
Enhancement of the TCP Module

in the OMNeT++/INET Framework

Thomas Reschka, Thomas Dreibholz, Jobin Pulinthanath, Martin Becke, Erwin Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29, 45326 Essen, Germany
t.reschka@gmx.de, {dreibh, jp, martin.becke, rathgeb}@iem.uni-due.de

Abstract

The INET framework for the simulation tool OM-
NeT++ provides a TCP module, which can be used
for evaluating various Internet applications. However,
the implementation of this TCP module has not been
state of the art. Some important features of modern TCP
implementations – particularly Selective Acknowledge-
ments (SACK) and a complete Flow Control – have been
missing. In this paper, we first introduce basic TCP mech-
anisms. After that, we introduce the extensions we have
made to the TCP module of INET. Finally, we show some
results of our performance evaluation.12

Keywords: OMNeT++, INET Framework,
TCP, Selective Acknowledgement, Flow Control

1. Introduction

The Internet is the largest computer network in the
world. Most of the Internet traffic is handled by the In-
ternet Protocol (IP) and the Transmission Control Pro-
tocol (TCP). The evolution of TCP is still ongoing and
there exist a variety of different TCP algorithm vari-
ants. A suitable way to test communication protocols
in a deterministic manner is by using a simulation en-
vironment. The Open Source tool OMNeT++ [16] is
an appropriate candidate, which is popular for aca-
demic projects. The INET framework [17] for OM-
NeT++ includes IP-based simulations models e.g. IP,
UDP, TCP, SCTP etc.. The focus of this paper is on
the TCP module of INET. TCP options were not sup-
ported and important parts of the Flow Control were

1 Parts of this work have been funded by the German Research
Foundation (Deutsche Forschungsgemeinschaft).

2 The authors would like to thank Andras Varga and Rudolf
Hornig for their review of the modified source code and the in-
tegration of our enhancements into the INET framework.

also missing. Our main goal has been the implementa-
tion and evaluation of the TCP Selective Acknowledge-
ment (SACK) option. The SACK option is part of com-
mon TCP implementations and is – according to [6] –
a “recommend enhancement” for TCP. The TCP mod-
ule had also used an infinite receive buffer and the data
receiver had never changed its offered receiver window
size. Since Flow Control is an essential TCP mecha-
nism and may influence the performance of the SACK
algorithm, the completion of TCP’s Flow Control im-
plementation has been our secondary task.

2. The TCP Protocol

TCP, which has originally been specified in
RFC 793 [11], is a reliable, connection-oriented trans-
port protocol. Messages handled by TCP are called
segments. All segments contain a TCP header and pos-
sibly user data. The header may be extended by op-
tions, causing an enlarged header and a reduced seg-
ment length. To activate options (e.g. SACK), both
endpoints need to permit the requested option(s) dur-
ing connection setup. In the literature the TCP Reno
implementation is considered to be the standard TCP
implementation. Therefore new TCP variants are of-
ten compared to Reno, e.g. in [7].

2.1. Selective Acknowledgement

When multiple segments are dropped, the original
cumulative acknowledgement scheme of TCP may re-
sult in reduced connection throughput. [9] specifies the
SACK option to solve this problem. An example which
is depicted in figure 1 illustrates the SACK generation
by the data receiver.

We assume that the data receiver has already re-
ceived five segments of 1000 bytes each and has sent
an acknowledgement (ACK) with the cumulative ac-
knowledgement field set to 5000. The data sender sends

mailto:t.reschka@gmx.de
mailto:dreibh@iem.uni-due.de
mailto:jp@iem.uni-due.de
mailto:martin.becke@uni-due.de
mailto:rathgeb@iem.uni-due.de


data sender data receiver

time

ACK 6000

data [5000..6000)

DUPACK 6000
SACK [7000..8000)

loss
data [6000..7000)

data [7000..8000)

Figure 1. SACK Generation Example

a new data segment containing the sequence numbers
[5000..6000). After receiving the ACK for this segment
the sender transmits two new data segments. The first
segment is lost while the second segment reaches the re-
ceiver. Non-contiguous blocks of data that have been
received and queued by the data receiver may be selec-
tively acknowledged by a SACK option. The receiver
uses SACK blocks (sequence number boundaries of the
received, non-contiguous blocks of data) for selective
acknowledgements. Upon reception of the out-of-order
segment [7000..8000), the cumulative acknowledgement
field remains at 6000. The receiver sends a duplicate
acknowledgement (DUPACK) and informs the sender
about the successfully received segment [7000..8000)
by using a selective acknowledgement (SACK) option.
On arrival of the SACK information, the data sender
should mark any affected segments in its retransmis-
sion queue by setting a SACKed flag. The data sender
should skip SACKed segments during any later retrans-
mission. A SACK option that specifies n SACK blocks
has a length of 8 ∗ n + 2 bytes. Options in the TCP
header are limited to 40 bytes, which results in a max-
imum of 4 SACK blocks when using no other op-
tions. The SACK-based loss recovery algorithm, which
is specified in [3], is a conservative replacement for
the loss recovery algorithm from [2]. It is using stored
SACK information to calculate an estimate of out-
standing data segments in the network. This SACK-
based estimate is used during loss recovery to limit
the sending rate. [3] explicitly allows to combine the
SACK-based loss recovery algorithm with the Limited
Transmit algorithm, which is defined in [1]. The Lim-
ited Transmit algorithm allows a sender to send a new
segment, on arrival of the first or second duplicate ac-
knowledgement, if certain requirements are satisfied.
Limited Transmit may be used with or without SACK.

2.2. Flow Control

The Flow Control algorithm is used by a data re-
ceiver to inform the data sender about the current
amount of additional data he is willing to accept. De-
pending on its receive buffer status, the data receiver is
advertising its maximum number of bytes to receive in
the Window field of the TCP header (see [11]). The of-
fered Window is a receiver-side limitation for the data
sender. If the Window size is very small (below the
Maximum Segment Size), this could reduce the effi-
ciency of the transmission. This problem is denoted as
the “Silly Window Syndrome”; it is caused by the data
receiver when it is advancing the right Window edge
whenever any new buffer space is available and by the
data sender when it is using any incremental Window,
no matter how small, to send more data (see [4]). In
order to avoid the Silly Window Syndrome, a receiver
should not advertise a Window size below the Maxi-
mum Segment Size – except zero. If a Zero Window is
advertised, no more data segments should be sent un-
til the receiver opens the Window for new data. When
a data sender is receiving a Zero Window and no Re-
transmission Timer is running, it should start its Per-
sist Timer. On Persist Timer expiry, the data sender
should send a 1 byte data segment (termed Window
Probe) to ask the data receiver for a Window Update.

3. The Simulation Model

3.1. OMNeT++ and the INET-
Framework

OMNeT++ [16] is a discrete event simulation en-
vironment with a modular, component-based architec-
ture. The INET framework [17] extends OMNeT++
with protocol implementations of e.g. IP, UDP, TCP,
SCTP and several application models. According to the
documentation of the INET framework [15], the TCP
implementation supports the following specifications:

• RFC 793 [11] (fundamental TCP specification)

• RFC 1122 [4] (updates RFC 793 and gives formal
rules for implementation)

• RFC 2001 [12] (congestion control algorithms)

The TCP model can be configured by several mod-
ule parameters. One of these parameters is the
tcpAlgorithmClass. It is used to choose between the
available TCP algorithms, e.g. TCP Reno. The cur-
rent TCP implementation is not state of the art.
The TCP header was predefined to a fixed length of
20 bytes and options were not supported. We found



further limitations of the TCP model; the follow-
ing Flow Control related parts were missing:

• A finite receive buffer size was not modelled.

• The data receiver was always offering the maxi-
mum receiver Window size.

• The data receiver was not able to send a Zero Win-
dow.

• The Persist Timer was missing.

• A function to send a Window Probe was imple-
mented but has never been invoked.

3.2. The INET TCP Module

The following subsections will give a short overview
of the main enhancements we have realized in the
TCP module of the INET framework.

3.2.1. Header Extension We have changed parts of
the TCP segment format, based on RFC 793 [11] to al-
low the use of TCP options. When options are used in
a segment, the header and byte length are increased
appropriately, respecting the maximum allowed size of
40 bytes. The following TCP options have been imple-
mented:

• End of Option List (indicates the end of the op-
tion list)

• No Operation (used as padding byte to align op-
tion fields on 32-bit boundaries)

• Maximum Segment Size (used during connec-
tion setup to communicate the Maximum Seg-
ment Size)

• SACK Permitted (used during connection setup to
activate SACK)

• SACK (used to convey SACK information)

The TCP model contains a module parameter termed
mss (Maximum Segment Size). With the extended
header, the value selected for mss can be negotiated by
the Maximum Segment Size option, as defined in [11].

3.2.2. SACK Option We have added the new
module parameter sackSupport to enabled or dis-
able SACK support. Only if both nodes send a
SACK Permitted option during connection setup,
SACK will be enabled for the current connec-
tion. If an out-of-order data segment arrives when
SACK is enabled, the receiver adds a SACK op-
tion (implying corresponding SACK blocks) into its
answer. A new data structure called TCPSACK-
RexmitQueue is used to represent the retransmission

queue for each TCP connection. When a data seg-
ment is sent and SACK is enabled, the appropriate
region (a segment represented by sequence num-
ber boundaries) is stored in the retransmission queue.
All regions own a SACKed flag which is set when re-
ceiving appropriate SACK information from the
receiver. SACKed regions will be skipped on later re-
transmissions. The basic SACK implementation –
based on the RFCs [9] and [8] – is located in the main
TCP algorithm. This means that all existing TCP al-
gorithm classes may be used with SACK. We have in-
tegrated the SACK-based loss recovery algorithm
– specified in the RFC [3] – into TCP Reno, be-
cause TCP Reno is the only TCP algorithm class that
contains the loss recovery algorithm from [2]. The Lim-
ited Transmit algorithm, specified in [1] and explic-
itly allowed by [3], has also been implemented. It may
be enabled or disabled by using the new module pa-
rameter limitedTransmitEnabled.

3.2.3. Flow Control Enhancements The first step
to improve the Flow Control mechanism has been to
add a finite receive buffer. The maximum size of this
buffer is initiated by the already existing module pa-
rameter advertisedWindow. Before sending any seg-
ment, the current receiver Window is calculated. The
function to update the receiver Window is based on [13,
page 878–879]. When the Window size is below the
Maximum Segment Size, a Zero Window is sent to
avoid the Silly Window Syndrome. If the data sender
is receiving a Zero Window, he stops data transmis-
sion and waits for the reception of a Window Update.
To avoid possible deadlock situations, we have added
the missing Persist Timer (see subsection 2.2). On Per-
sist Timer expiry, a Window Probe is sent to ask the
data receiver for a Window Update.

3.3. TCPDump Module

The TCPDump [14] module allows for capturing the
messages which are sent and received by nodes. Cap-
tured logs can be shortened and viewed with packet
analysing tools like Wireshark [18]. TCPDump has
been extended to convert the TCP segment format of
INET (including the newly implemented TCP header
options) from/to binary (network byte order) TCP
segments. This allows for comfortable TCP signalling
analyses with external tools.

3.4. ExtInferface Module

The ExtInterface [14] module makes it possible to
connect the INET simulation environment with real IP-
based network nodes. According to [14], root privileges



client
data sender

server
data receiver

datarate = 10 Mbit/s
delay = 0.565us

PER = 0
BER = n

Figure 2. BER Test Network

are required to use the external interface. The exter-
nal interface supports IP, ICMP, UDP and SCTP mes-
sages. We have extended it to also support TCP com-
munications. This opens the way to connect the en-
hanced TCP module with a real, external TCP imple-
mentation.

4. Results

We will present the results of two example setups
in the following subsections in order to evaluate our
SACK implementation.

4.1. Performance Evaluation

The test network [17] shown in figure 2 consists of a
client (data sender) and a server (data receiver). This
setup is used to compare the TCP performance (con-
nection throughput) with SACK disabled and enabled.
All network interfaces use a Maximum Transfer Unit
of 1500 bytes, which is the most common value in IP-
based networks. The headers (for TCP, IP and PPP)
consume 48 bytes, resulting in 1452 bytes as Maxi-
mum Segment Size. The client is configured to open a
TCP connection to send 100 MB of data to the server.
A ThruputMeter [15] module on the server side is used
to measure the average connection throughput. The
link between client and server is limited to a data rate
of 10 Mbit/s.

We have varied the Bit Error Rate (BER) and
performed the simulation with TCP Reno, once with
SACK disabled and once with SACK enabled. If the
BER is above zero, a pseudo random number genera-
tor is used to compute for each packet whether the bit
error flag needs to be set. A packet with set bit error
flag is dropped by the receiving network interface. For
the statistical accuracy of the results, every simulation
configuration has been processed ten times with var-
ied seeds. The measured average connection through-
puts have been collected to calculate the mean value
for any configuration. According to our computations

Figure 3. Throughput Results

the mean values are within a confidence interval of at
least 95%. SimProcTC [5] has been used to plot the
results, which are depicted in figure 3.

When the BER is set to zero, the through-
put with and without SACK is at 9.49 Mbit/s. With
a BER of 1 ∗ 10−7, a small difference can be ob-
served. The SACK gain is here at 2.57%. Up to a
BER of 6 ∗ 10−7, the SACK gain is rising continu-
ously – however, is remaining below 10%. At a BER
of 2 ∗ 10−6, the channel utilization is distinctly re-
duced. The throughput is reduced to 2.58 Mbit/s with-
out SACK and to 3.94 Mbit/s with SACK. The SACK
gain has reached 52.68%. The following two result pairs
show a SACK gain above 50% – but with and with-
out SACK, the throughput is quite close to zero.
The presented simulation results illustrate the perfor-
mance gain that can be achieved by using the SACK
option.

4.2. Interoperability

The test network [17] shown in figure 4 consists of
four network nodes. This setup has been used to test
the interoperability with real TCP implementations.
The router has been equipped with an external inter-
face [14] to connect the simulation environment to an
external server.

The client opens a TCP connection with the exter-
nal server and sends data. At the external server, a
TCP server is running to accept the incoming data.
The external server is simultaneously connecting to the



client server

external server

router

real world
simulation

Figure 4. ExtServer Test Network

(internal) server and is sending TCP data from the
real network into the simulated network. We have used
an Iperf [10] script to realize this functionality. Both
TCP flows have been captured at the external server.
After analysing the logs we have come to the follow-
ing results:

• The implemented options have been used during
connection setup.

• The data transmission has been successful, be-
cause both receivers have acknowledged data ar-
rivals.

The presented test network has shown the interop-
erability of the enhanced TCP module with a real
TCP implementation and has demonstrated our TCP
extension of the external interface.

5. Conclusion and Outlook

In this paper, we have described our enhancements
of the TCP module, which is part of the INET frame-
work for OMNeT++. Some important features of
modern TCP implementations have been missing: the
possibility to negotiate options, a Flow Control using
a finite receiver buffer, the Persist Timer and Win-
dow Probing as well as Selective Acknowledgements.
These features have been added by us. In our perfor-
mance evaluation, we have demonstrated their useful-
ness and interoperability with real implementations us-
ing the ExtInterface. Our enhanced TCP module has
already been integrated into the INET framework and
is now accessible at [17].

References

[1] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing
TCP’s Loss Recovery Using Limited Transmit. Stan-
dards Track RFC 3042, IETF, Jan. 2001.

[2] M. Allman, V. Paxson, and W. Stevens. TCP Conges-
tion Control. Technical Report 2581, IETF, Apr. 1999.

[3] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conser-
vative Selective Acknowledgment (SACK)-based Loss
Recovery Algorithm for TCP. Standards Track RFC
3517, IETF, Apr. 2003.

[4] R. Braden. Requirements for Internet Hosts – Commu-
nication Layers. Standards Track RFC 1122, IETF, Oct.
1989.

[5] T. Dreibholz, X. Zhou, and E. P. Rathgeb. SimProcTC
– The Design and Realization of a Powerful Tool-Chain
for OMNeT++ Simulations. In Proceedings of the 2nd
ACM/ICST OMNeT++ Workshop, Rome/Italy, Mar.
2009. ISBN 978-963-9799-45-5.

[6] M. Duke, R. Braden, W. Eddy, and E. Blanton. A
Roadmap for Transmission Control Protocol (TCP)
Specification Documents. Informational RFC 4614,
IETF, Sept. 2006.

[7] K. Fall and S. Floyd. Simulation-based comparisons
of Tahoe, Reno and SACK TCP. SIGCOMM Comput.
Commun. Rev., 26(3):5–21, 1996.

[8] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An
Extension to the Selective Acknowledgment (SACK)
Option for TCP. Standards Track RFC 2883, IETF,
July 2000.

[9] M.Mathis, J.Mahdavi,S.Floyd,andA.Romanow. TCP
Selective Acknowledgment Options. Standards Track
RFC 2018, IETF, Oct. 1996.

[10] NLANR/DASTandN.Richasse. Iperf:Tool forMeasur-
ing Maximum TCP and UDP Bandwidth Performance,
2009. http://iperf.sourceforge.net.

[11] J. Postel. Transmission Control Protocol. Standards
Track RFC 793, IETF, Sept. 1981.

[12] W. Stevens. TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms. Stan-
dards Track RFC 2001, IETF, Jan. 1997.

[13] W. R. Stevens and G. R. Wright. TCP/IP Illustrated,
Volume 2: The Implementation. Addison-Wesley Pro-
fessional, 1995. ISBN 978-0201633542.

[14] M. Tüxen, I. Rüngeler, and E. P. Rathgeb. Interface
Connecting the INET Simulation Framework with the
Real World. In Proceedings of the 1st International Con-
ference on SimulationTools andTechniques forCommu-
nications,Networks and Systems (SIMUTools), pages 1–
6, Marseille/France, Mar. 2008. ISBN 978-963-9799-20-
2.

[15] A. Varga. INET Framework for OMNeT++/OMNEST
snapshot 2009-03-12, 2009. http://inet.omnetpp.org/
doc/INET/neddoc/index.html.

[16] A. Varga. OMNeT++ Discrete Event Simulation Sys-
tem, 2009.

[17] A. Varga. INET Framework for the OMNeT++
Discrete Event Simulator, 2010. http://github.com/
inet-framework/inet.

[18] Wireshark. Wireshark: The World’s Most Popular Net-
work Protocol Analyzer, 2010.

http://iperf.sourceforge.net
http://inet.omnetpp.org/doc/INET/neddoc/index.html
http://inet.omnetpp.org/doc/INET/neddoc/index.html
http://github.com/inet-framework/inet
http://github.com/inet-framework/inet

	Introduction
	The TCP Protocol
	Selective Acknowledgement
	Flow Control

	The Simulation Model
	OMNeT++ and the INET-Framework
	The INET TCP Module
	Header Extension
	SACK Option
	Flow Control Enhancements

	TCPDump Module
	ExtInferface Module

	Results
	Performance Evaluation
	Interoperability

	Conclusion and Outlook

