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ABSTRACT

This paper studies non-cooperative population games with
several individual states and independent Markov process.
Each member of each class of the population has (i) its own
state (ii) its actions in each state, (iii) an instantaneous re-
ward which depends on its state and the population’s pro-
file, (iv) a time-average (coupled) constraints. We apply this
model to battery-dependent power control in wireless net-
works with several types of renewable energies. We show
that the game has an equilibrium in stationary strategies
under ergodic assumptions and we present a class of evolu-
tionary game dynamics which converge to stationary equi-
libria.

Keywords

Population games, Markov decision process, power control,
access control.

1. INTRODUCTION

We study in this paper a multiclass stochastic population
game model with individual states. We consider several
large subpopulations (classes or groups) of players. Each
player from each subpopulation is associated with a con-
trolled Markov chain, whose transition probabilities depend
only on the action of that player (individual state). Each
player interacts with a large number (possibly infinite) of
others players. It does not know the states of, and the ac-
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tions taken by other players. There are payoff (called also
fitness, reward, utility) functions (one per subpopulation)
that depend on the individual state and actions of all play-
ers.

1.1 Contributions

We characterize and establish the existence of stationary
equilibrium in the stochastic population game model with
individual independent states with time-average constraints
under ergodic properties. A probabilistic representation of
e—equilibrium for time-average Cesaro payoff is obtained
in the general (non-)communicating stochastic population
game under feasibility conditions. We apply this model to
dynamic renewable energy-state dependent power control
and access control in wireless networks.

In the battery model, players (which correspond to users,
mobiles etc) have their own battery. The state of each
battery is described as a Markov decision process (MDP)
[1]. Several types (classes) of batteries and several modes
of rechargeable batteries are considered (renewable energy:
solar, wind etc). In the battery-dependent power control
population game, a non-decreasing function of the signal to
interference plus noise ratio (SINR) is used as the instan-
taneous reward of the user. An equilibrium is explicitly
determined in that case and the equilibrium payoff is ex-
pressed as function of the stationary distribution associated
to that equilibrium. This model offers us a new class of
repeated games: constrained repeated games with individual
states and unknown horizon in a large population. We show
that this class of games has a constrained 0—equilibrium
(theorem 6.1.2) under ergodic and Slater conditions respec-
tively on each individual Markov chain and constraints .

1.2 Related Works

Shapley [15] introduced the model of atomic stochastic
games and proved that every two-player zero-sum discounted
stochastic game has a discounted value. Moreover, there
are stationary equilibrium profiles. We refer the reader to
[21] and the references therein for details and recent results
on stochastic two-player games. Fink [8], Takahashi [18]
generalized this result for n—player atomic stochastic games.



A single decision-maker stochastic game is called Markov
Decision Process (MDP).

The n-player stochastic game model with individual state
has been first introduced by Altman et al. 2005 [6], see also
[5]. A product state formulation of their model called prod-
uct game has been proposed by Flesh et al.[9] in 2007. They
showed that an equilibrium exists under aperiodicity condi-
tions on the transition law between the states. Note that in
stochastic population games with periodic Markov decision
process (common state for all populations), the existence re-
sult does not holds in this case as well as in atomic stochastic
games. For two players (atomic) stochastic games, Vieille
[20] showed existence of e—equilibria for all ¢ > 0. See for
example the modified Big Match and Paris Match games in
Sorin[16] where 0—equibria do not necessarily exists.

1.3 Structure of the paper

The remainder of this paper is organized as follows. In
next section we present two simple examples that motivate
us to consider with stochastic population games. In Section
3 we present the model of stochastic multi-population game
with individual states. We give a class of dynamics which
converge to stationary equilibria (when it exists). In Section
4 and 2.2, we apply our model to power control and energy
management in wireless networks. In Section 5, we extend
our model to the case where each player has (coupled) con-
straints on its strategies.

2. MOTIVATIONS, ILLUSTRATING EXAM-
PLES

2.1 Battery-State Dependent Power Control as
a Stochastic Population Game

Consider a large number of mobiles terminals controlling
their transmission power and a distributed base stations.
Each mobile has an amount of energy E when its battery is
new (typically it is the case if the battery is new or if the
battery is completely recharged). Each mobile implements
a power control policy where the transmission power is al-
lowed to depend on the energy level (state) of its battery.
The available action (reachable base stations and powers)
depends on the state of the battery. Given the remaining
energy of its battery, the mobile have to choose the optimal
power level. One of the important element for each mobile
is its instantaneous throughput which can be characterized
as a function of the signal to interference plus noise ratio
(SINR) at the base station where he transmits. The battery
is replaced only when it is completely empty. The cost of
new battery cost is C. The new battery has the same energy
of E. The mobile have to control both the power consump-
tion as well as the time at which the batteries are changed.
At each slot, each mobile is faced to a random number [19] of
interacting players which transmit at the same base station.
Each battery life-time game corresponds to a stochastic pop-
ulation game with finite horizon (absorbing state of battery
when the energy is very small). The aim here is to find
jointly the power levels and the base stations such that all
users achieve as high payoff as possible, minimum guarantee
(e.g. QoS requirement thresholds) but also to control the
battery-state.

When batteries are recharged dynamically with different
types of alternative energy such as renewable energies (solar,
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wind etc). The battery transition state becomes irreducible
Markov decision process under each policy depending on an
exogenous parameter which characterizes the good weather
(good weather will correspond to the sun for the solar-power
systems and to the wind for wind-powered systems). In this
case, the interaction becomes a stochastic population game
with infinite horizon and we shall consider time-average re-
ward (discounted or not).

2.2 Energy Management in Distributed Hy-
brid ALOHA Networks

Consider a distributed Aloha network with large number
of mobile terminals. Each mobile can choose both the chan-
nels and powers (this is in contrast to standard Aloha model
in which users are associated to the closest receivers). Each
terminal is faced to a random number of interacting players
which transmit at the channel. A terminal attempts trans-
missions during a finite horizon of times depending on the
state of its battery energy. At each slot, each terminal have
to take a decision on the transmission power based on the
battery state. At each state of the battery, there are a fi-
nite power levels. At the lowest state of battery no power
is available and the mobile have to replaced the battery by
a new or to recharge its battery. A transmission is success-
ful if no other user transmit during the slot or the mobile
transmits with a power which is bigger than the power of all
others transmitting mobiles at the same receiver. The pair-
wise interactions case of this problem has been studied by
Altman and Hayel in [2] as a stochastic evolutionary game.
They have considered three states: Full, Almost Empty and
Empty, and simultaneous interactions with more two users
are neglected'. Their model can be extend to more than
two opponent interactions and also to finitely many states
as shown in Section 3. We can also extend to the case where
each terminal is faced to a random number [19, 3] of inter-
acting terminals which transmit at the same range and each
terminal have to control an arbitrary transition state of its
energy.

3. AMULTICLASS MARKOV POPULATION
GAME MODEL

Consider the following model of population game denoted
by

I'= (P, (Y?)per, (A" (y))peryeve, (Q7)per, (r7)pep),

where

e The population is composed as several subpopulations.
FEach subpopulation contains a large number of players.
P denotes the set of subpopulations (we assume that
P is finite).

e Each player of each subpopulation p has its own state
Y? (finite) and Markov transition structures Q? be-
tween the states.

e For every player ¢ from the subpopulation p € P and
every state y € Y? of i, AP(y) is the set of actions
available. The action space of the subpopulation p is

Note that this assumption does not holds in dense net-
works.



given by [[,cy» A”(y). The set of all actions at all
states is given by All” where

All? ={(y,a), ye Y?, a € AP (y)}.
e We denote by A(Y?) the (|[Y?| — 1)-dimensional sim-
plex of RY"I and by ¢” : All» — A(YP) a transition

rule between the states. The transition probability
distribution between states is defined by

Q) oy =Wy, a) =Wy, a1, yi-1, a1, 9, 0)
for each y',y € Y?,a € AP(y).
e For every subpopulation p € P,
o T I 27 @) = REwer 0
P yevr’

is the vector of all instantaneous payoff functions of a
player from the class p/,

27 () = { @ 00 year ) | 27 (0:0) 2 0,

2 2w ’

yeY?' bear (y)

¥ (y,b) = m

where m?’ is the mass associate to the subpopulation
p’. Given a state y and strategy profile ¥, 277, the
payoff obtained by playing the action a € AP(y) is
7.4 (T)

e The game is played many times.

3.1 Histories and Strategies

Histories A history h; at time t is a collection of states
and actions (y1,a1,Z1,...,Yt—1,0t—1,%¢—1,Yt). We denote
by

= (Al x X)""t x y?

the set of histories of a member of the subpopulation p at
time t. At ¢t =1, HY = YP. Let HE, be the set of all infinite
histories of the subpopulatlon p endowed with the product
o—field and Hoo =[] HE,

Strategies

pEP

e Pure strategy A pure strategy of a player from sub-
population p at time ¢ is a map of : HY — AP(y:).
The collection o? = (0¥);>1 of pure strategy at each
time constitutes a pure strategy of the subpopulation
p. We denote by X7 the set of all pure strategies of
subpopulation p, by ¥ = Hp ¥? the set of all pure
strategy profiles. Note that the number of pure strate-
gies is infinite.

e Stationary strategy: o is stationary strategy if for
each population p and every time ¢t and histories,

ht = (ylaahxh .. ~7yt—17at71,$t71,yt),

h/ _ / ! / / / /
t — (yhal?mlv"'7yt717at717mf:*17yt)

such that if y; = y; one has oi(ht) = o1(h}) ie a
stationary strategy is a history and time independent
strategy which depends on the state only.
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LEMMA 3.1.1. The number of pure stationary strate-
gies is [[ep [Iyeys [A7 ()]

e Behavioral strategy A behavioral strategy at time
t is a function that assigns each finite history to a
mixed action profile of the current state: of : HY —
1, A(A"(y1)), p € P.

e Mixed strategy A mixed strategy profile is a col-
lection of probability distributions on 3. Using Ty-
chonoff’s theorem, the set of all these notions of strate-
gies is compact in the product set histories spaces in
the sense of the weak-topology. A general mixed strat-
egy is a probability distribution on the behaviorial
strategies set.

For any strategy profile 0 = (o)pcp and every initial
state distribution profile y = (u”)pep, a probability mea-
sure P, , is induced by o and p. The stochastic process
(yt, at, x¢)e>1 is defined on Hy in a canonical way, where
the random variables y;, at, x+ describe the individual state,
the action in this state and the population profile.

3.2 Fitness

We examine the limit average Cesaro-type payoff

FP(o”,07 ") =E,, [1121_'1—150 (Z T . (Tt) )}

where E; ,, denotes the expectation over the probability mea-
sure P, , induced by o, i1 on the set of histories endowed with
the product o—algebra.

Given a strategy o and a initial state y, we define the ex-
pected time-average payoff. We denote by II” the stationary
limit average matrix:

P (c?) =  dim Z(Q")J
The matrix II? is well-defined, commutes with Q¥ and sat-
isfies the projection equation: TP x ITP = IIP.

If F? is the vector (FF(x))yeyr, we have that FP(z) =
I1PrP(x) for all stationary strategy profile x. Then, FP =
ITP FP. Note that the function  — FP(z) is not necessarily
continuous because the limit matrix II?(x) can be discontin-
uous on .

DEFINITION 3.3. A strategy o is an e—equilibrium if for
all p,

FP(0) 4+ ¢ > FP(0'®,07), V 0’ € A(XP).

A 0—equilibrium s called equilibrium.
Remarks

e When each member of each subpopulation has a single
state, we obtain a population game model which each
local interaction is repeated game.

e If there exists a subpopulation p* such that |Y?| =1
for all p # p*. We obtain a stochastic population game
with single class of controllers which is the subpopula-
tion p. We can adapts the model of Vieille, Rosenberg
and Solan[22] on two player zero-sum stochastic game
with single controller and incomplete information to
stochastic population game with incomplete informa-
tion.



3.4 Markov Decision Process Decomposition

For each population p, the state y communicates with
state y’ if it is true that both y is accessible from 3y’ (there
exists an integer k such that Va, P(X? =y’ | X} =y,a) >0
and that 3’ is accessible from y. A set of states Y? C Y?
is a communicating class if every pair of states in Y? com-
municates with each other, and no state in Y? communi-
cates with any state not in Y?. It is known that commu-
nication in this sense is an equivalence relation (reflexiv-
ity,symmetry,transitivity).

Given a strategy o”, the associate Markov chain is decom-
posed in communicating class J,...,JE which constitute
a partition of Y?. We associate to the MDP — (p, i) the re-
stricted state-actions transition to J? C Y?. A Markov chain
is said to be irreducible if its state space is a communicating
class; this means that, in an irreducible Markov chain, it is
possible to get to any state from any state. A Markov deci-
sion process (a stochastic game with single decision-maker)
is irreducible if for any strategy, the induced transition law
is irreducible.

ProprOSITION 3.4.1. Assume that for each subpopulation
p and any stationary strategy o, the state process is an ir-
reducible Markov chain with one ergodic class then

e For any strategy o the frequencies (called also occupa-
tion measures) (f27.(y,a))pep,i>1 where

t
1
oo (y,a) = n Y " Po(Xy =y, ax = alys = p)
k=1

are tight.

e Denote by BR? the best response correspondence for a
player in class p. If o € BRP (0™ 7) then ff(o) is inde-
pendent of the initial state distribution p and the linear
programming problem : find zF(c) = (2¥(0)(y,a))y,a
that mazimizes

S (y,a,07)2"(0) (v, a)

subject to

D 18y (y) = @, 12" (0)(y,a) = 0

Y,a

2’(0)(y,a) 20, Vy € Y”, a € A"(y)

> (o) (y.a) =m”

y.a
where 8,/ is the Dirac distribution concentrated in y'.

A proof of the proposition is given together with the result
5.2.1.

DEFINITION 3.5. The stationary strategy x is an equilib-
rium if
VPz Z Z (7Zp(y7 a) + xp(yv a‘))F;a(l‘) Z 0,
YEYP ac AP (y)
for all 2P € XP satisfying
Y. Oy -Q),,) (ya) =0, ¥y €Y.

YEYP,ac AP (y)
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REsuLT 3.5.1. The stochastic population game with indi-
vidual independent states has an equilibrium in stationary
strategies under ergodic properties of the each class of MDP
and continuity of the payoff function r = (r?),.

PrOOF. For any subpopulation p, the existence of a vec-
tor z = (2”)pep of the (=143, |AP(y)|)—simplex satisfying
he variational inequality :Vz € X, one has

@ =2 1P ()) = > > (=2 (y,a)+a" (y,a))r] o (x) >0,
YyEYP ac AP (y)

Multiplying the inequality (z? — 2P, rP(x)) > 0 by ¢ >
0, and adding (z?,2? — zP) to both sides of the resulting
inequality, one obtains

(2P — 2P 2P — [z + orP(2)]) > 0.

Recall that the projection map on the simplex which is con-

vex and closed set is characterized by: w € REvey? 47w —

[xrw is equivalent to (27 — w,2” — 2'P) > 0, V2P € XP.
Thus, 27 = Ilx» (2P 4+ <rP(z)). According to Brouwer’s or
Schauder’s fixed point theorem, given a map ¥ : AP —
XP, with ¥ continuous, there is at least one 2P € X such
that 2P = W(zP). Observe that since the projection ITx»r
and (I + ¢r?), are each continuous, ITx» (I + ¢r?) is also
continuous.

It follows from compactness of X? and the continuity of
Ix» (I + ¢rP) that a such 2P exists. The result follows from
Kakutani’s fixed point theorem and Theorem 2.6 (ii) in [4]
or the Theorem 1 in [10] by adapting to population game
concept. [

3.6 Evolutionary game dynamics in station-

ary strategies

Let v"¥"*(x) conditional switch rate from the pure strat-
egy a to the strategy b in state y for a player of class p. The
flow of the population is specified in terms of the functions
v (z) which determine the rates at which an player who
is considering a change in strategies opts to switch to his
various alternatives. The function v?"**(.) depends on the
strategy of the population but also on the payoffs.

The inflow into the action a at state y is

> Py bkt
bEAP (y)

and outflow from the action a in y is
P (p0) Y 0
b

where zP(y, b) represents the fraction of players of the sub-
population p in state y which use the pure action b. We
assume that the revision protocols satisfy

vt > 0= b,a € A" (y).

Let VEY“(z) be the difference between the inflow and out-
flow of the action a at state y,

S @ @) —a(ga) Y Ea).

bEAP (y) bEAP (y)

The evolutionary game dynamics is given by
. d ;
&"(y,0)(t) = Za"(y,b)(t) = Ve (a(t)), (1)

yeY? be AP(y).



The revision protocol v defined by
Vit (@) = i [max {0, FYo(2) — F2 (@)}, u?,0” >0,
if z satisfies

> Gy

YyEYP,a€AP(y)

— Qyay )’ (y,0) =0

and 0 otherwise, induces an evolutionary game dynamic with
the following properties:

e (i) every stationary equilibrium of the game is a sta-
tionary point of the dynamic.

e (ii) every stationary point of the dynamic is an equi-
librium point of the game.

Note that the well-known replicator dynamics does not sat-
isfies the second point (ii). The parameter p? can be in-
terpreted as a probability to have a base station/channel
around the range of the players (density distribution of the
resources in the space). This parameter have positive effect
on the rate/speed of convergence of the dynamics. 6” is a
positive number.

4. BATTERY-STATE DEPENDENT POWER

CONTROL WITH DIFFERENT TYPES OF

RENEWABLE ENERGY

Power control in wireless networks has became an impor-
tant research area. Since the technology in the current state
cannot provide batteries which have small weight and large
energy capacity, the design of tools and algorithms for effi-
cient power control is crucial.

Thanks to the renewable energy techniques, designing au-
tonomous mobile terminal and consumer embedded elec-
tronics that exploit the energy coming from the environment
is becoming a feasible option. However, the design of such
devices requires the careful selection of the components, such
as power consumption and the energy storage elements, ac-
cording to the working environment and the features of the
application.

Menache and Altman have studied in [13] a battery-energy
dependent power control with finite number of mobiles as a
dynamic non-cooperative game with power cost assumption.
In this model we consider a stochastic population game ap-
proach with dynamic rechargeable battery based on renew-
able energy. Environmental energy is becoming a feasible al-
ternative for many low-power systems, such as wireless sen-
sor/mesh networks. Nevertheless, environmental energy is
an exciting challenge. Because of the limited amount of en-
ergy over time, the power provided is unpredictable. Power
storage elements, such as rechargeable batteries or super-
capacitors, in order to have energy available for later use
has been proposed. Alternative energy as solar, wind, or
nuclear energy, that can replace or supplement traditional
fossil-fuel sources, as oil, and natural gas is needed. We refer
the reader to [14] for advantageous to use renewable energy
in broadband wireless networks such as Wi-Fi, Wimax or
mesh networks.

‘We consider several class of large number of mobiles termi-
nals controlling their transmission power and a distributed
base stations. The mobiles with the same type of renew-
able energy (wind, solar, hydro) are in the same class or
subpopulation. Each mobile of the subpopulation p has an
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amount of energy EP when its battery is at the full state.
Each mobile implements a power control policy where the
transmission power is allowed to depend on the energy level
(state) of its battery. The available action (reachable base
stations) depends on the state of the battery. Given the
remaining energy of its battery, the mobile have to choose
the optimal power level. One of the important element for
each mobile is its instantaneous throughput which can be
characterized as a function of the signal to interference plus
noise ratio (SINR) at the base station where he/she trans-
mits. The battery is recharged by different techniques of
renewable energy (solar-power, wind-power etc). The mo-
bile have to control both the power consumption as well as
the level of its battery and its throughput. Each mobile is
faced to a non-cooperative stochastic game with individual
states with many others mobiles which transmit at the same
base station or at the same range. The goal of a terminal
is to find jointly the power levels and the base stations such
that the terminal achieves as high payoff as possible, mini-
mum guarantee (e.g. QoS requirement thresholds) but also
to control the battery-state.

4.1 Battery-state transition

We consider the energy reserve of the battery type p,
(X?P)i>1 and power level management as a Markov decision
process. For each state y # 0, the action space is AP(y)
with at least two elements, and AP(0) has at most one ele-
ment (empty or singleton). Given a stationary policy o and
a strategy of all the populations the change in energy re-
serves of the battery type p is described by the (first order,
time-homogeneous) Markov process (X?) with the transi-
tion law ¢P. Vy # 0,n”,Va, , the probability of transition
¢*(X? 1 =y'|X] =y,a) is expressed as

1*Rzp,y(a)* z}’,y(a’) ify' =y—1

Rgpyy(a) ify =y+1
QLp ,(a) ify' =y
0 otherwise
Q%o p(a) ify =n" -
XV =YX =n"a)=q 1-Q wla) ify =nP
0 otherwise

and

~P ify =1
(X =y X7 =000=¢ (1-9") ify'=0 ,
0 otherwise

where V y,a, 47 —— RPp  (a) € [0,1] is an increasing func-

tion with R§ (a) = 0,0 < RE, (a) + Q% ,(a) < 1. The
factor * represents a function of the probability to have
a "good weather”(for example, the sun for the solar-power
battery, the wind for wind-power battery) and the probabil-
ity for battery of type p to go from state 0 to state 1. If v*
is zero, the state 0 is absorbing. For «? # 0 is the chain is
communicating.

Note that each user controls the transition state of its bat-
tery: ¢* is independent of the decision of the other mobiles.

4.2 Reward

We focus on utility function based on a simplified version
of the signal to noise plus interference ratio (SINR). The
battery-state have the property that more energy is available

[



o
(s+1|s,b)

>

(s|s-1,a)

©

Figure 1: Generic battery state transition rule.

in high state. Hence, that set of powers in y + 1 contains
the set of power available in y. For example,

@ C AP(0) = {powf} C AP(1) = {powg, powl} C
AP(2) = {powg, pow?, powl } C

. Ap(np) = {powg’powzl)v e apowfﬂ’}

The signal to noise plus interference ratio of a mobile with
the battery type p in state y at the position A = (A1, A2, A3)
is

agPP

(2401 —20)2F(Aa—y0)2+ Az —20)2) T
NO + K]own(xp) + l‘f[other(w_p) ’

SINRY (a,z; A, BS) =

acAP(y),pe PyeY?={0,1,2,...,n"}

where
Town( Zbgpp p (y, b KPP
other ) = Z ngpbl’ (y b hkp
k#p y,b
where

de,Bs

h'? :/
xep (€2 + (M — x0)? + (A2 — yo)?

+ (X3 — 20)?) %

27 (y,a) is the fraction of the sub-population j in state y
with the power level a, Ny is the power of the thermal back-
ground noise, p?'Z% is the distribution of mobiles (in the 3-
dimensional space) with the battery type p around the base
station BS, D C R® is the domain (geographical placement
of base stations and mobiles) and « is the path-loss and & is
the inverse of the processing gain of the system, it weights
the effect of interferences, depending on the orthogonality
between codes used during simultaneous transmissions. The
coefficient k is equal to 1 in a narrow band system, and is
smaller than 1 in a broadband system that uses CDMA. The
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instantaneous expected reward 7% () of an user in state y
is expressed as

/ f (SINRY (a,z, \, BS)) du”(\)
AeD

where f is a non-decreasing function with f(0) = 0. € is
a positive parameter (to eliminate of continuity problem
at zero) and the ¢g“ are positive gain parameters. The
3—dimensional vector (xo,yo,20) describes the position of
the base station BS in R?

Computing the interference term in presence of
continuum of users

In order to compute explicitly the SINR term, we first need
the following lemma:

LEMMA 4.2.1.

+o0 z

1 2
v>1,b, = / e ede =4 rl-b)
0 (L+a2)” { Tf 1"(1/)2

+oo —ttz 1 dt.

ifr=1
ifv>1.

where T is the Euler function I'(z) =

PRrROOF. For v = n a positive 1nteg;e1r7 the polynomial
(1 + 2*)™ has two zeros z = i each zero with the order
n. Consider the circuit Crr = [-R,RJU{R'e", 0 < 0 <
m}. Since the complex function z € C — m has no
zero on the circuit Cg/, Using residue’s theorem of complex
analysis, we obtain the following result: jz>0 Wd
miRes(€(z),4). The residue of £ around z = 4, a pole of order
n, can be found by the formula:

. d
Res(¢,1) =

oy G (- ()

1
T We then use the extension of the

Euler function I' on the positive real axis. [

Thus, b, = YZ1""2)

From the lemma 4.2.1, we derive immediately that, n >

2, .fo (Ata2)n dr =bp_1 — by

PROPOSITION 4.2.2. /P = 7= 3(bg,l —bg)

Proor. Using spherical coordinates from cartesian coor-
dinates by the transformation

A1 = rsinfcos ¢
A2 = rsinfsin ¢
A3 =rcosf

and the volume element r2dr sin 8dfd¢, one has,

) +oo 2 2 “+oo 2
WP = 47r2/ r ~dr = ;lﬂ 3 / " ~ dr
o (4722 e Jo (14722

ie WP = 4 (ba_y —bs) [

PROPOSITION 4.2.3. The highest payoff that a mobile with
the battery type p can obtain against any strategies of others
mobiles in the one-shot power control game is given by

17,5:/Df

where ul is the mazimum power level available in the battery-
type p in state y.

D o PP
uyg

@
2

(24 A1=20)2+ (A2 =y0)*+(Az—20)?)
No + 37, 32, hiPuymi gi»

P

dp



PROOF. Since the payoff decreases when the others play-
ers increases their power levels (in average), the minmax
point is obtained when they uses their high powers. The
maximum payoff that a mobile with the battery type p can
obtain against any strategies of others mobiles is then given
by

agPP
(241 —20)2+(A2—y0)2+(As—20)2) 3 duP

No + 32 52 hivugmi,giv

P —
vP = max f
Y aear(y) /D

PP

a
:/ max (52“)‘1*”0)”“29*?!?)&()‘?70)2)% du®
D a€AP(y) No + Zj Zy hiPul,m], gip
agP?
= / f| max (EZHM*Zo>2+(xz—y9)2+‘0370)2)% duP.
D" | acar(y) No+ Y, 3, hirujmi,giv

This completes the proof. []

REsuLT 4.2.4. Each mobile with the battery type p can
guarantee the payoff
> 1o

y#0

for all ¥7 > 0, where 11}, = tlgnm P(X? = y) is the proba-
bility to be in state y under the maximum power strategy.

Proor. IIY is the frequency of visit of the battery state in
y. From Proposition 4.2.3, each mobile with the battery type
p can obtain at least ¥} against any strategies of others mo-
biles. Each mobile of subpopulation can then obtain at least
Zy IT¥ v} which is an equilibrium payoff. This completes the
proof. [J

S.  CONSTRAINED STOCHASTIC POPULA-
TION GAMES

In addition to the model described in Section 3, we assume
that players have (possibly coupled) average constraints on
their actions in any state. The payoff of the subpopulation

pis
Eo, (lﬂinog 72%1»4% xk))

with o? € A(X?) subject to

e Orthogonal constraints:

p € P, Py (hmsup 7ZD (yw, ax) <5P> =1,

t—+o0 o1
where DP : AllP — R is an individual cost function

(independent of the strategies of the others players),
0GP € R is a given cost threshold.

e Coupled constraints:

t—+o00

peP Py, <hmsup fZCyk,ak(xk) <a ) =1

where C? : AllP x X — R is a cost function which
depends on the individual state-action but also on the
population profile i.e the strategies of the others play-
ers (in the same class or not).
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A strategy o is a constrained equilibrium if for all p,

FP(g) > FP(o',

o?), V o’" € A(SP)

and o € A(c7?) where A(c7?) is the set feasible strategies
(that satisfy the orthogonal and coupled constraints) given
the strategies of the others populations o~ 7.

5.1 Communicating case

Throughout this subsection fix an p € P. Consider the evo-
lution of the state and action processes for a player in the
subpopulation p. We say that a Markov chain is commu-
nicating it is a Markov chain with single class. We assume
this property in this subsection. We define the following
constrained programming problem:

CPP, : v*(0™F) = max Z rP(y,a,0"F)2P(y, a)

subject to

> by w) -

Y,a

2*(y,a) > 0, Vy,a and Z 2 (y,a) =

Y ly.a) = Zmy m’, (4)

Y,a

<p Y C"(y,a,o*")z’%y,a) <a” (5)

y,a

Qzay/]zp(yv a) =0, (2)

my, Yy, (3)

S D" (y.0)" (y, )

The relation between CPP, and best response correspon-
dence is given by the following: there exists a feasible strat-
egy for the subpopulation p against ¢~ 7 if and only if CPP,
has a solution. Moreover, a solution is a best reply to o~ P.
If CPP, is feasible for a given strategy o~ ? then for each
€ > 0 there exists a stationary p—feasible strategy x? such
that Fj,(«P,0~?) is independent of the initial state and

F(aP,07P) +e>vP(07P).

5.2 Non-communicating chain: multichain

Each player of the class p can decompose its transition
state into a partition J?, ¢ = 1,2,. .. such that the restricted
state-action game (P, JP, A?(.),r?) where A?(y) is the set of
actions such that if the player start in the state y € J?, the
state process will remain in the communicating class J?.

RESULT 5.2.1. Suppose now that o is feasible and the prob-
ability that the process X; € JP almost any time (a.a.t) is
positive (under o and the initial distribution). The following
constrained programming problem CPP, ;) is feasible and

P, (hmlnf 727“%,% (zr) <P | XP e JP aat> =1

t— 400
k=1

where

CPPp : vf (0 7) =max Y _r"(y,a,0 ")2"(y,a)

y,a



subject to

> 6y W) - Q8,12 (y,a) =0, ¢ € J7 (6)
y,a
2(y,a) >0, Vy € JF,a € AY(y) (7)
> 2P(y,a) =mi), Yy € J? (®)
aeAﬁ7

> Pya)=m” )
yeJP,acAl (y)
> DP(ya)"(y.a) < B° (10)
yeJ?,ac Al (y)

PROOF. See appendix. [

5.3 Constrained stationary strategies

For each player of the subpopulation p € P, its pure action
set in state y is AP(y) and

AP X 28w

is its restricted constrained correspondence which restricts

the strategies in to the subset AL(z™7) C A(AP(y)) when
the state of the population is y.

5.3.1 Example: coupled/orthogonal constraints

AP(z7") = {a, C¥(a,z7") < af

]’
DYa)<pBFj=1,...,n",1=1,...,n"}.
RESULT 5.3.2. Assume that

e The chain of each player from each subpopulation is
ergodic for any stationary strategies.

e Slater conditions: For stationary profile x, each popu-
lation p has some strategy oF € {a, DV(a) < B, | =
1,...,n'”} such that

CP(o”x7P)<ad,j=1,...,n"

then a constrained equilibrium exists in stationary strategies.

ProOOF. Under the two above assumptions, we can apply
the Theorem 2.1 in [5] in which an optimal stationary strat-
egy is obtained using constrained linear programming. []

6. EXTENSIONS

6.1 Constrained stochastic population games
with unknown stopping time

In general, the lifetime of individual or system is not
known. We shall integrate this considerations in our interac-
tion model. In this section we develop a general formulation
of a local interaction with unknown stopping time. Play-
ers does not known the length of the local interaction but
have a common probability structure on the stochastic local
game. At time ¢, they assign some probability P(T = t) to
the event {T" =t} that the local interaction ends in time ¢.

t>1, P(T=1)>0, Y P(T=t)=1

t>1
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Fix an anonymous member of some subpopulation p, and a
sequence of state-actions o. A player from the class p will
receive

t o k Tp .
FEZ(U) =Eo . [liminf L=t P(T t_ k)'(zjzl 'yj’“;( J)):|
e i JB(T = j)

under the constraints: p € P,

t _ k P .
P, | limsup Lt BT T& k)§2j:1 qyj’aj @5) <o | =1,
P S GB(T = j)
t _ k P(ar: s
Py <limsup D1 P(T = k)(Ejzl D?(y;, a;5)) < ﬁp) —1,

oo S JP(T =)
REsuLT 6.1.1.

F{/(0) = Eoulim inf FP' (o)

t

1 : v
mz ZP(TZK’) Tyj,aj(xj)

j=1J =1 \k=j

where (o) ==

PrOOF. We apply Fubini’s theorem on finite summation
to change the order between k£ and j in the expression of
F2'(o) where

_ 22:1 P(T = k)(Zle Ty (5’3]))

Fi(@) S JP(T = j)

O

Examples: This model generalizes the finite and infinite
horizon payoff notions:

e If T is the Dirac measure concentrated on ¢, i.e P(T =
j) =0if j # t. and P(T = t.) = 1, we obtained the
arithmetic average payoff

t
Z]'*:1 ng,aj (z;)

Eo
S te

o If T is the geometric distribution P(T" = t) = (1 —
§)8""1, then we obtain the average discounted payoff:

+oo
(1=0)Eo > 6" 'rh, o, (x0)
t=1

e Note that when the expected horizon of local inter-
action is finite (for example when the lifetime of the
system or of the user is finite - in expectation - but
the end of the interaction is not known)?, the average
payoff can be rewritten as

IR (S P@=h))Eo urd o (=)

Pl j
Fi(o) = ¥ I R (T=)) (11)
Y1 PT2E,urh), o, (x¢)
= = ]E(T)H bt (12)

The following theorem generalizes the Theorem 2.1 in [5]
for constrained games and also the Theorem 2.6 (ii) in [4]
and the Theorem 1 in [10] for unconstrained product games.

2Note that the expected horizon can be finite and P(T =
t) > 0. It is the case for P(T = t) = §"" (1 - §), § €

(0,1).E(T) = %5



REsSULT 6.1.2. Assume that each subpopulation has a sin- e P, , almost surely, the random variables that give the

gle (aperiodic) ergodic class under each stationary strategy. frequencies state-action satisfy

Then the stochastic population game with individual inde- .

pendent states and unknown lifetime has an equilibrium in i 1 J(XP) — 5 -0
stationary strategies. Moreover, the constrained game has oo 1 Z: 19 qu‘“f wo) (X1, 0k )| =

an equilibrium under Slater condition.

. . forally’ € YP,p € P.
For the proof we need tightness properties of the measure ' Y P

generated by the frequencies state-actions under the distri- o Let Q be set (y1,a1, 71, y2, az, T2 )in Ha, that sat-
9, ) ) ) , L] oo

bution of the horizon. isfy (i) ar € AP(y:), t > T for some integer T (ii)
PROPOSITION 6.1.3. Assume that for each subpopulation 1<

p and any stationary strategy oP, the state process is an ir- lim = Z 8, (XP) — Z @Oy (XP_ 1 ab_ )| =0

reducible Markov chain with one ergodic class then, for any t——too t = va vey

strategy o the frequencies state-actions _—
(iii) limsup,_ 4 3> 1 Chpoap (Tr) < 0F,

(o (y: a))pepiz1 . Lt o v
(iv) imsup, | 3> 51 DP(yx, ar) < 67,

where
Due to lemma .0.4 and the fact that o is feasible, we have
t t _ C_ _ - ’
2 (yra) = 2 =1 <Zk:j BT = k)> Py (X5 =y,a5 = aly1 = p) that Py, (€2) = 1. It suffices therefore to show that CPP, ;
ou\Yr ) = 22:1 JB(T = §) is feasible and the event
are tight. {X? € JPalmost any time} ﬂ Q

PROOF. See Appendix. [] is contained in the event {liminf; %22:1 T8 ap (Te) <

The occupation measures in this extended model are char- v; (2)}. Let define the random variable associate to the fre-

g . t
acterized by the following convergence result: P, , almost quencies state-actions f'(y,a) = %Zk:_1 5(y3a)(yk7ak) for
surely, the random variables that give the frequencies state- y € YP a € AP(y). We have that any limit point {f?(y,a)}
action of f7*(y,a)>1 is a feasible solution of CPP(, ;) and that
¢ _ k
2 LD L AL Y Y Ao <t
j=1 JP(T =) yeJ? aeAf<y)
(13)
goes to zero when ¢ goes to infinity, for all y’ € Y?,p € P. Thus, Ps,,, almost surely, one has,
Hence, when E(T) =Y, P(T > k) = >, kP(T =k) < B
+00 then we obtain the equation: Z 6{xteﬂaat h Z Z 7 (9) £ (y, a)rya(27F),
p yeJP acAl (y)
P(Tfk)z 6 (X Eyaany 6(90«)( Jj—1 ] 1)
> e P(T 2 ) P P P -p p
i (14) SO>Iy, a)Cha(a?) < o,

P P
y€JP ac AP (y)

7. CONCLUSIONS AND PERSPECTIVES

In this paper we have investigated power control inter-
action based on stochastic modeling of the remaining en-

> > W) fF(y,a)DP(y,a) < B

yEJf aGAf(y)

ergy of different types of battery in large networks. We where IT?(y) is the unique stationary distribution associate

have showed existence of equilibria in the general model of to the state-process restricted to J?, and aat :=almost any

constrained Markovian population games under ergodic as- time. [

sumptions. This model offers a new class of repeated games:

constrained repeated games with individual transition states PROOF OF THE PROPOSITION 6.1.3. Since each subpop-

and unknown horizon. ulation has a single (aperiodic) ergodic class under station-
ary strategies, stationary state probabilities exists (depend-

APPENDIX ir;gt on the strategy) and (QF(c))’ goes to Hpga). Hence,
J2,.(y,a) converges weakly to I1?(0)y,a0y,q. Using Lemma

We first need the following lemma: 18.2 in [1], The claim for general strategies follows from

the bounded convergence theorem: the sequence {fﬁ:ﬁ} is
bounded (by one) and converges weakly. Hence, for any

Z Pov u(XP € JP almost any time) = 1, and strategies p € ¥¥ we have that, lim¢(p, f2/) = (p, lim; f2}).
- ’ ! This completes the proof. []

LEMMA .0.4. For all strategies o and all initial states p,

Pov u(af € A7 (y:) almost any time) = 1 Acknowledgment
PROOF THE RESULT 5.2.1. Combining the Proposition 3.4 The authors thank three anonymous reviewers for helpful
and the strong law of large number for martingale differences comments and suggestions which lead to improvement of
[7] one has the following results: the paper.
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