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ABSTRACT

In this paper we consider a single-server cyclic polling sys-
tem consisting of two queues. Between visits to successive
queues, the server is delayed by a random switch-over time.
Two types of customers arrive at the first queue: high and
low priority customers. For this situation the following ser-
vice disciplines are considered: gated, globally gated, and
exhaustive. We study the cycle time distribution, the wait-
ing times for each customer type, the joint queue length dis-
tribution at polling epochs, and the steady-state marginal
queue length distributions for each customer type.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Queueing theory

General Terms

Performance, Theory

Keywords

Polling, priority levels, queue lengths, waiting times

1. INTRODUCTION
A polling model is a single-server system in which the

server S visits n queues Q1, . . . , Qn in cyclic order. Cus-
tomers that arrive at Qi are referred to as type i customers.
The special feature of the model considered in the present
paper is that, within a customer type, we distinguish high
and low priority customers. More specifically, we study a
polling system which consists of two queues, Q1 and Q2.
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The first of these queues contains customers of two priority
classes, high (H) and low (L). The exhaustive, gated and
globally gated service disciplines are studied.

Our motivation to study a polling model with priorities is
that the performance of a polling system can be improved
through the introduction of priorities. In production envi-
ronments, e.g., one could give highest priority to jobs with
a service requirement below a certain threshold level. This
might decrease the overall mean waiting time without hav-
ing to purchase additional resources [21]. Priority polling
models also can be used to study traffic intersections where
conflicting traffic flows face a green light simultaneously;
e.g. traffic which takes a left turn may have to give right
of way to conflicting traffic that moves straight on, even if
the traffic light is green for both traffic flows. Another ap-
plication is discussed in [6], where a priority polling model
is used to study scheduling of surgery procedures in medi-
cal emergency rooms. In the computer science community
the Bluetooth and 802.11 protocols are frequently modelled
as polling systems, cf. [14, 15, 16, 23]. Many scheduling
policies that have been considered or implemented in these
protocols involve different priority levels in order to improve
Quality-of-Service (QoS) for traffic that is very sensitive to
delays or loss of data, such as Voice over Wireless IP. The
802.11e amendment defines a set of QoS enhancements for
wireless LAN applications by differentiating between high
priority traffic, like streaming multimedia, and low priority
traffic, like web browsing and email traffic.

Although there is quite an extensive amount of literature
available on polling systems, only very few papers treat pri-
orities in polling models. Most of these papers only provide
approximations or focus on pseudo-conservation laws. In
[21] exact mean waiting time results are obtained using the
Mean Value Analysis (MVA) framework for polling systems,
developed in [22]. The MVA framework can only be used to
find the first moment of the waiting time distribution for
each customer type, and the mean residual cycle time. The
main contribution of the present paper is the derivation of
Laplace Stieltjes Transforms (LSTs) of the distributions of
the marginal waiting times for each customer type; in par-
ticular it turns out to be possible to obtain exact expressions
for the waiting time distributions of both high and low pri-
ority customers at a queue of a polling system. Probability
Generating Functions (GFs) are derived for the joint queue
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length distribution at polling epochs, and for the steady-
state marginal queue length distribution of the number of
customers at an arbitrary epoch. Although we only con-
sider a polling system with two queues, and two priority
classes in Q1, we believe that the results and the approach
can be extended to models with any number of queues and
any number of customer classes in each queue for the ex-
haustive, gated and globally gated service disciplines. This
is the topic of a forthcoming paper.

The present paper is structured as follows: Section 2 gath-
ers known results of nonpriority polling models which are rel-
evant for the present study. Sections 3 (gated), 4 (globally
gated), and 5 (exhaustive) give new results on the priority
polling model. In each of the sections we successively dis-
cuss the joint queue length distribution at polling epochs,
the cycle time distribution, the marginal queue length dis-
tributions and waiting time distributions. The mean waiting
times are given at the end of each section.

2. NOTATION AND DESCRIPTION OF THE

NONPRIORITY POLLING MODEL
The model that is considered in this section, is a nonprior-

ity polling model with two queues (Q1 and Q2). We consider
three service disciplines: gated, globally gated, and exhaus-
tive. The gated service discipline states that during a visit
of S to Qi, S serves only those type i customers who are
present at the polling epoch. All type i customers that ar-
rive during this visit will be served in the next cycle. In this
respect, a cycle is the time between two successive visit be-
ginnings to a queue. The exhaustive service discipline states
that when S arrives at Qi, all type i customers are served
until no type i customer is present in the system. We also
consider the globally gated service discipline, which means
that during a cycle only those customers will be served that
were present at the beginning of that cycle.

Customers of type i arrive at Qi according to a Poisson
process with arrival rate λi (i = 1, 2). Service times can
follow any distribution, and we assume that a customer’s
service time is independent of other service times and in-
dependent of the arrival processes. The LST of the distri-
bution of the generic service time Bi of type i customers
is denoted by βi(·). The fraction of time that the server is
serving customers of type i equals ρi := λiE(Bi). Switches
of the server from Qi to Qi+1 (all indices modulo 2), require
a switch-over time Si. The LST of this switch-over time
distribution is denoted by σi(·). The fraction of time that
the server is working (i.e., not switching) is ρ := ρ1 + ρ2.
We assume that ρ < 1, which is a necessary and sufficient
condition for the steady state distributions of cycle times,
queue lengths and waiting times to exist.

Takács [19] studied this model, but without switch-over
times and only with the exhaustive service discipline. Cooper
and Murray [8] analysed this polling system for any num-
ber of queues, and for both gated and exhaustive service
disciplines. Eisenberg [9] obtained results for a polling sys-
tem with switch-over times (but only exhaustive service) by
relating the GFs of the joint queue length distributions at
visit beginnings, visit endings, service beginnings and service
endings. Resing [17] was the first to point out the relation
between polling systems and Multitype Branching Processes
with immigration in each state. His results can be applied
to polling models in which each queue satisfies the following

property:

Property 1. If the server arrives at Qi to find ki customers
there, then during the course of the server’s visit, each of
these ki customers will effectively be replaced in an i.i.d.
manner by a random population having probability generat-
ing function hi(z1, . . . , zn), which can be any n-dimensional
probability generating function.

We use this property, and the relation to Multitype Branch-
ing Processes, to find results for our polling system with two
queues, two priorities in the first queue, and gated, globally
gated, and exhaustive service discipline. Notice that, unlike
the gated and exhaustive service disciplines, the globally
gated service discipline does not satisfy Property 1. But the
results obtained by Resing also hold for a more general class
of polling systems, namely those which satisfy the following
(weaker) property that is formulated in [1]:

Property 2. If there are ki customers present at Qi at
the beginning (or the end) of a visit to Qπ(i), with π(i) ∈
{1, . . . , n}, then during the course of the visit to Qi, each
of these ki customers will effectively be replaced in an i.i.d.
manner by a random population having probability generat-
ing function hi(z1, . . . , zn), which can be any n-dimensional
probability generating function.

Globally gated and gated are special cases of the synchro-
nised gated service discipline, which states that only cus-
tomers in Qi will be served that were present at the moment
that the server reaches the “parent queue” of Qi: Qπ(i). For
gated service, π(i) = i, for globally gated service, π(i) = 1.
The synchronised gated service discipline is discussed in [13],
but no observation is made that this discipline is a member
of the class of polling systems satisfying Property 2 which
means that results as obtained in [17] can be extended to
this model.

Borst and Boxma [2] combined the results of Resing [17]
and Eisenberg [9] to find a relation between the GFs of the
marginal queue length distribution for polling systems with
and without switch-over times, expressed in the Fuhrmann-
Cooper queue length decomposition form [10].

2.1 Joint queue length distribution at polling
epochs

The probability generating function hi(z1, . . . , zn) which
is mentioned in Property 1 depends on the service discipline.
In a polling system with two queues and gated service we
have hi(z1, z2) = βi(λ1(1− z1)+λ2(1− z2)). For exhaustive
service this GF becomes hi(z1, z2) = πi(

∑
j 6=i λj(1 − zj)),

where πi(·) is the LST of a busy period (BP) distribution
in an M/G/1 system with only type i customers, so it is
the root of the equation πi(ω) = βi(ω + λi(1 − πi(ω))). We
choose the beginning of a visit to Q1 as start of a cycle.
In order to find the joint queue length distribution at the
beginning of a cycle, we have to define the immigration GF
and the offspring GF analogous to [17]. The offspring GFs
for queues 2 and 1 are given below.

f (2)(z1, z2) = h2(z1, z2),

f (1)(z1, z2) = h1(z1, f
(2)(z1, z2)).

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4347 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4347 



The immigration GFs are:

g(2)(z1, z2) = σ2(λ1(1 − z1) + λ2(1 − z2)),

g(1)(z1, z2) = σ1(λ1(1 − z1) + λ2(1 − f (2)(z1, z2))).

The total immigration GF is the product of these two GFs:

g(z1, z2) =

2∏

i=1

g(i)(z1, z2) = g(1)(z1, z2)g
(2)(z1, z2).

We define the GF for the nth generation of offspring recur-
sively:

fn(z1, z2) = (f (1)(fn−1(z1, z2)), f
(2)(fn−1(z1, z2))),

f0(z1, z2) = (z1, z2).

The joint queue length GF at the beginning of a cycle (start-
ing with a visit to Q1) is

P1(z1, z2) =
∞∏

n=0

g(fn(z1, z2)). (1)

Resing [17] proves that this infinite product converges if and
only if ρ < 1.

We can relate the joint queue length distribution at other
polling epochs to P1(z1, z2). We denote the GF of the joint
queue length distribution at a visit beginning toQi by Vbi(·),
so P1(·) = Vb1(·). The queue length at a visit completion to
Qi is denoted by Vci(·). The following relations hold:

Vb1(z1, z2) = Vc2(z1, z2)σ2(λ1(1 − z1) + λ2(1 − z2))

= Vb2(z1, h2(z1, z2))σ2(λ1(1 − z1) + λ2(1 − z2))

= Vb2(z1, f
(2)(z1, z2))g

(2)(z1, z2), (2)

Vb2(z1, z2) = Vc1(z1, z2)σ1(λ1(1 − z1) + λ2(1 − z2))

= Vb1(h1(z1, z2), z2)σ1(λ1(1 − z1) + λ2(1 − z2)).
(3)

2.2 Cycle time
The cycle time, starting at a visit beginning to Q1, is the

sum of the visit times to Q1 and Q2, and the two switch-over
times which are independent of the visit times. Since type
2 customers who arrive during the visit to Q1 or the switch
from Q1 to Q2 will be served during the visit to Q2, it can
be shown that the LST of the distribution of the cycle time
C1, γ1(·), is related to P1(·) as follows:

γ1(ω) =σ1(ω + λ2(1 − φ2(ω)))σ2(ω)

· P1(φ1(ω + λ2(1 − φ2(ω))), φ2(ω)), (4)

where φi(·) is the LST of the distribution of the time that
the server spends at Qi due to the presence of one type i
customer there. For gated service φi(·) = βi(·), for exhaus-
tive service φi(·) = πi(·). A proof of (4) can be found in
[4].

In some cases it is convenient to choose a different starting
point for a cycle, for example when analysing a polling sys-
tem with exhaustive service. If we define C∗

1 to be the time
between two successive visit completions to Q1, the LST of
its distribution, γ∗

1(·), is:

γ∗
1 (ω) =σ1(ω + λ1(1 − φ1(ω))

+ λ2(1 − φ2(ω + λ1(1 − φ1(ω)))))

· σ2(ω + λ1(1 − φ1(ω)))

· Vc1(φ1(ω), φ2(ω + λ1(1 − φ1(ω)))), (5)

with Vc1(z1, z2) = P1(h1(z1, z2), z2).

2.3 Marginal queue lengths and waiting times
We denote the GF of the steady-state marginal queue

length distribution of Q1 at the visit beginning by Ṽb1(z) =

Vb1(z, 1). Analogously we define Ṽb2(·), Ṽc1(·), and Ṽc2(·). It
is shown in [2] that the steady-state marginal queue length
of Qi can be decomposed into two parts: the queue length
of the corresponding M/G/1 queue with only type i cus-
tomers, and the queue length at an arbitrary epoch during
the intervisit period of Qi, denoted by Ni|I . Borst [2] shows
that by virtue of PASTA, Ni|I has the same distribution as
the number of type i customers seen by an arbitrary type i
customer arriving during an intervisit period, which equals

E(zNi|I ) =
E(z

Ni|Ibegin ) − E(zNi|Iend )

(1 − z)(E(Ni|Iend
) − E(Ni|Ibegin

))
,

where Ni|Ibegin
is the number of type i customers at the be-

ginning of an intervisit period Ii, and Ni|Iend
is the number

of type i customers at the end of Ii. Since the beginning of
an intervisit period coincides with the completion of a visit
to Qi, and the end of an intervisit period coincides with the
beginning of a visit, we know the GFs for the distributions

of these random variables: Ṽci(·) and Ṽbi(·). This leads to
the following expression for the GF of the steady-state queue
length distribution of Qi at an arbitrary epoch, E[zNi ]:

E[zNi ] =
(1 − ρi)(1 − z)βi(λi(1 − z))

βi(λi(1 − z)) − z

·
Ṽci(z) − Ṽbi(z)

(1 − z)(E(Ni|Iend
) − E(Ni|Ibegin

))
. (6)

Keilson and Servi [11] show that the distributional form of
Little’s law can be used to find the LST of the marginal wait-
ing time distribution: E(zNi) = E(e−λi(1−z)(Wi+Bi)), hence
E(e−ωWi) = E[(1 − ω

λi
)Ni ]/βi(ω). This can be substituted

into (6):

E[e−ωWi ] =
(1 − ρi)ω

ω − λi(1 − βi(ω))

·
Ṽci

(
1 − ω

λi

)
− Ṽbi

(
1 − ω

λi

)

(E(Ni|Iend
) − E(Ni|Ibegin

))ω/λi

=E[e−ωWi|M/G/1 ]E

[(
1 −

ω

λi

)Ni|I

]
. (7)

The interpretation of this formula is that the waiting time
of a type i customer in a polling model is the sum of two in-
dependent random variables: the waiting time of a customer
in an M/G/1 queue with only type i customers, Wi|M/G/1,
and the remaining intervisit time for a customer that arrives
at an arbitrary epoch during the intervisit time of Qi.

For gated service, the number of type i customers at the
beginning of a visit to Qi is exactly the number of type i
customers that arrived during the previous cycle, starting at

Qi. In terms of GFs: Ṽbi(z) = γi(λi(1− z)). The number of
type i customers at the end of a visit to Qi are exactly those
type i customers that arrived during this visit. In terms of

GFs: Ṽci(z) = γi(λi(1 − βi(λi(1 − z)))). We can rewrite
E(Ni|Iend

)−E(Ni|Ibegin
) as λiE(Ii), because this is the num-

ber of type i customers that arrive during an intervisit time.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4347 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4347 



In Section 2.4 we show that λiE(Ii) = λi(1 − ρi)E(C). Us-
ing these expressions we can rewrite Equation (7) for gated
service to:

E[e−ωWi ] =
(1 − ρi)ω

ω − λi(1 − βi(ω))
·
γi(λi(1 − βi(ω))) − γi(ω)

(1 − ρi)ωE(C)
.

(8)

For exhaustive service, Ṽci(z) = 1, because Qi is empty at
the end of a visit of S to Qi. The number of type i cus-
tomers at the beginning of a visit to Qi in an exhaustive
polling system is equal to the number of type i customers
that arrived during the previous intervisit time ofQi. Hence,

Ṽbi(z) = Ĩi(λi(1−z)), where Ĩi(·) is the LST of the intervisit

time distribution for Qi. Substitution of Ĩi(ω) = Ṽbi(1−
ω
λi

)

in (7) leads to the following expression for the LST of the
steady-state waiting time distribution of a type i customer
in an exhaustive polling system:

E[e−ωWi ] =
(1 − ρi)ω

ω − λi(1 − βi(ω))
·
1 − Ĩi(ω)

ωE(Ii)
. (9)

To the best of our knowledge, the following result is new.

Proposition 1. Let the cycle time C∗
i be the time between

two successive visit completions to Qi. The LST of the cycle
time distribution is given by (5). An equivalent expression
for E[e−ωWi ] if Qi is served exhaustively, is:

E[e−ωWi ] =
1 − γ∗

i (ω − λi(1 − βi(ω)))

(ω − λi(1 − βi(ω)))E(C)
(10)

= E[e−(ω−λi(1−βi(ω)))C∗
i,res ],

where C∗
i,res is the residual length of C∗

i .

Proof. The cycle time is the length of an intervisit pe-
riod Ii plus the length of a visit Vi, which is the time required
to serve all type i customers that have arrived during Ii,
and their type i descendants. Hence, the following equation
holds:

γ∗
i (ω) = Ĩi(ω + λi(1 − πi(ω))). (11)

We use this equation to find the inverse relation:

Ĩi(ω + λi(1 − πi(ω))) = γ∗
i (ω)

= γ∗
i (ω + λi(1 − πi(ω)) − λi(1 − πi(ω)))

= γ∗
i (ω + λi(1 − πi(ω)) − λi(1 − βi(ω + λi(1 − πi(ω))))).

If we substitute s := ω + λi(1 − πi(ω)), we find

Ĩi(s) = γ∗
i (s− λi(1 − βi(s))). (12)

Substitution of (12) into (9) gives (10).

Remark 1. We can write (11) and (12) as follows:

γ∗
i (ω) = Ĩi(ψ(ω)), Ĩi(s) = γ∗

i (φ(s)),

where φ(·) equals the Laplace exponent of the Lévy process∑N(t)
j=1 Bi,j − t, with N(t) a Poisson process with intensity

λi, and with ψ(ω) = ω + λi(1 − πi(ω)), which is known to
be the inverse of φ(·).

2.4 Moments
The focus of this paper is on LST and GF of distribution

functions, not on their moments. Moments can be obtained
by differentiation or Taylor series expansion, and are also

discussed in [21]. In this subsection we will only mention
some results that will be used later.

First we will derive the mean cycle time E(C). Unlike
higher moments of the cycle time, the mean does not depend

on where the cycle starts: E(C) = E(S1)+E(S2)
1−ρ

. This can
easily be seen, because 1− ρ is the fraction of time that the
server is not working, but switching. The total switch-over
time is E(S1) + E(S2).

The expected length of a visit to Qi is E(Vi) = ρiE(C).
The mean length of an intervisit period for Qi is E(Ii) =
(1 − ρi)E(C). Notice that these expectations do not de-
pend on the service discipline used. The expected number
of type i customers at polling moments does depend on the
service discipline. For gated service the expected number of
type i customers at the beginning of a visit to Qi is λiE(C).
For exhaustive service this is λiE(Ii). The expected num-
ber of type i customers at the beginning of a visit to Qi+1

is λi(E(Vi) + E(Si)) for gated service, and λiE(Si) for ex-
haustive service.

Moments of the waiting time distribution for a type i cus-
tomer at an arbitrary epoch can be derived from the LSTs
given by (8), (9) and (10). We only present the first moment:

Gated: E(Wi) = (1 + ρi)
E(C2

i )

2E(C)
, (13)

Exhaustive: E(Wi) =
E(I2

i )

2E(Ii)
+

ρi

1 − ρi

E(B2
i )

2E(Bi)
,

= (1 − ρi)
E(C∗

i
2)

2E(C)
. (14)

Notice that the start of Ci is the beginning of a visit to Qi,
whereas the start of C∗

i is the end of a visit. Equations (13)
and (14) are in agreement with Equations (4.1) and (4.2)
in [3]. Although at first sight these might seem nice, closed
formulas, it should be noted that the expected residual cy-
cle time and the expected residual intervisit time are not
easy to determine, requiring the solution of a large set of
equations. MVA is an efficient technique to compute mean
waiting times, the mean residual cycle time, and also the
mean residual intervisit time. We refer to [22] for an MVA
framework for polling models.

3. GATED SERVICE
In this section we study the gated service discipline for a

polling system with two queues and two priority classes in
the first queue: high (H) and low (L) priority customers.
All type H and L customers that are present at the mo-
ment when the server arrives at Q1, will be served during
the server’s visit to Q1. First all type H customers will
be served, then all type L customers. Type H customers
arrive at Q1 according to a Poisson process with intensity
λH , and have a service requirement BH with LST βH(·).
Type L customers arrive at Q1 with intensity λL, and have
a service requirement BL with LST βL(·). If we do not dis-
tinguish between high and low priority customers, we can
still use the results from Section 2 if we regard the sys-
tem as a polling system with two queues where customers
in Q1 arrive according to a Poisson process with intensity
λ1 := λH + λL and have service requirement B1 with LST
β1(·) = λH

λ1
βH(·) + λL

λ1
βL(·).

We follow the same approach as in Section 2. First we
study the joint queue length distribution at polling epochs,
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then the cycle time distribution, followed by the marginal
queue length distribution and waiting time distribution. The
last subsection provides the first moment of these distribu-
tions.

3.1 Joint queue length distribution at polling
epochs

Equations (2) and (3) give the GFs of the joint queue
length distribution at visit beginnings, Vbi(z1, z2). A type
1 customer entering the system is a type H customer with
probability λH/λ1, and a type L customer with probability
λL/λ1. We can express the GF of the joint queue length
distribution in the polling system with priorities, Vbi(·, ·, ·),
in terms of the GF of the joint queue length distribution in
the polling system without priorities, Vbi(·, ·).

Lemma 3.1.

Vbi(zH , zL, z2) = Vbi

(
λHzH + λLzL

λ1
, z2

)
. (15)

Proof. Let XH be the number of high priority customers
present in Q1 at the beginning of a visit to Qi, i = 1, 2.
Similarly define XL to be the number of low priority cus-
tomers present in Q1 at the beginning of a visit to Qi. Let
X1 = XH + XL. Since the type H/L customers in Q1 are
exactly those H/L customers that arrived since the previous
visit beginning at Qi, we know that

P (XH = i,XL = k − i|X1 = k) =

(
k

i

)(
λH

λ1

)i (
λL

λ1

)k−i

.

Hence

E[zXH
H zXL

L |X1 = k]

=
∞∑

i=0

∞∑

j=0

zi
Hz

j
LP (XH = i,XL = j|X1 = k)

=
k∑

i=0

(
k

i

)(
λH

λ1
zH

)i (
λL

λ1
zL

)k−i

=

(
λHzH + λLzL

λ1

)k

.

Finally,

Vbi(zH , zL, z2)

=
∞∑

i=0

∞∑

j=0

(
λHzH + λLzL

λ1

)i

zj
2P (X1 = i,X2 = j)

= Vbi

(
1

λ1
(λHzH + λLzL), z2

)
.

3.2 Cycle time
The LST of the cycle time distribution is still given by

(4) if we define λ1 := λH + λL and β1(·) := λH
λ1
βH(·) +

λL
λ1
βL(·), because the cycle time does not depend on the

order of service.

3.3 Marginal queue lengths and waiting times
We first determine the LST of the waiting time distribu-

tion for a type L customer, using the fact that this customer
will not be served until the next cycle (starting at Q1). The

time from the start of the cycle until the arrival will be
called “past cycle time”, denoted by C1P . The residual cy-
cle time will be denoted by C1R. The waiting time of a
type L customer is composed of C1R, the service times of
all high priority customers that arrived during C1P + C1R,
and the service times of all low priority customers that have
arrived during C1P . Let NH(T ) be the number of high pri-
ority customers that have arrived during time interval T ,
and equivalently define NL(T ).

Theorem 3.2.

E
[
e
−ωWL

]
=[(ω − λL(1 − βL(ω)))E(C)]−1

·
[
γ1(λH(1 − βH(ω)) + λL(1 − βL(ω)))

− γ1(ω + λH(1 − βH(ω)))
]
.

Proof.

E
[
e−ωWL

]

= E

[
e−ω(C1R+

∑NH (C1P +C1R)
i=1 BH,i+

∑NL(C1P )
i=1 BL,i)

]

=

∫ ∞

t=0

∫ ∞

u=0

∞∑

m=0

∞∑

n=0

E
[
e−ω(u+

∑m
i=1 BH,i+

∑n
i=1 BL,i)

]

· P (NH(C1P + C1R) = m,NL(C1P ) = n)

dP (C1P < t,C1R < u)

=

∫ ∞

t=0

∫ ∞

u=0

∞∑

m=0

∞∑

n=0

E
[
e−ω

∑m
i=1 BH,i

]
E
[
e−ω

∑n
i=1 BL,i

]

· e−ωu (λH(t+ u))m

m!
e−λH(t+u) (λLt)

n

n!
e−λLt

dP (C1P < t,C1R < u)

=

∫ ∞

t=0

∫ ∞

u=0

e−t(λH(1−βH(ω))+λL(1−βL(ω)))

· e−u(ω+λH(1−βH (ω))) dP (C1P < t,C1R < u)

= [(ω − λL(1 − βL(ω)))E(C)]−1

·
[
γ1(λH(1 − βH(ω)) + λL(1 − βL(ω)))

− γ1(ω + λH(1 − βH(ω)))
]
. (16)

For the last step in the derivation of (16) we used

E[e−ωP C1P −ωRC1R ] =
E[e−ωP C1 ] − E[e−ωRC1 ]

(ωR − ωP )E(C)
,

which is obtained in [5].

Remark 2. The Fuhrmann-Cooper decomposition [10] still
holds for the waiting time of type L customers, because (16)
can be rewritten to

E
[
e−ωWL

]
=

(1 − ρL)ω

ω − λL(1 − βL(ω))

· [(1 − ρL)ωE(C)]−1

·
[
γ1(λH(1 − βH(ω)) + λL(1 − βL(ω)))

− γ1(ω + λH(1 − βH(ω)))
]
. (17)

We recognise the first term on the right-hand side of (17)
as the LST of the waiting time distribution of an M/G/1
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queue with only type L customers. An interpretation of the
other two terms on the right-hand side can be found when
regarding the polling system as a polling system with three

queues (QH , QL, Q2) and no switch-over time between QH

and QL. The service discipline of this equivalent system is
synchronised gated, which is a more general version of gated.
The gates for queues QH and QL are set simultaneously
when the server arrives at QH , but the gate for Q2 is still set
when the server arrives at Q2. In the following paragraphs
we show that the second and third term on the right-hand

side of (17) together can be interpreted as E[
(
1 − ω

λL

)NL|I
],

where NL|I is the number of type L customers at a random
epoch during the intervisit period of QL.

The expression for the LST of the distribution of the num-
ber of type L customers at an arbitrary epoch is determined
by first converting the waiting time LST to sojourn time
LST, i.e., multiplying expression (17) with βL(ω). Second,
we apply the distributional form of Little’s law [11] to (17).
This law can be applied because the required conditions are
fulfilled for each customer class (H, L, and 2): the customers
enter the system in a Poisson stream, every customer enters
the system and leaves the system one at a time in order of
arrival, and for any time t the entry process into the system
of customers after time t and the time spent in the system by
any customer arriving before time t are independent. The
result is:

E
[
zNL

]
=

(1 − ρL)(1 − z)βL(λL(1 − z))

βL(λL(1 − z)) − z

·
ṼcL(z) − ṼbL(z)

(1 − z)(E(NL|Iend
) − E(NL|Ibegin

))
. (18)

In this equation ṼbL(z) denotes the GF of the distribution of
the number of type L customers at the beginning of a visit

to QL, and ṼcL(z) denotes the GF at the completion of a
visit to QL:

ṼbL(z) = Vb1(βH(λL(1 − z)), z, 1)

= γ1(λH(1 − βH(λL(1 − z))) + λL(1 − z)),

ṼcL(z) = Vb1(βH(λL(1 − z)), βL(λL(1 − z)), 1)

= γ1(λH(1 − βH(λL(1 − z))) + λL(1 − βL(λL(1 − z)))).

The last term in (18) is the GF of the distribution of the
number of type L customers at an arbitrary epoch during
the intervisit period of QL, E[zNL|I ]. Substitution of ω :=
λL(1 − z) in (18), and using (E(NL|Iend

) − E(NL|Ibegin
)) =

λLE(IL), shows that the second and third term at the right-

hand side of (17) together indeed equal E[
(
1 − ω

λL

)NL|I
].

The derivation of the LSTs of WH and W2 is similar and
leads to the following expressions:

E
[
e−ωWH

]
=

(1 − ρH)ω

ω − λH(1 − βH(ω))

·
γ1(λH(1 − βH(ω))) − γ1(ω)

(1 − ρH)ωE(C)
, (19)

E
[
e−ωW2

]
=

(1 − ρ2)ω

ω − λ2(1 − β2(ω))

·
γ2(λ2(1 − β2(ω))) − γ2(ω)

(1 − ρ2)ωE(C)
. (20)

Remark 3. Equations (19) and (20) are equivalent to the
LST of Wi in a nonpriority polling system (8), which illus-
trates that the Fuhrmann-Cooper decomposition also holds
for the waiting time distributions of high priority customers
in Q1 and type 2 customers in a polling system with gated
service.

Application of the distributional form of Little’s law to
these expressions results in:

E
[
zNH

]
=

(1 − ρH)(1 − z)βH(λH(1 − z))

βH(λH(1 − z)) − z

·
γ1(λH(1 − βH(λH(1 − z)))) − γ1(λH(1 − z))

λH(1 − ρH)(1 − z)E(C)
,

E
[
zN2

]
=

(1 − ρ2)(1 − z)β2(λ2(1 − z))

β2(λ2(1 − z)) − z

·
γ2(λ2(1 − β2(λ2(1 − z)))) − γ2(λ2(1 − z))

λ2(1 − ρ2)(1 − z)E(C)
.

Remark 4. If the service discipline in Q2 is not gated,
but another branching type service discipline that satisfies
Property 1, (20) should be replaced by the more general
expression (7).

3.4 Moments
As mentioned in Section 2.4, we do not focus on moments

in this paper, and we only mention the mean waiting times
of type H and L customers. For a type H customer, it is
immediately clear that E(WH) = (1 + ρH)E(C1,res). The
mean waiting time for a type L customer can be obtained
by differentiating (16). This results in:

E(WL) = (1 + 2ρH + ρL)E(C1,res).

These formulas can also be obtained using MVA, as shown
in [21].

4. GLOBALLY GATED SERVICE
In this section we discuss a polling model with two queues

(Q1, Q2) and two priority classes (H and L) in Q1 with glob-
ally gated service. For this service discipline, only customers
that were present when the server started its visit to Q1 are
served. This feature makes the model exactly the same as a
nonpriority polling model with three queues (QH , QL, Q2).
Although this system does not satisfy Property 1, it does
satisfy Property 2 which implies that we can still follow the
same approach as in the previous sections.

4.1 Joint queue length distribution at polling
epochs

We define the beginning of a visit to Q1 as the start of a
cycle, since this is the moment that determines which cus-
tomers will be served during the next visits to the queues.
Arriving customers will always be served in the next cycle,
so the three (i = H,L, 2) offspring GFs are:

f (i)(zH , zL, z2) = hi(zH , zL, z2)

= βi(λH(1 − zH) + λL(1 − zL) + λ2(1 − z2)),

The two (i = 1, 2) immigration functions are:

g(i)(zH , zL, z2) = σi(λH(1− zH) +λL(1− zL) + λ2(1− z2)),
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Using these definitions, the formula for the GF of the joint
queue length distribution at the beginning of a cycle is sim-
ilar to the one found in Section 2:

P1(zH , zL, z2) =

∞∏

n=0

g(fn(zH , zL, z2)). (21)

Notice that in a system with globally gated service it is
possible to express the joint queue length distribution at the
beginning of a cycle in terms of the cycle time LST, since
all customers that are present at the beginning of a cycle
are exactly all of the customers that have arrived during the
previous cycle:

P1(zH , zL, z2) = γ1(λH(1 − zH) + λL(1 − zL) + λ2(1 − z2)).
(22)

4.2 Cycle time
Since only those customers that are present at the start

of a cycle, starting at Q1, will be served during this cycle,
the LST of the cycle time distribution is

γ1(ω) = σ1(ω)σ2(ω)P1(βH(ω), βL(ω), β2(ω)). (23)

Substitution of (22) into this expression gives us the follow-
ing relation:

γ1(ω) = σ1(ω)σ2(ω)

· γ1(λH(1 − βH(ω)) + λL(1 − βL(ω)) + λ2(1 − β2(ω))).

Boxma, Levy and Yechiali [5] show that this relation leads
to the following expression for the cycle time LST:

γ1(ω) =

∞∏

i=0

σ(δ(i)(ω)),

where σ(·) = σ1(·)σ2(·), and δ(i)(ω) is recursively defined as
follows:

δ(0)(ω) = ω,

δ(i)(ω) = δ(δ(i−1)(ω)), i = 1, 2, 3, . . . ,

δ(ω) = λH(1 − βH(ω)) + λL(1 − βL(ω)) + λ2(1 − β2(ω)).

4.3 Marginal queue lengths and waiting times
For typeH and L customers, the expressions for E(e−ωWH )

and E(e−ωWL) are exactly the same as the ones found in
Section 3.3, but with γ1(·) as defined in (23).

The expression for E(e−ωW2) can be obtained with the
method used in Section 3.3:

E
[
e−ωW2

]
= σ1(ω)[(ω − λ2(1 − β2(ω)))E(C)]−1

·
[
γ1(

∑

i=H,L,2

λi(1 − βi(ω))) − γ1(ω +
∑

i=H,L

λi(1 − βi(ω)))
]

= σ1(ω) ·
(1 − ρ2)ω

ω − λ2(1 − β2(ω))

·
γ1(
∑

i=H,L,2 λi(1 − βi(ω))) − γ1(ω +
∑

i=H,L λi(1 − βi(ω)))

(1 − ρ2)ωE(C)
.

We can use the distributional form of Little’s law to de-
termine the LST of the marginal queue length distribution

of Q2:

E
[
zN2

]
= σ1(λ2(1 − z))

(1 − ρ2)(1 − z)β2(λ2(1 − z))

β2(λ2(1 − z)) − z

·
[
γ1

(
∑

i=H,L,2

λi(1 − βi(λ2(1 − z)))

)

− γ1

(
λ2(1 − z) +

∑

i=H,L

λi(1 − βi(λ2(1 − z))

)]

· [λ2(1 − ρ2)(1 − z)E(C)]−1.

Remark 5. The Fuhrmann-Cooper queue length decom-
position also holds for all customer classes in a polling sys-
tem with globally gated service.

4.4 Moments
The expressions for E(WH) and E(WL) from section 3.4

also hold in a globally gated polling system, but with a dif-
ferent mean residual cycle time. We only provide the mean
waiting time of type 2 customers:

E(W2) = E(S1) + (1 + 2ρH + 2ρL + ρ2)E(C1,res).

5. EXHAUSTIVE SERVICE
In this section we study the same polling model as in the

previous two sections, but the two queues are served ex-
haustively. The section has the same structure as the other
sections, so we start with the derivation of the LST of the
joint queue length distribution at polling epochs, followed
by the LST of the cycle time distribution. LSTs of the
marginal queue length distributions and waiting time dis-
tributions are provided in the next subsection. In the last
part of the section the mean waiting time of each customer
type is studied.

It should be noted that, although we assume that both
Q1 and Q2 are served exhaustively, a model in which Q2

is served according to another branching type service disci-
pline, requires only minor adaptations.

5.1 Joint queue length distribution at polling
epochs

We can derive the joint queue length distribution at the
beginning of a cycle for a polling system with two queues
and two priority classes in Q1, P1(zH , zL, z2), directly from
expression (1) for P1(z1, z2). Similar to the proof of Lemma
3.1, we can prove that

P1(zH , zL, z2) = P1

(
1

λ1
(λHzH + λLzL), z2

)
.

The same holds for Vb2(·, ·, ·) and visit completion epochs
Vci(·, ·, ·), for i = 1, 2.

5.2 Cycle time
For the cycle time starting with a visit to Q1, (4) is still

valid by defining λ1 := λH + λL and β1(·) := λH
λ1
βH(·) +

λL
λ1
βL(·). However, when studying the waiting time of a

specific customer type in an exhaustively served queue, it
is convenient to consider the completion of a visit to Q1

as the start of a cycle. Hence, in this section the notation
C∗

1 , or the LST of its distribution, γ∗
1(·), refers to the cycle

time starting at the completion of a visit to Q1. Equation
(5) gives the LST of the distribution of C∗

1 , again with the

definitions λ1 := λH + λL and β1(·) := λH
λ1
βH(·) + λL

λ1
βL(·).
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5.3 Marginal queue lengths and waiting times
Analysis of the model with exhaustive service requires a

different approach. The key observation, made by Fuhrmann
and Cooper [10], is that a nonpriority polling system from
the viewpoint of a type i customer is an M/G/1 queue with
multiple server vacations. This implies that the Fuhrmann-
Cooper decomposition can be used, even though the inter-
visit times are strongly dependent on the visit times. The
M/G/1 queue with priorities and vacations can be analysed
by modelling the system as a special version of the nonprior-

ity M/G/1 queue with multiple server vacations, and then
applying the results from Fuhrmann and Cooper. This ap-
proach has been used by Kella and Yechiali [12] who used
the concept of delay cycles, and also by Shanthikumar [18]
who used level crossing analysis; see also Takagi [20]. We
apply Kella and Yechiali’s approach to the polling model
under consideration to find the waiting time LST for type
H and L customers. In [12] systems with single and multi-
ple vacations, preemptive resume and nonpreemptive service
are considered. In the present paper we do not consider pre-
emptive resume, so we only use results from the case labelled
as NPMV (nonpreemptive, multiple vacations) in [12]. We
consider the system from the viewpoint of a typeH and type
L customer separately to derive E[e−ωWH ] and E[e−ωWL ].

From the viewpoint of a type H customer and as far as
waiting times are concerned, a polling system is a nonprior-

ity single server system with multiple vacations. The vaca-
tion can either be the intervisit period I1, or the service of a
type L customer. The LSTs of these two types of vacations
are:

E[e−ωI1 ] = P1(1 − ω/λ1, 1), (24)

E[e−ωBL ] = βL(ω).

Equation (24) follows immediately from the fact that the
number of type 1 (i.e. both H and L) customers at the
beginning of a visit to Q1 is the number of type 1 cus-
tomers that have arrived during the previous intervisit pe-
riod: P1(z, 1) = E[e−(λ1(1−z))I1 ].

We now use the concept of delay cycles, introduced in
[12], to find the waiting time LST of a type H customer.
The key observation is that an arrival of a tagged type H
customer will always take place within either an IH cycle,
or an LH cycle. An IH cycle is a cycle that starts with an
intervisit period for Q1, followed by the service of all type
H customers that have arrived during the intervisit period,
and ends at the moment that no typeH customers are left in
the system. Notice that at the start of the intervisit period,
no type H customers were present in the system either. An
LH cycle is a similar cycle, but starts with the service of a
type L customer. This cycle also ends at the moment that
no type H customers are left in the system.

The fraction of time that the system is in an LH cycle is
ρL

1−ρH
, because type L customers arrive with intensity λL.

Each of these customers will start an LH cycle and the length

of an LH cycle equals E(BL)
1−ρH

:

E(LH cycle) = E(BL) + λHE(BL)E(BPH)

= E(BL) + λHE(BL)
E(BH)

1 − ρH

= (1 +
ρH

1 − ρH
)E(BL) =

E(BL)

1 − ρH
,

where E(BPH) is the mean length of a busy period of type
H customers.

The fraction of time that the system is in an IH cycle, is
1− ρL

1−ρH
= 1−ρ1

1−ρH
. This result can also be obtained by using

the argument that the fraction of time that the system is in
an intervisit period is the fraction of time that the server
is not serving Q1, which is equal to 1 − ρ1. A cycle which
starts with such an intervisit period and stops when all type
H customers that arrived during the intervisit period and
their typeH descendants have been served, has mean length

E(I1) + λHE(I1)E(BPH) = E(I1)
1−ρH

. This also leads to the

conclusion that 1−ρ1
1−ρH

is the fraction of time that the system

is in an IH cycle. A customer arriving during an IH cycle
views the system as a nonpriority M/G/1 queue with mul-
tiple server vacations I1; a customer arriving during an LH

cycle views the system as a nonpriority M/G/1 queue with
multiple server vacations BL.

Fuhrmann and Cooper [10] showed that the waiting time
of a customer in an M/G/1 queue with server vacations is
the sum of two independent quantities: the waiting time of
a customer in a corresponding M/G/1 queue without vaca-
tions, and the residual vacation time. Hence, the LST of the
waiting time distribution of a type H customer is:

E[e−ωWH ] =
(1 − ρH)ω

ω − λH(1 − βH(ω))

·

[
1 − ρ1

1 − ρH
·
1 − Ĩ1(ω)

ωE(I1)
+

ρL

1 − ρH
·
1 − βL(ω)

ωE(BL)

]
. (25)

Equation (25) is in accordance with the more general equa-
tion in Section 4.1 in [12].

Remark 6. The LST of the distribution of the waiting
time of a high priority customer in a two priority M/G/1
queue without vacations is

E[e−ωWH|M/G/1 ] =
(1 − ρ1)ω + λL(1 − βL(ω))

ω − λH(1 − βH(ω))
, (26)

see, e.g., Equation (3.85) in [7], Chapter 3. Equation (26)

can be rewritten to (25), with 1−Ĩ1(ω)
ωE(I1)

replaced by 1. Hence,

the waiting time distribution of a high priority customer in
a two priority M/G/1 queue equals the waiting time distri-
bution of a customer in a nonpriority M/G/1 queue with
only type H customers, where the server goes on a vacation
BL with probability ρL

1−ρH
.

Remark 7. Substitution of (12) in (25) expressesE[e−ωWH ]
in terms of the LST of the cycle time distribution starting
at a visit completion to Q1, γ

∗
1 (·):

E[e−ωWH ] =
[
1 − γ∗

1 (ω − λH(1 − βH(ω)) − λL(1 − βL(ω)))

+ λL(1 − βL(ω))E(C)
]

· [(ω − λH(1 − βH(ω)))E(C)]−1. (27)

The concept of cycles is not really needed to model the sys-
tem from the perspective of a type L customer, because for
a type L customer the system merely consists of IHL cycles.
An IHL cycle is the same as an IH cycle, discussed in the
previous paragraphs, except that it ends when no type H or

L customers are left in the system. So the system can be
modelled as a nonpriority M/G/1 queue with server vaca-
tions. The vacation is the intervisit time I1, plus the service
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times of all type H customers that have arrived during that
intervisit time and their typeH descendants. We will denote
this extended intervisit time by I∗1 with LST

Ĩ∗1 (ω) = Ĩ1(ω + λH(1 − πH(ω))).

The mean length of I∗1 equals E(I∗1 ) = E(I1)
1−ρH

.

We also have to take into account that a busy period of
type L customers might be interrupted by the arrival of type
H customers. Therefore the alternative system that we are
considering will not contain regular type L customers, but
customers still arriving with arrival rate λL, whose service
time equals the service time of a type L customer in the
original model, plus the service times of all typeH customers
that arrive during this service time, and all of their type H
descendants. The LST of the distribution of this extended
service time B∗

L is

β∗
L(ω) = βL(ω + λH(1 − πH(ω))).

This extended service time is often called completion time

in the literature. In this alternative system, the mean ser-

vice time of these customers equals E(B∗
L) = E(BL)

1−ρH
. The

fraction of time that the system is serving these customers
is ρ∗L = ρL

1−ρH
= 1 − 1−ρ1

1−ρH
.

Now we use the results from the M/G/1 queue with server
vacations (starting with the Fuhrmann-Cooper decomposi-
tion) to determine the LST of the waiting time distribution
for type L customers:

E[e−ωWL ] =
(1 − ρ∗L)ω

ω − λL(1 − β∗
L(ω))

·
1 − Ĩ∗1 (ω)

ωE(I∗1 )

=
(1 − ρ1)(ω + λH(1 − πH(ω)))

ω − λL(1 − βL(ω + λH(1 − πH(ω))))

·
1 − Ĩ1(ω + λH(1 − πH(ω)))

(ω + λH(1 − πH(ω)))E(I1)
. (28)

The last term of (28) is the LST of the distribution of the
residual intervisit time, plus the time that it takes to serve
all type H customers and their type H descendants that
arrive during this residual intervisit time. The first term of
(28) is the LST of the waiting time distribution of a low-
priority customer in an M/G/1 queue with two priorities,
without vacations (see e.g. (3.76) in [7], Chapter 3).

Remark 8. The M/G/1 queue with two priorities can be
viewed as a nonpriority M/G/1 queue with vacations, if we
consider the waiting time of type L customers. We only need
to rewrite the first term of (28):

E[e−ωWL|M/G/1 ] =
(1 − ρ1)(ω + λH(1 − πH(ω)))

ω − λL(1 − βL(ω + λH(1 − πH(ω))))

=
(1 − ρ∗L)ω

ω − λL(1 − β∗
L(ω))

·
1 − ρ1

1 − ρ∗L

·
ω + λH(1 − πH(ω))

ω

=E[e
−ωW∗

L|M/G/1 ]

·

[
(1 − ρH) + ρH

1 − πH(ω)

ωE(BPH)

]
,

where E[e
−ωW∗

L|M/G/1 ] is the LST of the waiting time distri-
bution of a customer in an M/G/1 queue where customers
arrive at intensity λL and have service requirement LST

βL(ω + λH(1 − πH(ω))). So with probability 1 − ρH the
waiting time of a customer is the waiting time in an M/G/1
queue with no vacations, and with probability ρH the wait-
ing time of a customer is the sum of the waiting time in an
M/G/1 queue and the residual length of a vacation, which
is a busy period of type H customers.

Remark 9. Substitution of (12) in (28) leads to a different
expression for E[e−ωWL ]:

E[e−ωWL ] =
1 − γ∗

1 (ω − λL(1 − βL(ω + λH(1 − πH(ω)))))

(ω − λL(1 − βL(ω + λH(1 − πH(ω)))))E(C)

= E[e−(ω−λL(1−βL(ω+λH(1−πH (ω)))))C∗
1,res ]. (29)

The waiting time of type 2 customers is not affected at all
by the fact that Q1 contains multiple classes of customers,
so (9) is still valid for E(e−ωW2).

We will refrain from mentioning the GFs of the marginal
queue length distributions here, because they can be ob-
tained by applying the distributional form of Little’s law as
we have done before.

5.4 Moments
The mean waiting times for high and low priority cus-

tomers can be found by differentiation of (25) and (28):

E(WH) =
ρHE(BH,res) + ρLE(BL,res)

1 − ρH
+

1 − ρ1

1 − ρH
E(I1,res),

E(WL) =
ρHE(BH,res) + ρLE(BL,res)

(1 − ρH)(1 − ρ1)
+

1

1 − ρH
E(I1,res).

Differentiation of (27) and (29) leads to alternative expres-
sions, that can also be found in [21].

E(WH) =
(1 − ρ1)

2

1 − ρH

E(C∗
1
2)

2E(C)
,

E(WL) =
(1 − ρ1)

2

(1 − ρH)(1 − ρ1)

E(C∗
1
2)

2E(C)

=

(
1 −

ρL

1 − ρH

)
E(C∗

1
2)

2E(C)
.

6. EXAMPLE
Consider a polling system with two queues, and assume

exponential service times and switch-over times. Suppose
that λ1 = 6

10
, λ2 = 2

10
, E(B1) = E(B2) = 1, E(S1) =

E(S2) = 1. The workload of this polling system is ρ = 8
10

.
This example is extensively discussed in [22] where MVA
was used to compute mean waiting times and mean residual
cycle times for the gated and exhaustive service disciplines.

In this example we show that the performance of this
system can be improved by giving higher priority to jobs
with smaller service times. We define a threshold t and
divide the jobs into two classes: jobs with a service time
less than t receive high priority, the other jobs receive low
priority. Figures 1 and 2 show the mean waiting time for
type 1 customers in the system without priorities, the mean
waiting time for type H and type L customers, and the
weighted average of these two, as a function of the thresh-
old t. The figures show that a unique optimal threshold
exists that minimises the mean weighted waiting time for
customers in Q1. This value depends on the service dis-
cipline used and is discussed in [21]. In this example the
optimal threshold is 1 for gated, and 1.38 for exhaustive.
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Figure 1: Mean waiting time of customers in Q1 in

the gated polling system, versus threshold t.

Figure 1 confirms that the mean waiting times for type H
and L customers in the gated model only differ by a con-
stant value: E(WL) − E(WH) = ρ1E(C1,res). For glob-
ally gated service no figure is included, because we again
have E(WL) − E(WH) = ρ1E(C1,res). The mean residual
cycle time is different from the one in the gated model,
but this does not affect the optimal threshold which is still
t = 1. In the exhaustive model we have the following rela-

tion: E(WL) − E(WH) = ρ1(1−ρ1)
1−ρH

E(C∗
1,res). If we increase

threshold t, the fraction of customers in Q1 that receive high
priority grows, and so does their mean service time. This
means that ρH increases as t increases, so E(WL)−E(WH)
gets bigger, which can be seen in Figure 2. Notice that
E(WH)
E(WL)

= 1 − ρ1, so it does not depend on t.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

2
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8

10

EHW L

Type H

Avg. H and L

No priorities

Type L

Figure 2: Mean waiting time of customers in Q1 in

the exhaustive polling system, versus threshold t.
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