 1 Computation of Φ′

1: Φ′ := ∅;
2: for all m ∈ M do

3: Check the feasibility of the following set of linear
constraints:

X

r

βr

Dmr

Dir ≤ 1 − ε, ∀i ∈ M, i 6= m

P

r
βr = 1,
βr ≥ 0, ∀r.

(16)

4: if (16) is feasible then

5: Φ′ := Φ′ ∪ {m};
6: else

7: M := M \ {m};
8: end if

9: end for

In the algorithm, we basically exploit relation (15) check-
ing the emptyness of Bm for each station m. To apply linear
programming techniques to (14), we have to find a similar
formulation of the inequalities of (14) which includes the
equality constraint, i.e. ≤, instead of <. This is easily ac-
complished by introducing an arbitrary small positive num-
ber, i.e. ε, on the right-hand side of the inequalities which
hold strictly (see linear program (16)). If (16) is feasible,
then we add m to Φ′. Otherwise, station m cannot become
a bottleneck and this implies that to check whether or not
j 6= m can saturate, we can verify the emptiness of Bj con-
sidering, in (16), M/{m} instead of M. Thus, m is removed
from M (Line 10). Algorithm 1 requires the solution of M
linear programs which can be solved by running the first
phase of the Simplex algorithm (see, e.g., [16]) because we
must only check their feasibility. However, an optimization
can be performed to not iterate over the whole set of sta-
tions. In fact, consider the linear program (17) which is char-
acterized by the same constraints of (16) and maximizes the
utilizations of the stations whose bottleneck/non-bottleneck
status is not known. Within some station m, if no feasible
solution exists for (17), then m cannot become a bottle-
neck and it is removed from M. Otherwise, since (17) is a
maximization program, its solution must be a vertex of the
convex set identified by its constraints. Such vertex is a mix
in which multiple constraints hold with the equality. Given
that such constraints represent the stations utilizations, we
deduce that this mix yields the saturation of at least one
station different from m. This observation reveals that we
can immediately understand the “bottleneckness” of a large
number of stations (namely |φ|) without solving the associ-
ated linear programs (16). This observation is exploited in
Algorithm 2.

Even though program (17) lets us avoid to iterate over
the whole set of stations, it requires the execution of both
phases of the Simplex algorithm and, thus, it is less efficient
than (16). Moreover, given that it may happen, in Line 8,
that φ ⊆ Φ′, in this case (17) does not yield a running time
reduction because no further bottlenecks different from m
are found. Hence, we exploit variable k which represents
the number of bottlenecks identified by (17) different from
m and not belonging to Φ′ yet. A strictly positive value of
k lets us avoid exactly k executions of (16) performed by
Algorithm 1. If variable k becomes zero at the m-th itera-

Algorithm 2 Computation of Φ′ (improved)

1: Φ′ := ∅; S := M; k := 1;
2: while S 6= ∅ do

3: Choose m ∈ S; S := S \ {m};
4: if k > 0 then

5: Solve the following linear program:

max
X

j∈S

X

r

βr

Dmr

Djr

s.t.:
X

r

βr

Dmr

Dir ≤ 1 − ε, ∀i ∈ M, i 6= m

P

r βr = 1,
βr ≥ 0, ∀r.

(17)
6: if (17) is feasible then

7: Φ′ := Φ′ ∪ {m};
8: φ := {i :

P

r
βrDir/Dmr = 1 − ε};

9: k := |φ \ (φ ∩ Φ′)|;
10: Φ′ := Φ′ ∪ φ; S := S \ φ;
11: else

12: M := M \ {m};
13: end if

14: else

15: if (16) is feasible then

16: Φ′ := Φ′ ∪ {m};
17: else

18: M := M \ {m};
19: end if

20: end if

21: end while

tion, then it is likely that the values of k in the successive
iterations are very small or zero, and this would not yield
a significant running time reduction (recall that (17) is less
efficient that (16)). Hence, after the m-th iteration, Algo-
rithm 2 essentially behaves as Algorithm 1.

Figures 1 and 2 illustrate the temporal requirements re-
quired by the approach [7] (CS) and both Algorithms 1 and 2
(respectively, Alg1 and Alg2) with respect to reasonably
large networks. The algorithms have been implemented
in the Ampl language [10] and the experiments have been
carried out by running the commercial Ilog Cplex optimiza-
tion solver v9.100 on a 933MHz Mobile Intel Pentium III
CPU. The times (in seconds) are obtained by means of the
Ampl parameter total solve time. The experiments refer
to several random models where the stations loadings have
been drawn from a uniform distribution ranging between 1
and 100 as in [7]. R is increased from 20 to 100 with step
20 and we considered M = 200 (Figure 1) and M = 300
(Figure 2). In both figures, each point is referred to the av-
erage of 50 models because the variance of the computation
times was negligible. What we note in the figures is that our
solution technique yields significant running time reductions
in the characterization of Φ′ up to a factor of five.

4.3 Identification of Bottleneck Sets
Theorems 2 and 3 can be further adopted to efficiently

understand whether or not the stations belonging to a given
set can saturate simultaneously (for some mix). This can be
useful, for instance, to understand whether or not a number
of stations belong to a global saturation sector (see [4]).

Let φ ⊆ Φ be a set of stations and let also m ∈ φ. If Bm
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Figure 1: Computation times with M=200.
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Figure 2: Computation times with M=300.

is empty, then Theorem 3 ensures that m cannot become
a bottleneck and, thus, that stations in φ cannot saturate
together. On the other hand, if they can saturate simul-
taneously, then Theorem 2 ensures that exists some mix
which yields the saturation of only m. Hence, we re-write
system (14) with respect to set Φ and station m ∈ φ and
we assume that all the strict inequalities, i.e. <, include
equality, i.e. ≤. The situation in which all the stations be-
longing to φ saturate together corresponds to the situation
in which the associated |φ|−1 constraints of this system be-
come active, i.e. the equality holds. This holds because the
left-hand side of the i-th inequality of (14) represents the
utilization of station i. If the β-space obtained by imposing
the equality for such constraints is non-empty then it means
that there exists some β which yields the saturation of all
stations in φ simultaneously and vice versa.

Algorithm 3 summarizes the analysis required to under-
stand whether or not stations in φ can simultaneously satu-

rate together (for some mix). This algorithm can be further

Algorithm 3 Can stations in φ saturate simultaneously?

1: Choose m ∈ φ;
2: Check the feasibility of the following set of linear con-

straints:
X

r

βr

Dmr

Dir ≤ 1, ∀i ∈ Φ, i /∈ φ

X

r

βr

Dmr

Dir = 1, ∀i ∈ φ, i 6= m

P

r
βr = 1,
βr ≥ 0, ∀r

(18)

3: if (18) is feasible then

4: return “Yes”;
5: else

6: return “No”;
7: end if

adopted to efficiently speed up the characterization of Φ′.
In fact, if it is possible to guess a set of stations which can
simultaneously saturate, then we can apply Algorithm 3 to
efficiently understand if they actually do, and, in this case,
all stations belonging to the guess are part of Φ′. This re-
duces the number of linear programs to solve for the charac-
terization of Φ′. Such guesses can be derived by exploiting
ordering properties of the loading vectors [4]: in fact, as-
suming two-class networks and that Φ is ordered according
to the class-1 loadings, then stations i and j cannot satu-
rate together if they occupy non-contiguous positions in Φ.
We leave as future work the development of such further
optimization.

5. LOAD-DEPENDENT STATIONS
When LD stations are considered, the bottleneck identifi-

cation becomes more difficult because the expected loadings
at stations are not a priori known and vary according to
the distribution of customers among the queues. It is a fact
that the expected loadings at station i obtained with two
different mixes can be very different.

Within our framework, the analysis presented in previous
section can be extended to the more difficult setting of LD
stations, i.e. stations characterized by a processing speed
that depends on their queue length. Let us first assume
that the load-dependency of network stations depends on
the total number of customers in its queue and, for station
m, that limn→∞ xm(n) = xm.

Within the hypotheses of Theorem 1, we note that m is
the common bottleneck of the network if it is satisfied the
generalization of the system of inequalities (14), i.e.

Ui =
X

ni≥1

πi(ni) < 1, ∀i ∈ Φ, i 6= m (19)

P

r
βr = 1, βr ≥ 0, where πi(ni) denotes the steady-state

probability of having ni customers in station i of the open
network defined in Theorem 1. Applying the BCMP theo-
rem [5], we have

πi(ni) =
(
P

r βrxmDir/Dmr)
ni

Qni

t=1 xi(t)
Gi (20)
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where

G−1
i =

X

n≥0

(
P

r
βrxmDir/Dmr)

ni

Qni

t=1 xi(t)
. (21)

Since the inequalities of system (19) are non-linear in β, the
characterization of Bm appears more difficult in the case of
LD stations. However, a great simplification can be per-
formed in the analysis if we assume that potential bottle-
necks are limited load-dependent stations (see, e.g., [18, 13]),
i.e. if we assume that there exists a positive integer n′

i such
that xi(n) = xi(n

′
i) = xi, ∀n ≥ n′

i, i ∈ Φ. This class of
load-dependencies is wide. After some basic algebraic ma-
nipulations related to geometric series, system (19) can be
expressed as

0 <

2

4

n′

i−1
X

ni=1

Uni

0,i
Qni

t=1 xi(t)
+

U
n′

i

0,i

(xi − U0,i)
Qn′

i
−1

t=1 xi(t)

3

5

1 +

2

4

n′

i−1
X

ni=1

Uni
0,i

Qni

t=1 xi(t)
+

U
n′

i
0,i

(xi − U0,i)
Qn′

i
−1

t=1 xi(t)

3

5

< 1,

(22)
with i ∈ Φ \ {m},

P

r
βr = 1, βr ≥ 0, where

U0,i =
X

r

βrxm

Dir

Dmr

. (23)

Clearly, system (22) is satisfied if and only if each numerator
of its inequalities is greater than zero, i.e. if and only if

2

4

n′

i−1
X

ni=1

Uni
0,i

Qni

t=1 xi(t)
+

U
n′

i

0,i

(xi − U0,i)
Qn′

i
−1

t=1 xi(t)

3

5 > 0, (24)

with i ∈ Φ\{m}. Since U0,i > 0 and (24) must be composed
of positive summands only (otherwise we would have nega-
tive steady-state probabilities for (20)), this implies that (24)
is satisfied if and only if

U0,i

xi

< 1, i ∈ Φ \ {m}, (25)

P

r
βr = 1, βr ≥ 0, and we note this system is composed

of linear constraints only. Thus, the geometric structure of
Bm is surprisingly equivalent to the one presented for LI
stations. However, we note that the terms on the left-hand
side of (25) do not represent stations utilizations as in the
LI case, i.e.

U0,i

xi

6= Ui, i ∈ Φ \ {m}, (26)

and, thus, their interpretation is different. From the uti-
lization law, e.g. [14], we note that terms U0,i/xi can be
interpreted as the utilization of station i if we assume that
i is LI with loadings Dir/xi. This interpretation is in agree-
ment with the intuitive rationale that as the input mix ap-
proaches the boundary U0,i/xi = 1 of Bm, the queue length
of station i grows to infinity and, thus, the average number
of customers is almost surely greater than n′

i which implies
that the expected loadings of i are almost surely given by
Dir/xi.

When the load-dependency of m depends on the per-class
number of customers in its queue, we obtain the analogous
result. Assume that limn→∞ ymr(n) = ymr. The general-

ization of (14) becomes

Ui =
X

r

X

All vectors ni

such that nir > 0

nir

ni

πi(ni) < 1, ∀i ∈ Φ, i 6= m

(27)
P

r
βr = 1, βr ≥ 0, where, from the BCMP theorem [5],

πi(ni) = ni!
Y

r

(βrymrDir/Dmr)
nir

nir!
Qnir

t=1 yir(t)
Gi (28)

is the steady-state probability of having ni customers in
station i of the open network defined in Theorem 1 and
Gi is the normalizing constant. As in previous case, let
us assume limited load-dependent stations, i.e. that there
exists a positive integer n′

ir such that yir(n) = yir(n
′
i) =

yir, ∀n ≥ n′
ir, i ∈ Φ, ∀r. Applying the same algebraic

technique shown above, it is possible to show that (27) is
satisfied if and only if

X

r

βr

Dirymr

Dmryir

< 1, i ∈ Φ \ {m} (29)

P

r
βr = 1, βr ≥ 0 is satisfied.

As stated for (25), we note again that the inequalities in
(29) cannot be understood as stations utilizations as in the
LI case. Their interpretation is the same shown above.

Thus, even in the case of LD stations, sets Bm can be
described in terms of linear constraints even though their
physical rationale is different. Taking into account (25) and
(29), Algorithms 1, 2 and 3 can be applied again at the same
computational cost.

6. GLOBAL SATURATION SECTORS
In this section, we show a simple application of the pro-

posed framework related to the identification of global satu-

ration sectors (GSS) [4], i.e. connected sets of mixes which
yield the saturation of exactly R stations. The knowledge
of all the possible GSS of a given queueing network is im-
portant because it lets us obtain the mixes which maximize
the network utilization. For instance, the mixes belonging to
GSS are the ones which an admission controller should guar-
antee in the network to keep high the network utilization. It
has been shown [20, 4] that such sectors are polytopes in the
β-space and, thus, their structure is completely determined
by their vertices, e.g. [17].

We exploit sets Bm to introduce a new framework for
their identification which complements the one presented in
[7]. We also provide a theoretical observation on the asymp-
totic behavior of multiclass queueing networks conjectured
in [4]. For simplicity, in the following we assume that the r-
th station of the network is the natural bottleneck of class-r
customers which is equivalent to assume that [4]

Drr > Dir, i 6= r, (30)

which implies M ≥ R.

6.1 Natural Bottlenecks
Let us consider the case in which only natural bottlenecks

can saturate. According to (30), this means that stations
loadings satisfy the constraint

Drr > Dir > Djr, i 6= r, j > R. (31)
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Clearly, in this case we have

Φ = Φ′ = {1, 2, . . . , R} (32)

which implies that the linear system (14) is composed of
R − 1 inequalities. Given that Bm, m ∈ Φ, is non-empty
and that the expressions in (14) represent stations utiliza-
tions, we can obtain the mixes which yield the saturation
of all natural bottlenecks by imposing, in (14), the equality
constraints. Hence, to obtain the R vertices of the GSS, it
sufficies to solve the linear system

8

>

>

<

>

>

:

X

r

βr

Dmr

Dir = 1, ∀i ∈ Φ, i 6= m

X

r

βr = 1
(33)

for each m ∈ Φ. Let βm,Φ be the solution of system (33).
If βm,Φ is a feasible solution, i.e. it satisfies constraints (5),
then it represents the switching point for the behavior of all
stations i ∈ Φ, i 6= m, i.e. the point in which the stations
belonging to Φ\{m} change their bottleneck/non-bottleneck
status, and it is a point in which all natural bottlenecks
must saturate together. Note that βm,Φ may have negative
components and, in this case, the solution is not feasible.
This means that in such cases no GSS exists for Φ. On
the other hand, a GSS exists if βm,Φ is a feasible solution.
In the following, we refer to global switching point of m to
indicate a feasible solution of linear system (33). The GSS is
given by the polytope having as vertices all global switching
points and its uniqueness follows by the uniqueness of βm,Φ.

The continuity of per-class utilizations with respect to β

lets us state the following observation.

Observation 1.

lim
β→β

−

m,Φ

lim
N→∞

Uir(N) = lim
β→β

−

m,Φ

βr

Dir

Dmr

= βm,Φ,r

Dir

Dmr

,

(34)
which implies that the coordinates of the global switching

point of m are equal to the per-class utilizations of m.

We note that Observation 1 is a direct consequence of the
conjecture introduced in [4]. The result in Observation 1 has
been proposed in [4] to identify, in an alternative manner,
the vertices of the GSS. That method, widely used in [7],
requires the solution of a linear system having R2 equations
and R2 unknowns. On the other hand, our method (based
on the solution of systems (33)) provides a lower computa-
tional complexity. In fact, it requires the solution of R linear
systems composed of R equations and R unknowns.

At the cost of a higher computational complexity, the
analysis proposed for the natural bottlenecks case can be
easily extended to the more general case in which |Φ| ≥ R.
In this latter case, multiple GSS can exist [4]. Within our
framework, this is understood by the fact that Bm, in gen-
eral, yields more than one global switching point deriving
from different sets of R − 1 constraints of (33). In the cur-
rent presentation, we omit the analysis of this more difficult
case for the sake of conciseness.

7. CONCLUSIONS
In this paper, we introduced a new bottleneck analysis

related to closed, multiclass BCMP queueing networks. We
derived sufficient and necessary conditions for the existence

of a single bottleneck and proposed algorithms able to iden-
tify all network bottlenecks improving the computational
requirements of existing solution techniques. For the first
time in the literature, our approach is able to handle LD
stations. In contrast with the great majority of the analyses
related to BCMP queueing networks (e.g., exact, approxi-
mate and bounding analyses), this extension does not re-
quire additional computational effort and relies on a general
assumption. As application of the proposed framework, we
outlined algorithms for the identification of global satura-
tion sectors. A detailed analysis of such algorithms is left
as future work. For the characterization of Φ′, we also men-
tioned (see Section 4) the possibility of a further running
time reduction by means of guesses on the sets of stations
which can simultaneously saturate. We leave this issue as
future work.
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APPENDIX

Proof of Theorem 1

Consider a closed BCMP queueing network with popula-
tion vector N and the associated open queueing network as
defined in the theorem. For simplicity, let us assume that
pmm,r = 0, ∀r. First, we provide a mapping from the state
space of the closed network Markov chain to the open net-
work Markov chain. As N proportionally grows to infinity,
we show that this mapping is a bijection between both state
spaces and that both Markov chains are equivalent (accord-
ing to Definition 6).

Let

Ω(N) =

8

<

:

~n∗ : Nr −
X

i6=m

n∗
ir ≥ 0, ∀r

9

=

;

(35)

be the set of network states ~n∗ of the closed queueing net-
work with M stations. Clearly, n∗

mr is uniquely given by
Nr −

P

i6=m n∗
ir .

Let also Ψ be the set of network states ~n of the respective
open queueing network (with station m removed). To keep
notation simple, we assume that ~n ∈ Ψ is a M -row R-column
matrix with nmr = 0, ∀r.

Now we provide a mapping

f : Ω(N) → Ψ, (36)

and show that each pair of states (~n∗, ~n = f(~n∗)) provides

the same in-going and out-going transition rates if we ignore
the transition rates related to departures from station m in
the closed model and arrivals to the network in the open
model. The mapping f associates state ~n∗ to state ~n where

n∗
ir = nir i 6= m, ∀r. (37)

In the following, we also denote by ~emr the matrix with
M rows and R columns with the m-th element of the r-th
column set to one and all the other elements set to zero.
We define δ(x) = 1 if x 6= 0, otherwise 0. To keep notation
simple, we also define

µir ≡

8

>

>

<

>

>

:

µirxi(ni) If station i relative service rate
depends on the total number of
customers in its queue,

µiryir(nir) otherwise

(38)
as the effective service rate of station i when ni customers
visit i.

We now show the equivalence between both Markov chains.
The transition rate from state ~n to ~n − ~eir + ~ejr due to a
class-r customer departure from i to j, i 6= m, j 6= m, is

pij,rµirδ(nir)
nir

ni

(39)

and analogously from state ~n∗ to state ~n∗ − ~eir + ~ejr is

pij,rµirδ(n∗
ir)

n∗
ir

n∗
i

. (40)

Mapping (37) ensures that both transition rates are equal.
The transition rate from state ~n to state ~n − ~eir due to a
class-r customer which leaves the network from i is

pi0,rµirδ(nir)
nir

ni

(41)

where pi0,r = pim,r (by construction), and analogously from
state ~n∗ to state ~n∗ − ~eir + ~emr is

pim,rµirδ(n
∗
ir)

n∗
ir

n∗
i

. (42)

Mapping (37) ensures that both transition rates are equal.
The transition rate from state ~n to state ~n + ~ejr due to a
class-r customer arrival from outside to j is

p0j,rλr (43)

where p0j,r = pmj,r and λr = µmrβr, and analogously from
state ~n∗ to state ~n∗ + ~ejr − ~emr is

pmj,rµmrδ(n∗
mr)

n∗
mr

n∗
m

. (44)

Clearly, transition rates (43) and (44) are not equal for each
finite population vector. We now let N grow to infinity
keeping constant the population mix β. Mapping (37) holds
by induction and in the limit becomes a bijection. We have

lim
N→∞

n∗
mr

n∗
m

= lim
N→∞

Nr −
P

i
nir

P

s

`

Ns −
P

i
nis

´ = βr (45)

and

δ (n∗
mr) = lim

N→∞
δ(Nr −

P

i
nir) = 1, (46)

and, thus, both states ~n and ~n∗ become equal in terms of
out-going and in-going transition rates. Since the pair of
states (~n∗, ~n = f(~n∗)) is generic, both underlying Markov
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chains are equivalent. Now, if the open network is ergodic,
then all queue lengths Qi, i 6= m, are finite. Since both un-
derlying Markov chains are equivalent, the closed network
must have exactly one bottleneck, i.e. station m. On the
other hand, if the closed network has m as the common bot-
tleneck, then exactly one station is characterized by a queue
length growing to infinity. Since both underlying Markov
chains are equivalent, all open network queue lengths must
be finite (otherwise multiple bottlenecks are found). Thus, a
probability distribution across the open network states must
exist and the open network is ergodic.

Proof of Theorem 2

If m is a natural bottleneck or β yields the saturation of
only m, then the theorem trivially holds. If m is a domi-
nated station, then a mix which yields the saturation of m
cannot exist. Now, consider the case in which m is a po-
tential bottleneck. Let Bm be the set of mixes identified
by (14) which yields the saturation of only m. Set Bm is
characterized by a number of vertices, i.e. limit points in
which a number of inequalities of (14) intersect constraint
P

r
βr = 1. Let us first suppose that βr 6= 0, ∀β ∈ Bm, i.e.

m cannot be a natural bottleneck. Clearly, if Bm is non-
empty, then the theorem holds trivially. If Bm is empty,
to prove that m cannot become a bottleneck, suppose first
that Bm is non-empty. Bm is characterized by R vertices
(see (14)). These vertices represent the entry points of dif-
ferent (connected) sets of mixes which yield the saturation
of different sets of R stations including m (Note that these
sets cannot be equal because they derive from the evaluation
of different constraints in system (14)). In the degenerate
case in which Bm is empty, all these sets of mixes collapse in
one single (connected) set of mixes yielding the saturation
of R +1 stations (one station for each vertex related to plus
m). As shown in [4], this is a contradiction. Hence, Bm

must be non-empty. The same contradiction arises relaxing
that ∀β ∈ Bm, βr 6= 0.

Proof of Theorem 3

(⇒) By contradiction, let us suppose that m behaves as
a bottleneck for some mixes, i.e. m is non-masked-off. This
means, by Theorem 2, that exists a mix β which yields the
saturation of only station m and Bm cannot be empty. This
contradiction ends the proof in this direction.

(⇐) By contradiction, if Bm is non-empty, then there
exists a β which satisfies system (14). This means that the
only saturated station is m and it cannot be masked-off.
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