
XAV: A Tracing Framework for Exploring Large 

Network Simulation Outputs 
 

Ryad Ben-El-Kezadri 
LIP6, Université Paris VI,  

104 avenue du Président Kennedy 
75016 Paris - France 

ryad.bek@lip6.fr 

Guy Pujolle 
LIP6, Université Paris VI,  

104 avenue du Président Kennedy 
75016 Paris - France 

guy.pujolle@lip6.fr 

Farouk Kamoun 
CRISTAL, Université de la Manouba, 

Campus Manouba, 2010 - Tunisia 
 

frk.kamoun@planet.tn 

 

 

ABSTRACT 

This paper presents our ongoing works towards visual exploration 

of large network simulation outputs. Visual exploration allows 

users to search through simulation traces by using multi-

dimensional representations of the network in an intuitive and 

interactive way. To speed up trace file exploration, we propose to 

store the simulation events according a format, namely XAV, that 

i) exploits the multidimensional nature of users requests and ii) 

allows quick identification of the packet paths through the 

network. XAV files are stored in a database to simplify data 

manipulation. The XAV tracing framework has been implemented 

in the NS-2 simulator and tested over a wireless ad-hoc network 

composed of 25 nodes. The performance evaluation shows that 

XAV enables to extract about 1000 packet paths per second from 

100 MB trace files. 

Categories and Subject Descriptors 

I.6 [Simulation and modeling]: Simulation Output Analysis; 

H.2.1 [Database Management]: Logical Design – Data models; 

H.2.8 [Database Management]: Database Applications – 

Statistical databases. 

General Terms 

Standardization, Design. 

Keywords 

Network simulation, Exploration, Database, Data path, Trace file, 

XML, XQuery. 

1. INTRODUCTION 
Networks are becoming increasingly large, dynamic and complex. 

In this demanding environment, the simulation tools are not only 

expected to faithfully simulate networks, but also to enable users 

to understand the whys and hows of the obtained simulation 

results. The larger and more complex the networks, the larger the 

simulation traces are and the more users will need freedom to 

explore the simulation outputs. Data exploration goes beyond 

traditional data exploitation as it allows the user to navigate and 

interact intuitively with the outputs. Contrary to classic data 

exploitation which limits the analysis to general and surface 

examinations, data exploration enable the users to enter in the 

trace files and to access every piece of information they contain.  

Data exploration relies on extensive trace file processing. Trace 

processing is a complex task because the useful information can 

be deeply buried into the files. Two processing methods can be 

distinguished at this level. In the traditional method, a procedural 

language is used for filtering and aggregating the relevant trace 

records. Huginn [1] as the majority of post processing tools relies 

on this principle. Huginn allows the visualization and interaction 

with NS-2 wireless traces at the MAC level. The Huginn 

evaluation engine reads the trace in sequential order, correlates 

the events of interest and finally generates an intermediate 

network representation with which the user can interact. The 

problem of this approach is that the filtering and the correlation of 

the send events with their corresponding receive events on the 

MAC layer are complex, memory-expensive, and involve a lot of 

code. The second method uses non procedural languages. Non 

procedural query languages such as SQL or XQuery do not 

require writing traditional programming logic. Users only 

concentrate on defining the inputs and outputs rather than the 

programming steps required in a procedural language. Non 

procedural languages also have the advantage to work with 

databases which provide built-in indexing facilities to speed up 

access to data. Non procedural languages relieve applications 

from complex memory management as most underlying functions 

are delegated to an external processor. To our best knowledge, 

JTrana [2] is the only tool that uses a database management 

system (DBMS) to process the simulation outputs. JTrana 

displays general information on the network, nodes remaining 

energy level and packet statistics. Different tables are used for 

packet events, nodes movements and energy but each table row 

roughly corresponds to an event record. Such use of DBMSs is a 

clear step towards innovative applications. However, a model that 

captures the fine structure of the simulation outputs has not yet 

been defined for real time exploration. Indeed, JTrana does not 

perform well with large trace files [3] and has not been designed 

for visual exploration. 

Data exploration will rely on new paradigms. Until now, for 

reasons of simplicity, the post processing applications have been 

developed separately, each one operating on potentially different 
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simulation outputs. For example, the popular NS-2 simulator [4] 

generates NAM files for specific animation purpose and TR traces 

for packet and queue statistics analysis. Specific formats have 

also been released to provide statistics on network components 

and flows [5]. In future systems, the standalone applications will 

be replaced by an interconnected set of services. At the center of 

the system, the exploration service will act as a portal projecting 

representations of the network from which users can interact, 

navigate and launch other services.  

The XML tracing framework of Yavista (XAV) has been built to 

support the various requirements involved in these tasks. Yavista 

is a post processing toolset dedicated to wireless simulation 

exploration [6], [7]. Yavista directly instruments the simulators in 

neutral language. Yavista neutral language is a simple, highly 

expressive, and well defined declarative language dedicated to 

network simulation. It operates as an interface between the post 

processing layer and the source layer. From this interface, 

simulators appear as neutral code generators and only distinguish 

themselves by non functional aspects such as performance, 

completeness (number of protocols implemented) and ease of use.  

XAV and Yavista conceptual architecture is described in figure 1. 

 

Figure 1. Yavista/XAV conceptual architecture. 

The XAV framework relies on the XML standard [8] and XML 

enabled databases. XML enabled databases are extensions of 

RDBMS which transparently map the XML documents into their 

own data structures. Users access the XML data through a non-

procedural query language called XQuery [9]. XQuery acts much 

like SQL. It has been designed to select the XML data elements of 

interest, reorganize them and return the results in the desired 

form.  

XAV final objectives are the followings: 

i. Allow interaction with simulation outputs: an important 

feature of XAV is to define the dimensions along which the 

user can interact (protocols, time and space) and to model 

them as first class items in the trace files. In comparison, flat 

trace files only expose one implicit entry point, this latter 

being the first line of the file and having no type.  

ii. Allow data navigation: the second important feature of XAV 

is to be data-path oriented: under XAV, the complete path of 

a packet in the network can be retrieved from an ID. As a 

result, XAV outputs are not considered as independent data 

records but as collections of data paths. Furthermore, XAV 

data lie in visible contexts and these contexts can be used by 

the processing tools to find the relationships between the 

packet paths.  

iii. Seamless integration into simulators: The integration of 

XAV does not require modifications in the protocol of 

simulators. Only the tracing module changes. XAV actually 

adds two minimal preformatting stages. The slowest, i.e. the 

copy of XAV outputs in the database, is done at 200MB/mn 

through a single native DBMS command.  

iv. Simplify post processing tools design: Under XAV, the 

memory management and the query processing are handled 

by external components. Memory management which is 

critical, especially when processing very large amount of 

data, is moved from the applications to the database and the 

hard coded filtering is replaced by XQuery commands. 

Complex intermediate representations are no more needed 

because the returned results are formatted on-demand 

directly from the simulation outputs.  

v. Overcome the 100 MB and 1 GB trace size limits: The 

minimum time to parse a flat file of a hundred of MB with an 

AWK script1 is about ten seconds. As complex queries often 

need to scan documents multiple times (to retrieve 

preliminary information) the response time may not be 

tolerable for users. XAV outperforms traditional systems for 

targeted queries, that is to say queries that retrieve a small set 

of closely related tuples. The efficiency of these queries is 

especially important because they are extensively used for 

data exploration.  

XAV architecture and performance for traditional service delivery 

have been discussed in [3]. This paper covers the interaction and 

navigation processes.  

The rest of this paper is organized as follows. Chapter 2 describes 

the practical implementation of XAV in NS-2. Chapter 3 focuses 

on navigation and data path extraction. Chapter 4 details the 

interaction aspects between XAV and users. Chapter 5 evaluates 

the performance of XAV under three test scenarios. Chapter 6 

concludes the article and presents future works. 

2. IMPLEMENTATION OF XAV UNDER 

NS-2 
XAV logs events as all tracing systems. XAV actually introduces 

two changes to conventional systems:  

1. Under XAV, packets data and send and receive nodes 

operations are not stored together but in two distinct files. 

The first file, namely the data file, lists the packets payloads 

and headers generated during simulation with their different 

fields: source, destination, type, length, etc. The second file, 

namely the operation file, lists the nodes operations.  

2. The nodes send and receive operations are not enumerated in 

the same order as they are generated but are grouped 

according their node id.  

A basic XAV output is displayed in figure 2. The top of the figure 

shows an excerpt from a data file. One RTP, one IP and one MAC 

header are represented. Each header is identified by a unique ID. 

                                                                 

1 AWK and Perl are the most commonly used tools to process 

trace files. 
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The RTP, IP and MAC headers respective IDs are RTP258, 

IP258.1 and MAC258.1. Each header carries its own information. 

For instance, the MAC header refers to a data frame (element 

data) and this frame is sent by node 1 (attribute s) to node 5 

(attribute d).  

The lower half of figure 2 is extracted from an operation file. It 

shows the operations carried out by node 1 (attribute n of nid) to 

send an RTP packet. The syntax is a hybrid of XML and NS-2 TR 

trace formats [10]. The AGT (agent), RTR (router) and MAC NS-

2’s literals relate to the application (END2END), network 

(NETWORK) and MAC (LAN) layers of the TCP/IP stack. The 

:r, :s, :f and :D literals have also been preserved to help 

understanding. They indicate whether the packet is received (:r), 

sent (:s), dropped (:D) or forwarded (:D) by the layer. However, 

contrary to NS-2, XAV does not log the payload and header fields 

in the operation records. Only the header IDs are written. These 

IDs reference the data stored in the data file. Thanks to these 

pointers, the packet information can be retrieved from anywhere 

in the operation file although it is only stored once in the data file. 

Figure 2 shows three pointers in the operation file referencing the 

same RTP object in the data file.  

 

Figure 2. XAV data file (on top) & 

operation file (on the bottom). 

Figure 3 extends the illustration of the pointer mechanism to the 

network scope. As we can see, the data are not only shared within 

nodes but along the whole packet path. As an example, the 

link/LAN layer header (in green in figure 3) is referenced by all 

MAC entities (transmitter and receivers) in the LAN. Data sharing 

is particularly useful for shared medium access networks and 

multicast protocols because data may be replicated hundreds 

times in these environments.  

A XAV file can be transformed into an equivalent NS-2 flat trace 

file by recopying the header and payload fields of the data file 

into the corresponding operation tags. However, the reverse is not 

true: there is no secure method to convert an NS-2 TR file to 

XAV. Indeed, there are cases where the receive operations can 

not be surely reassociated to the corresponding send records, 

especially for packets that do not contain the sender address [1]. 

 
Figure 3. Sequence of tracing operations at the network scope. 

Under XAV, all headers and data payloads whose content remains 

unchanged over the packet paths share the same ID. Several 

methods for distributing IDs can guarantee this property. The 

method that we propose is simple and well suited to mobile ad-

hoc networks. An ID (or headerID) such as “MAC258.1” is the 

concatenation of a protocolID, a bufferID and a nodeID. 

protocolID differentiates headers from different protocols. In our 

current implementation, the set of protocolID values is 

{“RTP”,”AODV”,”IP”,”MAC”}. The protocol headers (and the 

payload) encapsulated in the same frame have the same bufferID. 

This value is returned by the uid() built-in function of the 

common packet header class of NS-2. The ‘uid()’ static variable 

of NS-2 is incremented each time a new packet structure is 

allocated in the protocol stack. The uniqueness of the uid()s is 

reinforced particularly in the 802.11 MAC protocol for the RTS, 

CTS, ACK frames and for the AODV messages as the function 

which allocates frame buffers is not called for these packets. 

nodeID contains the MAC address of the node which sends the 

packet, when logging is performed at the RTR (NETWORK) and 

MAC (LAN) layers2 and the null value when logging is done at 

the AGT (END2END) layer. nodeID is really useful only at the IP 

layer to recycle the headerID over the data end-to-end path. 

Indeed, the IP header can not be shared over the whole path 

                                                                 

2 The nodeID is set to -1 for the ACK and CTS packets. 
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because several of its fields are modified in the routers when 

forwarding the packet.  

When a protocol receives a Service Data Unit (SDU) from an 

upper layer or sends a Protocol Data Unit (PDU) to a lower layer, 

XAV generates the headerIDs of all headers in the data unit and 

logs them along with the rest of the operation records in the 

operation file. An equivalent process is applied when a packet is 

received at a node. The headers content is logged in the data file 

at the transmitter side during the packet transmission in the 

protocol stack.  

The implementation of XAV does not need to modify the code of 

NS-2 protocols3. Minor changes are introduced in the ns-

cmutrace.tcl, ns-mobilenode.tcl and ns-lib.tcl scripts to interface 

the main TCL simulation script to the new C++ tracing module. 

In the tracing module, the major changes concern basetrace.cc, 

trace.cc and cmu-trace.cc. In basetrace.cc, we have added to the 

existing NAM and TR trace channels two additional Tcl channels 

to write in the operation and data files. Control functions have 

been added in trace.cc to open (attach), close (detach) and write 

into the XAV files from the main simulation script. The core of 

XAV is implemented in cmu-trace.cc. Actually, the interfacing of 

XAV is very simple because NS-2 tracing module is flexible and 

already supports other tracing frameworks such as NAM and TR. 

3. DATA PATH NAVIGATION 
Once the XAV files are put into the database, XQuery [8] is used 

to extract the data. The XQuery FLWOR expression allows to 

write join queries in a similar way to the familiar SQL select 

command. FLWOR stands for "for, let, where, order by, return", 

namely the five clauses that are used in the expressions : 

� the for clause allows to set up an iteration over a set of XML 

nodes; 

� the let clause allows users to declare intermediate variables;  

� the where clause selects the nodes of interest; 

� the order by clause sorts data; 

� finally, the return clause tells how to compose and format 

the information to get back. 

The id() built-in function allows to retrieve the header content 

from the XAV pointers in the operation file. On the same 

principle, the inverse function, idref(), is used to return all the 

send and receive operations related to a headerID.  

Figure 4 shows examples of data paths that can be extracted from 

the headerIDs contained in a RTP packet. It is worth to note that 

multiple views can be elaborated from a single RTP path 

according the operating level of the post processing tools. For 

example, in figure 4, two paths (at least) can be associated to the 

RTP packet. The first one goes through the physical interfaces. It 

represents the end-2-end path seen at the LAN level. The second, 

namely the end-2-end path seen at the E2E level, only connects 

the RTP sender and receiver. A data path is described by a set of 

operations. A query returning the whole set of operations 

involved in a RTP path at the E2E level is presented in figure 5. 

                                                                 

3 Excepted to guarantee the uniqueness of the distributed uid() 

values. 

XPath [11] is used to move along the node hierarchy of the XML 

trace. Its syntax is very similar to the one of Unix path names. 

The first three instructions declare the operating levels supported 

by the post-processing tool. The id() function4 in the for clause 

finds all the RTP pointers in the operation file which reference the 

given RTP packet. The let clause retrieves the nodes operations 

from the RTP pointers. 

 

Figure 4. Examples of path views elaborated from a 

single packet path 

The where clause puts in place the AGT (END2END) view. The 

:* symbol matches all types of node operations. It can be changed 

to :r or :s to select only the receive or send events. Finally, the 

order by clause sorts the operations in time order. The query 

returns the AGT:s and AGT:r operation records indicated in 

figure 4. 

 

Figure 5. Example of query returning the operations involved 

in a RTP path at the E2E level. 

The exploration service checks the nodes contexts to retrieve the 

packet paths. The context of the nodes that these paths traverse 

can be analyzed in their turn to exhibit relationships between 

flows. More details on node contexts are provided in the 

following sections.  

4. INTERACTION WITH THE 

SIMULATION OUTPUTS 
Under XAV, the trace files generated by simulators are not 

directly formatted as in figure 2. XAV raw outputs do not include 

nid tags. These tags are added afterwards during a process that we 

call “multidimensional formatting”. Actually, this process is very 

fast because it parses the trace file in one pass and operates on a 

record per record basis.  

                                                                 

4 Due to technical constraints, the current implementation under 

the MonetDB DBMS inverts the role of the id and idref functions. 
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The role of multidimensional formatting is to organize the trace 

file so that the locality of the queries can be exploited. Space, 

time and observation level are three fundamental elements in data 

exploration as they are commonly used abstractions for locating 

oneself in the environment. The space dimension is described in 

terms of physical entities such as nodes and networks. The time 

dimension is made of time intervals (minute, hour, day, etc). The 

protocol level dimension refers to the different layers of the 

protocol stack (LAN, Network, End to End). The interactive 

representation of the network is built in a way that the user can 

move and interact along these axes. 

Multidimensional formatting restructures the simulation outputs 

in order to tie the interactive representation of the network to the 

content of the trace file. Space formatting is a simple process 

which involves grouping all operations related to a node in a node 

container and the node containers in network containers. Protocol-

level formatting groups all operations related to a particular 

protocol level in protocol-level containers. Finally, time 

formatting arranges all operations occurring in the same periods 

in time containers. XAV implements the protocol-level, time and 

space containers as XML nested elements and scoped dimensions 

[12]. Compared to a file system tree, the advantage of a 

hierarchical XML structure is that all elements are enclosed in a 

common context and are easily accessible through XPath. 

In the current implementation, the nodes operations are logged 

line-by-line in the operation file. The formatting program is a 

short script which parses the operation file in one pass. The 

operation records are filtered by node id (attribute @n), time 

(attribute @time) and protocol level (tag name). A temporary file 

hierarchy is generated during the XML trace scan as shown in 

figure 6. A directory is created for each node encountered in the 

operation file. A directory is created in the node directories for 

each protocol level used by the nodes. The third directory level 

gathers all operations occurring in the same time interval. At the 

end of the scan, the file hierarchy is transformed into an XML tree 

to form the final output. In the final output, an XML container is 

associated to each directory in the file hierarchy.  

 

Figure 6. Example of file hierarchy generated during 

multidimensional formatting. 

Figure 7 shows how the interactive representation of a 

subnetwork is bounded to XAV. The lower half of the figure 

represents the XAV output after the multidimensional formatting 

stage and the copy of the files into the XAV database. The blue 

spheres materialize the node containers. Each XML node 

container has it own XPath context which encloses all E2E, 

Network and LAN operations recorded by the network node 

during the simulation. Actually, these spheres correspond to the 

points from where the XQueries can attack the XAV database. 

The top of the figure represents the avatar the user interacts with. 

As we can see the interaction points in the network representation 

have direct correspondences at the trace file level. These 

correspondences subsequently improve the time needed to 

retrieve the information of interest in the database. 
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Figure 7. Multidimensional modeling of XAV outputs and 

interfacing with the network avatar. 

Figure 8 illustrates the interaction between the database and the 

exploration service.  
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Figure 8. Interactions between the XAV database and the 

exploration service. 
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The explorer extracts the network structure from the simulation 

outputs along with the result of the XQuery. The interactive 

representation is built by combining the two pieces of 

information. The actual position of the network elements may 

correspond to the physical location of the objects or be random. 

Specific layout algorithms taking into account the traffic volume 

can also be used as in [6] and [7].  

5. PERFORMANCE RESULTS 
This section evaluates the performance of XAV for extracting a 

set of packet paths from the traces. The tests have been conducted 

on a mobile ad-hoc network consisting of 25 nodes placed on a 

regular grid. As illustrated in figure 9, the node transmission area 

includes all direct neighbors and the carrier sense area the two-

hop neighbors. Ten CBR/RTP flows are established along the x 

and y axes of the grid. The CBR traffic starts at time 0. The CBR 

payload is 78 bytes long and each application generates a packet 

every 100ms. The AODV protocol is used to compute the routing 

tables. The routes used during the first second of simulation are 

depicted in figure 10. The 802.11 protocol operates at 2 Mbps.  

We use a PC with 3GB of RAM with Linux and the MonetDB 

DBMS [13] (release “Feb 2008”). The MonetDB server which 

holds the XAV database runs on the local machine. The queries 

are sent through the Monet client interface. The resulting network 

representations (ie figures 11, 14 and 17) are drawn by hand. We 

use the trace format described in figure 2. Time and protocol-level 

formatting are disabled. 

At the tracing level, contrary to the original logic, we log all the 

802.11 packets decoded by the MAC even when the packets are 

not addressed to the MAC5. Logging these frames allows us to 

have a more complete model of the data paths and to reveal the 

intricate relationships between flows.  

 

Figure 9. Traffic matrix and sensing areas. 

                                                                 

5 Only the packets originating from the decoding area are 

considered: as in the original framework, we do not log the 

packets from the carrier sensing area. 

 

Figure 10. Routes maintained by AODV during the 

first second of the simulation. 

The duration of the simulations varies from 1 to 100 seconds. One 

second of simulation generates about 8500 operations and 1 MB 

of trace. The operation file represents about 80% of the total 

output size. It is composed of 2.5% of AGT records, 12% of RTR 

records and 85.5% of MAC records on average. 

5.1 Extraction of the paths originating from a 

CBR source 
The first test simulates the request of a user who selects a 

CBR/RTP source in the interactive network representation and 

asks for the list of packet paths originating from this node. The 

horizontal paths returned by the exploration service are displayed 

in figure 11. The result shows that the routes are recomputed at 

time 24.7. 

 

Figure 11. Horizontal paths followed by node 0 

packets during the fifty first seconds of simulation. 
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The XQuery expression used in this example is detailed in figure 

12. The query is the same than the one of figure 5 except the two 

nested for loops. The outer loop processes the end-to-end context 

to extract the whole set of RTP headers generated by node 0. The 

inner loop retrieves the packet paths from the header IDs. 

 

Figure 12. Query returning the paths followed by node 4 data 

packets at the network level. 

The average response time of the nine CBR/RTP sources is 

graphed in figure 136. The maximum values are obtained for node 

0. The explanation is that node 0 runs two CBR applications (see 

figure 8) and thus generates twice as much packet paths. The 

minimum values correspond to the CBR sources that use the 

shortest paths. As we can see, the average response time for a 

100MB file size is 1 second. This is the time needed to extract 

1200 packet paths from the database. The query actually returns 

6800 records, each path being described by 5.7 records on 

average. 
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Figure 13. Average response time to extract the paths 

originating from a CBR source. 

5.2 Extraction of the paths flowing through 

an IP router 
The second test simulates the request of a user who selects a core 

node in the interactive network representation and asks for the list 

of flows forwarded by this node. An example of such request is 

represented in figure 14. 

                                                                 

6 The time needed to print the result is not considered. The time 

spent by MonetDB to shred the trace into main memory at first 

use is also ignored. 

 

Figure 14. Paths flowing through node 8. 

The query used in this example is presented in figure 15. The 

FLWOR is very similar to the query used to retrieve the flows 

originating from a node. The difference is that the outer loop has 

to process the IP context (instead of the end-2-end one) to retrieve 

the packets forwarded by the node. 

 

Figure 15. Query returning the paths flowing through node 8 

at the network level. 

The average response time of the nine nodes in the center of the 

network is represented in figure 16. The maximum (respectively 

minimum) values correspond to the nodes with the highest 

(respectively lowest) traffic loads. Processing 100 MB takes 1.5 

seconds on average. The result contains about 7400 operations 

which is the equivalent of 1200 packet paths.  
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Figure 16. Average response time to extract the paths 

forwarded by the core nodes. 
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5.3 Extraction of the paths competing for the 

same medium  
The last test simulates the request of a user who selects a node 

and asks for the list of flows competing for medium access at this 

node. Figure 17 shows an example of such request. It lists the set 

of flows competing for air access in node 8 vicinity. 

 

Figure 17. Paths competing for medium 

access in node 8 vicinity. 

Figure 18 presents the query corresponding to this request. As we 

can see, the query processes the MAC context to retrieve the data 

packets which have been received or dropped by node 8. The 

distinct-value() function filters the 802.11 frames retransmitted at 

the MAC layer. The condition on the position() function captures 

a fingerprint of the traffic at node 8 by keeping only one out of 

five MAC:D and MAC:r records.  

 

Figure 18. Query returning the paths competing for medium 

access in node 8 vicinity at the network level. 

The average response time of the query of the 9 network core 

nodes is graphed in figure 19. The max (respectively min) values 

correspond to the most (respectively least) stimulated nodes at the 

MAC level. The average response time to process a 100 MB file 

is about 3.5 seconds. 18300 operations (which are equivalent to 

3200 packet paths) are returned in this case. 
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Figure 19. Average response time to extract the paths 

competing for medium access at the network level. 

6. CONCLUSION 
This paper has presented a general network tracing framework 

called XAV. XAV enables the exploration of large simulation 

outputs while offering users a more intuitive and enjoyable 

experience. For that purpose, XAV defines a multidimensional 

model to represent the trace data and quickly identify the data 

paths in the network. XAV has been implemented in the NS-2 

simulator. Our solution offers high performance and flexibility 

levels. As future work, we plan to improve XAV IDs distribution 

algorithm and to adapt it to more complex encapsulation 

processes such as packet fragmentation. We will compare the 

performance with a SQL based solution using entity relation 

schemas instead of XML nested elements. A release of XAV will 

also be published in the framework of the Yavista project to serve 

as a basis for innovative development of real time applications in 

the network simulation area. 
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