
Simulation of Hierarchical Real-time Task Scheduling
Algorithms Using DGridSim

(Poster Abstract)

Mustafa Müjdat Atanak
Anadolu University

Department of Electrical and
Electronics Engineering
26470 Eskisehir, Turkey

mmatanak@anadolu.edu.tr

Safai Tandoğan
Anadolu University

Computer Research and Application
Center

26470 Eskisehir, Turkey

 standogan@anadolu.edu.tr

Atakan Doğan
Anadolu University

Department of Electrical and
Electronics Engineering
26470 Eskisehir, Turkey

atdogan@anadolu.edu.tr

ABSTRACT
Real-time Data Grid applications are emerging in many

disciplines of science and engineering. In order to run these

applications while meeting the real-time constraints associated

with them, the Data Grid infrastructure should be designed to

respect these constraints and allocate its computing, networking,

storage, and the other resources accordingly. In this study, a

process oriented and discrete-event driven all-in-one Data Grid

simulator (DGridSim) supporting real-time operation through

advance reservation mechanism is used to test the real time

performance of a task scheduling algorithm.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems

– measurement techniques, modeling techniques

General Terms

Performance

Keywords

Data Grid system, real-time, task scheduling

1. INTRODUCTION
Grid systems provide researchers of various fields with the

required hardware and software infrastructure of high

performance computation, data storage, and communication

resources for running their applications. A central component of

all Grid systems is the resource management system, which

defines the scheduler organization as well as the scheduling

policy among the other functionalities [1], [2].

As far as the scheduler organization of the Grid is concerned,

there are three different implementations: centralized, hierarchical

and distributed. In this study, the hierarchical scheduler

organization is assumed to respect to the typical organization of

Grid systems where the sites comprising the Grid have their own

local resource management systems and there exists a set of global

services on top of the local services serving for all Grid users. The

scheduling policy administers how all related resources for

running user tasks are allocated in order to optimize some

performance metric(s). It is a well-known fact that the scheduling

policy plays a crucial role in the performance of Grid systems.

Evaluating the performance of various scheduling policies

requires repeatable and controlled experiments to be performed on

Grid environments. This is a difficult task to achieve on real Grid

systems because of their heterogeneous and dynamic nature. As a

result, there are several simulators written for Grid simulation in

the literature [3].

This work presents the results of the analysis of the performance

of a task scheduling algorithm. All the tests are performed with

DGridSim, a real-time Grid simulator with support of advance

reservation for all Grid resources.

2. DGRIDSIM
DGridSim is written in C++ programming language using

CSIM20 (for C++) discrete event simulator library [4]. DGridSim

makes it possible to test different job distribution, data replication

and data distribution algorithms under large number of data

requests and jobs with real-time requirements. Much of the effort

is spent on implementing the simulated Data Grid network as

close to the real life counterpart as possible, while keeping the

simulator execution time as small as possible.

DGridSim supports the advance reservation of the computing

bandwidths of the compute nodes, storage spaces of the storage

elements and bandwidths of the links on the Grid system. Note

that the advance reservation of all related resources is required to

promise the completion of tasks before their deadlines.

DGridSim models the Grid system by a collection of sites

interconnected by an internet. Every site runs a collection of

services related to that site. One of the sites serves as the Global

Management Site (GMS) and runs the collection of services that

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8676
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8676

are global to the Grid system. Each site holds a number of

computing elements to run the jobs submitted by the scheduler

and storage elements to store the related data items. In this model,

a site can serve as a network attached hard disk (just set the

number of compute nodes to be zero) or a purely computational

site (just set the number of storage elements to be zero) or a

cluster of computing elements connected to a single storage

element. In DGridSim, all the transfers are viewed as flows and all

the bandwidths on the route are assumed to be reserved

beforehand for the duration of the transfer.

3. WORKING PRINCIPLES

3.1 Grid Scheduling
Upon receiving a new job, Grid Scheduling Service (GSS) fetches

the replica locations from Replica Location Service and the

reservation tables from Reservation Service. Then, GSS calls for a

scheduling algorithm that tries to find out a site for running the

job. Once the submission site is determined, GSS sends the job to

Job Dispatch Manager and removes it from the queue. It is up to

Job Dispatch Manager to forward the job to the related Site Job

Submission Service. It is also possible that the scheduling

algorithm cannot find a site on which the job’s deadline will be

met. In such a case, the job stays in the queue for further

scheduling trials until its deadline is passed. After that, job is

considered as failed and it is removed from the queue.

3.2 Site Scheduling
Once Site Job Submission Service receives the job, it places the

job in a queue and informs Site Scheduling Service (SSS) that

implements either an online or offline scheduling algorithm. It is

up to SSS to locate available resources for running the job.

Scheduling Service first fetches the computing element

reservation tables from Reservation Service and tries to find a

computing element to run the job before its deadline. If an

available computing element can be found, a data request

composed of the job’s deadline and the related Logical File

Names (LFNs) are passed to Replica Manager. Replica Manager

puts the request into a queue and triggers Replica Management

Service. Replica Management Service calls for Replica Location

Service to find the possible source locations for all LFNs. The list

of possible sources is sent back to Replica Management Service.

Replica Optimization Service (ROS) is called with this list.

Replica Optimization Service calculates the minimum required

bandwidth, (request data size) / (deadline – current time) and gets

the topology containing all the available links satisfying this

minimum bandwidth for the reservation interval, [(current time),

(deadline)] from Grid Information Service. Using this

information, it tries to find an optimal source and optimal path for

each transfer request. Replica Management Service calls

Reservation Service to reserve source/destination storage elements

and the links between them for the specified interval provided that

ROS has found a deadline-satisfying path for every transfer

request related to the job.

File Transfer Service handles the file transfers using these

advance-reserved resources. If overall scheduling is successful,

SSS sends the job to Job Invoke Manager and removes it from the

queue. If the scheduling fails at any time during the process, the

job stays in the queue for further scheduling trials. SSS removes

the job if its deadline is passed. Once Job Invoke Manager

receives the job, it holds for the duration between the start time of

the job and the current time. It then sends the job to the

computing element where it is executed until the completion.

4. RESULTS
Using the simulator developed, a set of simulation studies were

conducted to verify that the simulator is operating as expected.

These tests evaluate the distribution of real-time jobs to

computing elements. In each run of the simulation, a Data Grid

system is randomly generated by changing the network topology

and site resources. Furthermore, a user submits jobs with a

random frequency, each of which may require a random number

of data items chosen from a data item set.

The base tests are conducted with a Grid system of 10 sites. The

read/write bandwidths of the storage elements are assumed to be

between 1 Gb/s and 3 Gb/s; the internet links have bandwidths

between 500 Mb/s and 1.5 Gb/s. One hundred data items are

placed on one of the storage elements. Data item sizes are

between 0.5 GB and 0.75 GB. The user submits 500 jobs, each

having an average deadline value of 40.0 seconds from the time

they are submitted. The size of the jobs is measured in millions of

instructions. In the base tests, the average size of the jobs is

assumed to be one million of instructions. On the average, one job

is submitted to the Grid system every second. The results of the

simulation studies are presented in Table 1. Each data shown is

the average of 10 simulation runs of the percentage of the real-

time job requests that are successfully completed before the

deadline. This percentage will be referred as the success rate (SR).

The success rate in the base test is 65%.

Table 1. The results of the first set of tests.

Job

Size
SR (%) Deadline SR (%) No Jobs SR (%)

3 65 20 65 1000 32

50 61 10 61 250 92

100 47 5 43 100 93

5. ACKNOWLEDGEMENTS
This work is supported by The Scientific and Technological

Research Council of Turkey (TUBITAK) under contract number

108E232.

6. REFERENCES
[1] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C.,

Martin, S., Smith, W., and Tuecke, S. 1998. A resource

management architecture for metacomputing systems. Lecture

Notes in Computer Science 1459.

[2] Krauter, K., Buyya, R., and Maheswaran, M. 2002. A

taxonomy and survey of grid resource management systems

for distributed computing. Software—Practice & Experience

32, 2) 135-164.

[3] Quetier, B. and Cappello, F. 2005. A survey of grid research

tools: simulators, emulators and real life platforms. 17th

IMACS World Congress (IMACS 2005).

[4] User’s Guide: CSIM20 Simulation Engine (C++ Version),

http://www.mesquite.com.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8676
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8676

