End-to-end delays in polling tree networks

P. Beekhuizen
Philips Research
Eindhoven, The Netherlands

T.J.J. Denteneer
Philips Research
Eindhoven, The Netherlands

J.A.C. Resing
Eindhoven University of
Technology

and dee.denteneer@ Department of Mathematics
EURANDOM philips.com and Computer Science

Eindhoven University of Eindhoven, The Netherlands
Technology resing@win.tue.nl

beekhuizen@
eurandom.tue.nl

ABSTRACT

We consider a tree network of polling stations operating in
discrete-time. Packets arrive from external sources to the
network according to batch Bernoulli arrival processes. We
assume that all nodes have a service discipline that is HoL-
based. The class of Hol-based service disciplines contains
for instance the Bernoulli and limited service disciplines,
and hence also the classical exhaustive and 1-limited. We
obtain an exact expression for the overall mean end-to-end
delay, and an approximation for the mean end-to-end delay
of packets per source. The study is motivated by Networks
on Chips where multiple processors share a single memory.

Categories and Subject Descriptors
G.3 [Probability and Statistics|: Queueing Theory

General Terms

Theory, Performance

Keywords

Polling, Concentrating tree networks, HoL-based service dis-
ciplines, Networks on Chips

1. INTRODUCTION

In polling systems multiple queues share a single server,
which leads to all kinds of research topics in performance
analysis, optimisation, etc. Polling models have many ap-
plications, for example in telecommunications, transporta-
tion, healthcare, etc., and have been the subject of numerous
studies (for surveys, see [19,20,22]).

The main application that motivates this study is a Net-
work on Chip (NoC). Networks on Chips are an emerging
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paradigm for the connection of on-chip modules like pro-
cessors and memories. Such modules are traditionally con-
nected via single buses, but because these buses cannot be
used by multiple modules simultaneously, communication
difficulties arise as the number of modules increases. Net-
works on Chips have been proposed as a solution (see [9]).
In NoCs, routers are used to transmit packets to their desti-
nation, so that multiple links can be used at the same time
and communication becomes more efficient.

In particular, we are motivated by a NoC where multiple
masters (e.g., processors) share a single slave (e.g., memory).
Packets travel from the processors to the memory over a
number of routers. Each router has several queues sharing a
single link connecting that router to the next. Because the
link can be seen as a server attending multiple queues, the
router can be seen as a polling station, and the network of
routers thus as a network of polling stations.

Although polling systems have been studied extensively,
few attempts have been made to analyse networks of polling
servers; one of the rare examples is a heavy-traffic study [13].
Recently, the authors showed in [1] that a tree network
of polling systems can be reduced to a single node, while
preserving some information on the mean end-to-end delay.
This reduction will be discussed in more detail in Section 2.1.

The mean end-to-end delay per source is an important
measure for the performance of Networks on Chips. For
instance, if this delay is large, it means that processors have
to wait a long time before data can be written to or read
from the memory, which in turn degrades the performance
of the processors.

In this paper, we obtain an exact expression for the mean
end-to-end delay averaged over all sources and an approx-
imation of the mean end-to-end delay per source. The es-
sential steps in this approximation are on the one hand the
assumption that all streams passing through a certain queue
at a node have the same mean waiting time in that node,
and on the other hand application of the reduction result
of [1].

In the approximation, we express the mean end-to-end de-
lay per source in terms of the mean waiting time (per queue)
in single-station polling systems. Depending on the ser-
vice disciplines used, the mean waiting time in these single-
station polling systems can either be determined exactly or
has to be approximated.

The reduction result is valid for the class of HoL-based ser-



vice disciplines. This class contains for instance the Bernoulli
scheduling and m;-limited service disciplines. In this paper,
we are especially interested in polling stations with the 1-
limited service discipline, because that discipline will prove
valuable for Networks on Chips.

This paper is organised as follows: The model is intro-
duced in Section 2. In Section 3, we derive an exact expres-
sion for the mean end-to-end delay averaged over all sources,
and obtain the approximation of the mean end-to-end delay
per source. We perform a detailed simulation study on the
accuracy of the assumption that all streams passing through
a certain queue at a node have the same mean waiting time
in that node in Section 4. The availability of single-station
results is discussed in more detail in Section 5. For trees
with a symmetry property, our approximation assumption
becomes exact, as is discussed in Section 6. In Section 7 we
combine the mean end-to-end delay approximation of Sec-
tion 3 with a single-station approximation of Section 5 and
apply these to a tree network model of Networks on Chips.
We present our conclusions in Section 8.

2. MODEL

We consider a concentrating tree network operating in dis-
crete time. An example is displayed in Figure 1. All packets
and time slots have fixed size 1. Packets arrive from ex-
ternal sources at the end of time slots in batches according
to batch Bernoulli arrival processes. By this we mean that
the number of packets arriving is stochastically identical in
each time slot, and independent of what happened in pre-
vious time slots. Furthermore, we assume that all arrival
processes from the external sources are mutually indepen-
dent.

Figure 1: A polling tree network.

A packet arriving at a node at the end of time slot [t—1,¢),
i.e., at time ¢, may be served in time slot [t,t 4+ 1). In this
case it reaches the next node at time ¢ 4+ 1 where it may be
served in time slot [t + 1,¢ + 2), and so on.

All nodes in the network are polling nodes without switch-
over times. Node 0 is a node with N queues and is the last
node of the network (the sink). All packets in the network
must eventually pass through it and leave the network after
that.

The service disciplines of all nodes are work-conserving.
Besides that, they remain unspecified for the moment; we
will make an additional assumption on the service disciplines
in Section 2.1.
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We call a packet that passes through queue i of node 0 a
‘type i’ packet. There are N; external sources from which
type i packets arrive. We subdivide type i packets into
‘type i-j’ packets, j = 1,...,N;, such that the type de-
notes the source from which packets arrive (see Fig. 1). The
set, of type i packets is thus the union of the sets of type i_j
packets.

The size of the batches of type i_j packets arriving each
time slot is given by an arbitrary discrete non-negative ran-
dom variable, denoted by X; ;. We further define X; =
Z;V:ll Xi_j,and X =3 X;. Because all packets have size 1,
we denote the expected batch sizes by p;_;, pi, and p, respec-
tively. We assume p < 1 so all nodes are stable.

Every node n in the tree network is itself the last node
(the sink) in a smaller tree network consisting of all nodes
above n and n itself. We call the latter network the node n
subtree.

2.1 Reduction to a single node

In [1], it was shown that, under a relatively mild assump-
tion on the service discipline of node 0, an arbitrary tree
network can be reduced to a single-station polling system,
called the reduced system (see Fig. 2). This reduction leaves
the mean delay of type ¢ packets invariant; the mean end-
to-end delay of type i packets in the original system is equal
to the mean waiting time in queue ¢ of the reduced system.
Here, the end-to-end delay of a packet is defined as the sum
of its waiting times at the individual nodes.

The reduced system is a system with arrival processes that
are given by superpositions of the original arrival processes,
ie., it is a system with arrivals X; = Z]. Xi_;j to queue i,
i =1,...,N. The service discipline of the reduced system
is the same as that of node 0 in the original system.

Ny e

type ¢

Figure 2: The reduced system.

If we denote the end-to-end delay of type ¢ packets by Z;,
and the waiting time in queue i of the reduced system by
W/, we have:

E[Z.] = E[W]]. (2.1)

Equation (2.1) is valid if node 0 uses a so-called Head-of-
Line based (HoL-based) service discipline. For the precise
definition of HoL-based we refer to [1], but it entails that
the server decides which packet it is going to serve at time ¢
only based on whether queues are empty or non-empty at
times ¢t,t — 1,...,t — M for an arbitrary finite M. It may
not, for instance, take queue lengths into account. Service
disciplines such as longest/shortest queue first are thus not
HoL-based.

For the present paper it suffices to say that the class of
HoL-based service disciplines includes - but is not limited
to - the following two classes of service discplines:



e Bernoulli scheduling, i.e., after serving a packet at
queue i, the server serves queue ¢ (if it is non-empty)
again with probability p;, and moves to one of the
other non-empty queues with probability 1 — p;;

e m;-limited, i.e., the server serves queue 7 until it has
served m; packets, or the queue becomes empty, which-
ever happens first, before moving to one of the other
non-empty queues.

If the server decides to select one of the other non-empty
queues, it may do so according to some fixed order (e.g., a
cyclic order) or according to Markovian routing. The ex-
haustive service policy (i.e., serve queue 4 until it becomes
empty) is a special case of the Bernoulli scheduling, namely
pi = 1, and a limiting case of m;-limited, namely m; — oo.
The 1-limited service discipline is a special case of both,
namely p; =0 and m; = 1.

The reduction result described here only yields an expres-
sion for the mean end-to-end delay of type i packets (called
the mean type i end-to-end delay), while we are in particular
interested in the mean end-to-end delay of type i_j packets
(called the mean type i_j end-to-end delay). Even so, the
reduction result will prove vital for the analysis of the mean
type i_j end-to-end delay in Section 3. In order to apply the
reduction to all possible subtrees, we assume that all nodes
use HoL-based service disciplines.

REMARK 2.1. The latter assumption can be slightly weak-
ened. We apply the reduction result to all node n subtrees,
except for modes n where all queues store packets arriving
directly from the exterior. If one or more queues of node n
store packets coming from another node, the service disci-
pline of node n has to be HoL-based. If all queues store
packetls arriving directly from the exterior, the service disci-
pline can be an arbitrary work-conserving one.

3. ANALYSIS OF THE TREE

In this section we describe how the reduction result can be
applied to obtain expressions for the mean end-to-end delay.
First, we obtain an exact expression for the mean end-to-end
delay of packets of any type, called the mean overall end-
to-end delay. Second, we approximate the mean type i_j
end-to-end delay using the results for the mean overall end-
to-end delay.

3.1 Overall end-to-end delay
Recall from Section 2.1, Eq. (2.1), that

E[Zi] = E[W],

where E[Z;] is the mean type i end-to-end delay, and E[W/]
is the mean waiting time in queue i of the reduced sys-
tem, which is a polling system with arrivals X; to queue 1,
i =1,...,N. Because an arbitrary packet is of type i with
probability p;/p, it follows that E[Z], the mean overall end-
to-end delay, is given by

E[Z] = ; % Z % / (3.1)

The right hand side of (3.1) can be recognised as part of
the conservation law for polling systems [2,4,7]. This law
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states that for any work-conserving service discipline,

- pi N —
; ~EWI] =G, (3:2)

where C' is a constant. For unit packet sizes, C' is given
by [2, Eq. (14), divided by p]:

C=g a0 ZE[X(X*1)1+ZZPW]

i jFEL

= 7% + m Z Var(X;). (33)

By combining this with (3.1) and (3.2), and applying the
definition of X;, we obtain

1
- 2p(1— ZVar

2
—% ZZVar iij) (3.4)

as the mean overall end-to-end delay.

E[Z] =

2p(1 —

REMARK 3.1. Equation (3.4) gives the mean overall end-
to-end delay, regardless of the precise HoL-based service dis-
cipline. The work of Morrison [12] and Shalmon [16] entails
that Equation (3.4) holds without the assumption of HoL-
based service disciplines; any work-conserving service disci-
pline suffices. The assumption of HoL-based service disci-
plines will, however, become crucial in the next subsection.
Shalmon [16] also gives an expression for the mean overall
end-to-end delay in a concentrating tree network with Pois-
son arrivals, which is valid in discrete as well as continuous
time (Eq. (3.4) with Var(X;_;) = pi_j ).

3.2 End-to-end delay per type

In this subsection, we derive an approximation of the
mean type i_j end-to-end delay. Our main result is that we
express the type i_j end-to-end delay in the network in the
mean waiting time per queue of single-station polling sys-
tems. Although the latter is not always known exactly, we
assume that it can somehow be determined, either through
exact analysis or approximation. We will come back to this
issue in Section 5.

The first observation is that the type i_j end-to-end delay
consists of the sum of the waiting times of type i_j packets
at all nodes along their path from the source to node 0. In
other words, if we approximate the mean waiting time of
type i_j packets at an arbitrary node, an approximation of
the mean type i_j end-to-end delay automatically follows
by summing the mean waiting time approximations at the
individual nodes.

A second observation is the following: Consider Figure 3
and suppose for a moment that we want to determine the
mean waiting time of type i_j packets in node i. Everything
that happens outside the node ¢ subtree (marked by the
dashes) has no influence on the mean waiting time in node i,
so it suffices to consider only the node i subtree. Node i,
however, is itself the sink of the node ¢ subtree. In order to
approximate the mean waiting time of type i_j packets in
an arbitrary node, it hence suffices to determine the mean
waiting time in the last node of an arbitrary network.



Figure 3: The example network.

In the sequel, we approximate the mean waiting time of
type i_j packets in node 0, which leads to an approximation
of the mean type i_j end-to-end delay as described by the
two observations above. We denote the mean waiting time
of type i_j packets in node 0 by E[Wf_?].

It is not immediately clear, however, how E[W %] can be
determined: First, it is unclear which of the type i pack-
ets in node 0 are actually type i_j packets. The type i_j
packets are intermingled with packets of type i_j1, i_j2, etc.
Packets are stored in node 0 in an intricate unknown order
that is determined by the service disciplines of the nodes up-
stream. Second, IE[W;_Oj)] represents the mean waiting time
in a polling model where the arrivals are given by the output
of the node upstream.

The first difficulty is circumvented by the following ap-
proximation:

APPROXIMATION 3.2. At every node, the mean waiting
time of type i_j packets in that node is equated to the mean
waiting of all packets passing through the same queue in that
node.

The accuracy of this approximation will be studied numeri-
cally in Section 4.

Applying Approximation 3.2 to node 0 entails that we
approximate the mean waiting time at node 0 of type i_j
packets by the mean waiting time of type i packets, i.e.,

E[Wi(_(?} ~ ]E[Wi(O)]- (3.5)

The quantity E[W )], however, still represents the mean
waiting time in a polling model where arrivals are given by
the output of the node upstream.

We can now circumvent the second difficulty with the re-
duction result of Section 2.1: The mean waiting time of
type i packets at node 0, IE[W;O)]7 is equal to the mean type @
end-to-end delay in the entire tree, E[Z;], minus the mean
type i end-to-end delay in the node ¢ subtree, denoted by
E[Y;]. Using the reduction result (Equation (2.1)) we thus
obtain

E[W”] = E[W/] - E[Y4].

Because all packets in the node ¢ subtree are type ¢ pack-
ets, E[Y;] is the mean overall end-to-end delay in the node i
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subtree. It follows from the analysis of Section 3.1 (i.e.,
Equation (3.4) applied to the node 4 subtree) that

]E[)/z} = _% + m ZV@I(XZ‘,]'). (3.6)
In summary,
EW)] ~ EW,"] = EW]] ~ E[Y]] (3.7)

where E[Y;] is given by (3.6), and E[W;] is the mean wait-
ing time in queue i of the reduced system. The two key
steps in the derivation of (3.7) are Approximation 3.2 and
application of the reduction result.

REMARK 3.3. If type i_j packets arrive to node 0 directly,
there is of course no suitable subtree. In this case, we can

replace E[Y;] by 0, so that E[Wig.)] ~EW"] = EW/].

4. ACCURACY OF APPROXIMATION 3.2

In this section, we analyse the accuracy of Approxima-
tion 3.2 by means of a simulation study over a large param-
eter space.

We consider the smallest non-trivial polling tree network,
which consists of two nodes, node 0 and 1, both with two
queues (see Fig. 4). Queue 1 of node 0 stores packets arriving
from node 1 while queue 2 of node 0 stores packets arriving
from the exterior directly. There are three different types
of packets, namely type 1_1, type 1.2, and type 2_1. All
arrivals occur according to ordinary (non-batch) Bernoulli
arrival processes, i.e., each time slot an arrival of type i_j
takes place with probability p;_j. We introduce a unit sum
weight vector v = (v1_1,v1_2,2.1) such that p;_j = v;_jp for
a single load parameter p. We assume each node uses the
1-limited service discipline.

Without loss of generality, we assume v 1 < v1 2. We
cover all possible cases of v;_; with a stepsize of 0.05 between
consecutive values of v;_j. This leads to a total of 90 possible
cases (see Table 1). For each case, we run simulations for p
from 0.01 to 0.99.

We analyse the error made in the approximation of the
mean waiting time at node 0 (Eq. (3.5)), i.e., we analyse the
value of
_ B

= 1 j=1,2
0 b b b
E[W,)]

gj

where both E[Wf())] and E[Wﬁ)ﬂ)] are determined by simula-
tion.

Figure 4: The network of Section 4.



Table 1: The 90 cases considered.

Case | v1_1 Vi2 V2.1 Case | v1_1 Vi2 Vo_1
1 0.05 0.05 0.90 35 0.15 0.15 0.70
2 0.05 0.10 0.85 36 0.15 0.20 0.65

18 0.05 0.90 0.05 48 0.15 0.80 0.05
19 0.10 0.10 0.80 49 0.20 0.20 0.60

34 0.10 0.85 0.05 89 0.45 0.45 0.10
90 0.45 0.50 0.05

Figure 5 displays the average and extreme values of € over
all cases. It clearly shows that the average error is within a
few percent for all loads above 0.1. For loads close to 0, €; is
the ratio of two numbers close to zero, which leads to some
irrelevant variability in the graph. The results for p < 0.1
have therefore been omitted from the graph.

——maximum| —maximum
—average

— minimum

-0.05

-0.1 -0.1

-0.15 -0.15

i=1 i=2

Figure 5: Average and extreme values of ¢; over all
cases.

Apart from average and extreme values of €3, it is interest-
ing to see which cases typically induce large errors. Table 2
shows the five cases that most frequently have large errors;
clearly, cases with large errors are typically quite asymmet-
ric. Additional simulations have furthermore shown that
the error is typically largest if such an asymmetric case is
combined with a load of around 0.7, 0.8.

There are, however, even more asymmetric cases, which
are not in Table 2. Apparently, the error is again smaller for
very asymmetric cases. To study this effect in more detail,
we perform the following experiment: We fix p = 0.8 and
vo_1 = 0.1 (these settings generally lead to larger errors, so
that the effect of asymmetry is clearly visible). We vary v1_1
and v1_2 subject to the constraints that v1_1+v1 2 = 0.9 and
vi_1 < via.

Figure 6 shows the values of €, j = 1,2, in this exper-
iment. On the horizontal axis we have vi_o — vi_1, which
is a measure for how asymmetric node 1 is: The left side
corresponds to a symmetric system (v1_1 = v1_2), and the
right side corresponds to a completely asymmetric system
(1/1_2 —Vi_1 = 0.9, i.e., Vi_1 = O and Vi_2 = 09)

Table 2: Cases that frequently have larger errors.

Vi1 Vi2 V2.1 Vi1 Vi 2 Va2_1
0.15 0.80 0.05 0.25 0.65 0.10
0.15 0.75 0.10 0.25 0.70 0.05
0.20 0.70 0.10 0.30 0.60 0.10
0.20 0.75 0.05 0.30 0.65 0.05
0.25 0.70 0.05 0.35 0.60 0.05
Type 1.1 Type 1.2
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Figure 6: The influence of asymmetry.

Clearly, the absolute values of the errors increase if node 1
becomes more asymmetric, but only up to a certain point.
After this point, the absolute values of the errors decrease
again.

S. SINGLE STATION RESULTS

In Section 3, we expressed the mean type i_j end-to-end
delay in terms of the mean waiting time per queue in the
reduced system. In this section, we discuss the availability
of single-station results for the reduced system. Recall that
the reduced system has N queues where each time slot a
batch of size X; arrives to queue i. The service discipline of
the reduced system is the same as that of node 0.

There is a remarkable distinction between service disci-
plines that so far have defied exact analysis of the mean
waiting time in queue 4, E[W;] (except for special cases like
symmetric and 2-queue stations), such as 1-limited, and ser-
vice disciplines for which various methods exist to obtain
E[W/] exactly, such as exhaustive and gated service. With
gated service, each time the server visits a queue an imag-
inary gate is placed behind the last packet in the queue.
When all packets in front of that gate have been served, the
server starts serving the next queue, again with an imagi-
nary gate behind the last packet, and so on.

In [14], it is shown that service disciplines satisfying a well-
known ‘branching property’ can be exactly analysed. This
branching property states the following:

PROPERTY 5.1. If the server arrives to queue i and finds
ki packets there, then during the course of the server’s visit,
all of these k; packets are effectively replaced in an i.i.d.
manner by an N-dimensional random population.

For instance, with exhaustive service, all type i packets will
have been removed (i.e., replaced by 0 packets) once the
server moves to the next queue, whereas for j # i, as many
type j packets will be added to queue j as there are arriving
during one type ¢ busy period (i.e., every type i packet is
replaced by the packets arriving to the other queues during
a type i busy period). Likewise, with gated service, for all
j, including j = i, every type ¢ packet will be replaced by
the packets arriving during a type ¢ service. In contrast,
with the 1-limited service discipline one type i packet is
replaced by packets arriving during the type ¢ service, but
all other type i packets are left unchanged (i.e., replaced by
one type i packet). Hence, the 1-limited service discipline
does not satisfy the branching property.

For service disciplines satisfying the branching property,
it is shown in [14] that the number of packets in different



queues, embedded at time points where the server visits
queue 1, constitutes a multi-type branching process (MTBP)
with immigration. Furthermore, it is mentioned that the
class of MTBPs is one of the exceptional classes of multi-
dimensional Markov chains for which the equilibrium distri-
bution can be determined.

This at least partially explains why methods exist to ob-
tain mean queue lengths (and thus mean waiting times) for
exhaustive and gated service disciplines. Nevertheless, even
for these service disciplines, E[W]] is, apart from special
cases such as symmetric systems, not given explicitly but in
terms of a matrix inverse, infinite product, or a solution to
a set of equations.

We are in particular interested in HoL-based service dis-
ciplines for which E[W/] can be obtained exactly. Gated
service, however, is not HoL-based. With the gated service
discipline an imaginary gate is placed behind packets in the
queue, so the decision to serve a particular queue at time ¢
may depend on the queue lengths before ¢, which is not al-
lowed for HoL-based service disciplines.

Exhaustive service, on the other hand, is HoL-based. The
mean queue lengths in a polling station with exhaustive ser-
vice can be found in [15] and [18], where it is given in terms
of a solution to a system of equations. Although the expres-
sions given there are still implicit, E[W/] can be determined
numerically from them.

In the remainder of this section, we give explicit results
for symmetric stations, and we give an approximate result
for the 1-limited service discipline. The latter will be par-
ticularly important in Section 7.

5.1 Symmetric stations

In this subsection, we obtain exact results for symmetric
stations. Throughout this subsection, we assume all arrival

processes are stochastically identical: X 2 X for all j.

We first introduce the concept of symmetric service disci-
plines: We define a service discipline to be symmetric if it
satisfies the following three properties: First, if the server is
at a queue it serves a number of packets there according to a
fixed rule such as 1-limited, exhaustive, or Bernoulli service.
This rule is the same for all queues. Second, Markovian
routing is used, which means that after service of queue j,
the server moves to queue k # j with probability p;x. Third,
the routing matrix P = (p,x) is circulant, i.e.,

0 p2 pP3 ... DN
PN 0 P2 ... DN-1

p—=| Pv-1 PN 0 ... pNn—2 , (5.1)
P2 pP3 P4 ... 0

or can be written in circulant form after a permutation of the
queues. Note that cyclic routing has a circulant P-matrix
with p2 = 1.

Suppose that the reduced system uses a service discipline
with a circulant P-matrix. Then all rows of P are identical,

apart from being shifted. Because, in addition, X 4 X4
for all j, there is no difference between the various queues,
i.e., the mean waiting times per queue are invariant under
permutation of the queues. Similarly, if the P-matrix is not
circulant but can be written in circulant form, it can also be
argued that the mean waiting times per queue are invariant
under permutation of the queues.
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Because the mean waiting times per queue are invariant
under permutation, we have E[W;] = E[W{] for all i. It thus
follows from the conservation law (3.2) that E[W/] is exactly
given by

1 1
EW/|=C=—2+ ———
Wil 2 -y
for all 4, regardless of the precise service discipline, as long
as it is symmetric.

5.2 1-limited

We give the approximation proposed by Boxma and Meis-
ter [6] for 1-limited polling systems. Although their analysis
is aimed at continuous-time systems, it can easily be estab-
lished that the key steps in their derivation are valid for
discrete-time systems as well.

The Boxma-Meister approximation states that

NVar(X1),

1—p+pi
L=p+ 53,0
where C is again the constant of the conservation law (3.3).
The Boxma-Meister approximation has the two following
properties: (i) It is exact for symmetric systems, and (ii)
its numerical accuracy degrades for heavily loaded and very
asymmetric systems.

In particular, if the 1-limited service discipline is used,
all queues receive a positive fraction of the capacity of the
server, even if the load is larger than 1. As a result, some
queues remain stable even though others become unstable
(see e.g., [8,11]). The Boxma-Meister approximation does
not deal with this well; if p tends to 1, C tends to infinity
so the approximations of all queues become unbounded.

As a refinement to their approximation, Boxma and Meis-
ter suggest in [5] that for heavily loaded, very asymmetric
systems, a group of heavily loaded queues can be replaced
by a suitable switch-over time. Although this generally in-
creases the accuracy of the approximation for such cases,
we will see in Section 7.2 that the approximation presented
here is accurate for loads up to 0.7, even in quite asymmetric
systems.

Many other approximations have been suggested (for in-
stance, Blanc [3], Groenendijk and Levy [10], Srinivasan [17],
and Van Vuuren and Winands [21]), that might perform bet-
ter in some cases. However, they generally lack an accessible
closed-form expression like that of the Boxma-Meister ap-
proximation. Furthermore, transferring their derivations to
discrete-time models often involves subtleties. In this paper,
we therefore restrict our attention to the Boxma-Meister ap-
proximation.

6. SYMMETRIC TREES

Approximation 3.2 states that all packets passing through
the same queue at a node are assumed to have the same
mean waiting time at that node. In this section, we intro-
duce a class of trees for which Approximation 3.2 is in fact
not an approximation but an exact statement.

We say that a polling tree is symmetric if it satisfies all of
the following five properties:

1. All external arrival processes are stochastically identi-
cal.

2. All external arrivals occur at the same level. Here, the
level of a node is defined as the distance to the sink.



3. All nodes within a particular level have the same num-
ber of queues.

4. All nodes within a particular level use the same service
discipline.

5. All nodes use a symmetric service discipline.

Now consider an arbitrary polling tree network, let node 4
be the node directly above queue ¢ of node 0, and suppose
that the node ¢ subtree is symmetric. An example of such a
tree is displayed in Figure 7.

Given that the entire node ¢ subtree is symmetric, it fol-
lows that there is no distinction between the type i_j pack-
ets, 7 = 1,..., N;. In particular, the mean waiting time of
type i-j packets at node 0 is invariant under permutation
of j:

(0)y _ (0)
W) = Ew).

Approximation 3.2 is thus an exact statement rather than
an approximation for node 0. Because all subtrees within
the node ¢ subtree are again symmetric, Approximation 3.2
is exact for all nodes in the node ¢ subtree.

Moreover, the mean end-to-end delay of type i_j packets
is invariant under permutation of j. We thus obtain:

E(Z;i_j] = E[Zi] = E[W]],

where Z;_; is the end-to-end delay of type i_j packets, and
W/ is the waiting time in queue i of the reduced system.
If, furthermore, exact results are available for the reduced
system (for instance if it is a symmetric node or if it uses
exhaustive service), the mean type i_j end-to-end delay can
be obtained exactly.

type i—j

\.J \ 4/

Level 1

Queue i 2

Figure 7: A tree with a symmetric node i subtree

Note that there is no condition on nodes outside the node @
subtree; all conditions apply to the node ¢ subtree, and all
other nodes (including node 0) are arbitrary.

7. NETWORKS ON CHIPS

In this section, we study a network model based on a
Network on Chip. In Section 7.1, we describe the network
in more detail and combine the approximations of Section 3
and Section 5 to approximate the mean type i_j end-to-
end delay. In Section 7.2 we analyse the accuracy of the
combination of these approximations numerically.
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7.1 Description

We study a model of a Network on Chip with multiple
routers (nodes), as depicted in Figure 8. All traffic has the
same destination, motivated by Networks on Chips with a
single memory.

The routers in this network are organised in a mesh topol-
ogy; all routers have four queues and are placed on a lattice
(2 x 2 in this case) with connections in four directions (up,
down, right, left) if possible. The routing mechanism of this
network is XY-routing, which means that packets first tra-
verse the X-direction, as far as they have to go, and then
move in the Y-direction to their destination. This entails
there is in fact a link between node 3 and node 1, but it
is never used because all traffic is headed to node 0. It is
thus the particular routing strategy that ensures the mesh
topology is a tree network corresponding to the setting of
this paper.

P2_3 P22
p2_a —> f [€— p21
Node 3 Nd. 2
P11 —> [€—— p3_1
Nd. 1 Nd. 0

P12
Figure 8: A NoC with 4 routers and 7 input streams

Routers in NoCs often employ wormhole routing, which
has two implications: First, once the first packet of a batch
starts transmission at a certain node, the entire batch has to
complete transmission before another batch may start trans-
mission. The second implication of wormhole routing is that
if a batch consisting of multiple packets is being transmit-
ted, one packet of the batch is transmitted to the next router
each time slot. These packets might start transmission at
the next router immediately (for instance if that router is
empty). Multiple packets of a single batch might thus be
spread out over several nodes. As a result, a batch of size K
that never has to wait completes transmission over L nodes
in L+ K — 1 time slots, rather than LK in networks without
wormbhole routing.

Inside routers batches are served according to round-robin
scheduling, which means a batch is served from queue 1,
then queue 2, etc. We assume batches have fixed size K, so
that wormhole routing is mimicked by the cyclic K-limited
service discipline.

We furthermore assume a batch of size K arrives each
time slot with probability A;_j;, so

R 0 W.p. 1-— Ai7j7
Xig _{ K w.p. Aij,

and

Var(Xi_j) = K2\i_j(1 = Ai_j).



Because p;_; = E[X;_;], it follows that A\, ; = p;_j/K.

We define the waiting time (and end-to-end delay) of a
batch to be the waiting time (end-to-end delay) of the first
packet in that batch (the header). In the remainder, we use
an additional subscript h to indicate headers.

We now approximate the mean waiting time of a type i_j
header in node 0, denoted by IE[WZ(_OJ) »)- As in Section 3, we
do so by reducing the network to a single node, called the
reduced system.

The reduced system, like node 0, uses K-limited service.
Because the batch sizes are fixed and equal to K, the mean
waiting time of a header in the reduced system is equal to
the mean waiting time of a packet in a 1-limited system
with deterministic service times equal to K and ordinary
(non-batch) Bernoulli arrival processes with parameter \;_j.

By applying the Boxma-Meister approximation to the lat-

ter system, we obtain

1—p+pi
——— Ck, (7.1)
L=p+3350;

as an approximation of the mean waiting time of headers in
queue ¢ of the reduced system. Here, C'x is the constant of
the conservation law in a system with non-batch Bernoulli
arrivals with parameter \;_; and fixed service times equal
to K. From [2, Eq. (14), divided by p], we get after some
rewriting:

Cx = ﬁ <K - ZXJ: (%)2) . (7.2)

Suppose now that ¢ = 3 (the case ¢ = 1, 2 is slightly differ-
ent and will be dealt with later). Type 3_1 packets arrive to
node 0 directly from the exterior, so the mean waiting time
of a header is equal to that of an arbitrary packet minus
(K —1)/2. The mean waiting time of a header in node 0
(and hence its mean end-to-end delay) is thus given by

K-1 K-1
S = EW] - —— = EW3,l,

where E[Wj3 ;] is given by (7.1).

Suppose now that ¢ = 1,2. Due to the wormhole routing,
the header always arrives at node 0 one time slot earlier than
the second packet, and it always leaves one time slot earlier.
The mean waiting time of a header is thus equal to the mean
waiting time of an arbitrary packet, E[Wg)h] = IE[WI(I)])]
We obtain (cf. Eq. (3.7)) ’

0 0 0
EW),] = EW )] ~ EW "] = E[W]] - E[vi],

E[Wi/,h] ~

EW.") ] = EIWi)] -

where E[Y;] is given by (3.6). The quantity E[WW]] is the
mean waiting time of an arbitrary packet in the reduced
system, which is equal to the mean waiting time of a header
plus (K —1)/2, so
K-1
E[W;] = E[W/ ] + —
with E[W; ,,] as in (7.1).
As in Section 3, the mean waiting times in the other nodes
can be obtained similarly, resulting in an approximation of
the mean end-to-end delay of type i_j batches.

7.2 Numerical results

In this subsection we study the performance of the mean
end-to-end delay approximation for the following two cases:
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Balanced load division and homogeneous load division. We
again assume there is a unit sum weight vector v describ-
ing the division of the total load p over the various input
streams, i.e., pi_j = v;i_jp.

Case I: Balanced load division

By balanced load division we mean that the loads are
divided in such a way that at each node all queues receive
the same load. That is, we assume vs 1 = 1/3, v1.1 =
Vi_2 = 1/67 V2 1 = V2 2 = 1/9, and Vo 3 = V2 4 = 1/18.
Because the corresponding arrival rates are equal, the mean
type 1.1 end-to-end delay is equal to the mean type 1.2
end-to-end delay. Figure 9 shows mean type 1_i end-to-end
delay, i = 1,2, and Figure 10 the mean type 3_1 end-to-end
delay. The approximations of these types are the most and
least accurate, respectively, of all approximations.

60 T
=] |
50 Approx |
40 | 4
30 T
[

20 /

M"‘M/
00 0.2 0.4 0.6 0.8 1
14
Figure 9: The mean type 1 1 and 1 2 end-to-end
delay.
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Figure 10: The mean type 3_1 end-to-end delay.

It is clear that the approximation of the mean end-to-end
delay is very accurate in this case. This is not very surpris-
ing, as all nodes are almost symmetric. For instance, if we
apply the reduction result, we obtain a polling system with
three queues, each with load p/3. One of these queues has
an arrival process that is the superposition of four arrival
processes (namely > j X5_;), one arrival process is a super-
position of two (3°; X1_;), and one is not a superposition
(or a superposition of one). In other words, the loads to all
queues are identical, but the arrival processes are superpo-
sitions of different Bernoulli arrival processes.

Other than this difference, the system is symmetric, in
which case the Boxma-Meister approximation is exact. It is
indeed unlikely that such a small asymmetry leads to large
errors. Furthermore, we already saw in Section 4 that Ap-
proximation 3.2 is very accurate if the individual nodes are
nearly symmetric.



Case II: Homogeneous load division

With the homogeneous load division, all input streams
receive a fraction 1/7 of the total load, ie., vi; = 1/7.
Again, we show the most accurate approximation (Fig. 11,
type 21 and 2_2), and the least accurate approximation
(Fig. 12, type 3_1).
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Figure 11: The mean type 2.1 and 2 2 end-to-end
delay.
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Figure 12: The mean type 3.1 end-to-end delay.

We see that up to a load of roughly 0.7, the approxima-
tions are very accurate. Beyond this load, the approxima-
tion is only accurate for the input stream with the highest
load. This can be explained by the fact that node 0 is rather
asymmetric. After all, one queue receives a fraction of 4/7 of
the total load, while the other queues get fractions 2/7 and
1/7 respectively. In Section 5 we already mentioned that
for asymmetric systems, the Boxma-Meister approximation
tends to infinity if p tends to 1, even though some queues
are still stable. We see this phenomenon too in Figure 12:
The mean end-to-end delay approximation is unbounded,
whereas the simulated mean delay is still bounded if the
load is 1. Other single-station approximations than that
of Boxma and Meister might lead to more accurate results
here.

8. CONCLUSION

Under the assumption that all nodes use HoL-based ser-
vice disciplines, we have derived an exact expression for
the mean overall end-to-end delay and an approximation
for the mean type i_j end-to-end delay. The key steps in
this approximation were: Equating the mean waiting time
of type i_j packets in a node to that of all packets passing
through the same queue at that node (Approx. 3.2), and
application of the reduction result of [1]. These two steps
combined result in an expression for the mean type i_j end-
to-end delay in terms of the mean waiting time per queue in
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single-station polling systems.

For the 1-limited service discipline, Approximation 3.2 is
very accurate over the entire parameter space of the smallest
non-trivial tree. It is especially accurate for nearly symmet-
ric systems and extremely asymmetric systems, and some-
what less accurate for moderately asymmetric systems.

In the special case that the subtree directly above queue ¢
is symmetric, Approximation 3.2 becomes an exact state-
ment rather than an approximation. If, in addition, exact
results are available for the reduced system, the mean end-
to-end delay per source can be determined exactly.

We applied the approximation for the mean end-to-end
delay per type to a model based on a Network on Chip us-
ing the Boxma-Meister approximation [6] to obtain the nec-
essary single-station results. Although the Boxma-Meister
approximation is less accurate for asymmetric systems, we
could still accurately approximate the mean type i_j end-
to-end delay up to moderately high loads (around 0.7) in an
asymmetric case study.

Other single-station approximations than that of Boxma
and Meister are known, but they are often less accessible and
transferring such approximations to discrete-time models
usually involves subtleties. Depending on the precise charac-
teristics of the tree (e.g., nearly symmetric, very asymmetric,
etc.) these other approximations may lead to more accurate
results. If the mean end-to-end delay approximation is ap-
plied to specific trees, one has to choose which single-station
approximation to use based on the characteristics of the tree
in order to obtain the most accurate results.
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