A Flexible and Extensible Architecture for Experimental
Model Validation

Stefan Leye
Institute of Computer Science
Albert-Einstein-Str. 21
18059 Rostock, Germany

stefan.leye@uni-rostock.de

ABSTRACT

With the rising number and diversity of validation methods,
the need for a tool supporting an easy exploitation of those
methods emerges. We introduce FAMVal, a validation ar-
chitecture that supports the seamless integration of different
validation techniques. We structure a validation experiment
into the tasks specification of requirements, configuration
of the model, model execution, observation, analysis, and
evaluation. This structuring improves the flexibility of the
approach, by facilitating the combination of methods for
different tasks. In addition to the overall architecture, basic
components and their interactions are presented. The usage
of FAMVal is illuminated by several validation experiments
with a small chemical model. The architecture has been re-
alized using the plug-in based design of the modeling and
simulation framework JAMES II.

Categories and Subject Descriptors

1.6.7 [Simulation Support Systems]: Environments; 1.6.4
[Model Validation and Analysis]; G.4 [Mathematical
Software|: Algorithm design and analysis; G.4 [Reusable
Software]

General Terms

Model validation, Simulation Experiment

Keywords
Validation, Analysis, Experiment, Flexibility, Software

1. INTRODUCTION

The importance of model validation is emphasized by a
variety of publications spanning more than 2 decades [36, 2,
3, 8] of identifying problems [19, 23, 14] and suggesting ap-
proaches for solutions [4, 38, 9]. The result of these activities
is a large number of diverse validation methods [37].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIMUTools 2010 March 15-19, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

Adelinde M. Uhrmacher
Institute of Computer Science
Albert-Einstein-Str. 21
18059 Rostock, Germany
adelinde.uhrmacher@uni-rostock.de

The plethora of validation methods alone calls for the de-
sign of a tool that seamlessly integrates these methods and
makes them available to users. However, most modeling and
simulation tools are constrained to single or specific meth-
ods, e.g., [17], and do not allow an easy extension and ex-
perimentation with different methods. In addition current
studies revealed that a better support is required, as users
often lack the required mathematical background for a sys-
tematic validation [29]. One way to tackle this problem is
structuring the validation process and identifying specific
steps that need recognition and support equally [27]. For
instance, the argument that validation lacks the scientific
rigorousness compared to verification [5] refers to the re-
quirements specification, which thus should receive more at-
tention. This is a crucial problem, since the role of validation
in complementing verification methods is undisputed [3].

Therefore, we propose the flexible and extensible architec-
ture FAMVal (Flexible Architecture for Model Validation)
which has been realized using the modeling and simulation
framework JAMES II. FAMVal exploits JAMES II’s plug-in
based structure [21, 20], and is supported by its extensive
libraries of modeling formalisms, simulation algorithms, and
analysis methods.

As a first step, we will specify the requirements for FAM-
Val in more detail. Afterward the validation process is struc-
tured and crucial tasks are identified. Furthermore, the de-
sign of FAMVal is described. The focus will be on how the
different components and their interplay support the differ-
ent tasks of the validation process and facilitate its docu-
mentation and reuse. Some central implementation design
decisions are described. A small chemical model and differ-
ent validation experiments in FAMVal shall serve as proof
of concept. The paper will conclude with a short discussion
of related work and an outlook.

2. SOFTWARE REQUIREMENTS FOR
FAMVal

Perrone et. al. [29] state that “the level of complexity
of rigorous simulation methodology requires more from net-
working researchers than they are capable of handling with-
out additional support from software tools.” This obser-
vation is likely to be applicable to any application field of
modeling and simulation, and refers to any of the activities
involved in modeling and simulation, including validation.
The problem becomes obvious when inspecting the diver-
sity of methods and strategies applicable for validation [37].
However, what requirements should a software tool fulfill to
provide additional support for the user?

First, the architecture should facilitate the realization, in-
tegration, evaluation, and use of diverse methods so to offer
potential users sound implementations of current state of
the art validation techniques. One possibility to address
this requirement is to exploit the plug’ simulate concept of
JAMES II which supports re-using parts of algorithms, ex-
tending, configuring, and evaluating algorithms [21].

Validation requirements often imply a certain class of
methods to be used. For instance, in order to identify inter-
esting points in the parameter space, parameter estimation
methods are required [15], in order to test the sensitivity
of the model for certain parameters a sensitivity analysis is
necessary [35]. Making validation requirements explicit, en-
hances the scientific rigorousness of validation [5] and forms
a basis for developing strategies that assist users in selecting
suitable methods.

The concrete application of validation methods requires
typically an in-detail knowledge about methods and param-
eters to be specified. For instance, a fractional-factorial
design for a sensitivity analysis, comprises parameters to
denote fraction, resolution, parameters for aggregating the
simulation output (e.g., by retrieving the steady-state),
count of replications, required simulation end times, etc.
However, often modelers might not be able or interested in
specifying each single parameter of each single method used
during the experiment, and prefer a more abstract view. For
instance, one modeler might want to compare his reimple-
mentation of a model in a new formalism with the original
by comparing detailed simulation trajectories, while another
modeler might want to compare his model with wet-lab data
providing more abstract information (e.g., the occurrence of
cycles). Hence, the validation architecture should support
different abstraction levels for the specification and suitable
means to translate more abstract experiment views into a
concrete format. In [17] for instance, a domain specific lan-
guage facilitates the specification and analysis of simulation
experiments; comparatively abstract specifications created
by the user are translated into a concrete format used for
analysis.

The latter plays a central role in the envisioned tool, as
the format will hold the information for executing a wide
range of validation experiments. Thereby, it should contain
the most detailed description of the experiment, in order
to properly configure and control the single steps. It also
forms the core of the experiment documentation and helps
ensuring the repeatability of validation experiments. As new
validation methods are being developed, extensions of the
format might prove necessary. Thus, it should be possible
for the format to be adapted to new needs and to accompany
the entire validation process with its different tasks.

3. THE SIX TASKS OF A VALIDATION EX-
PERIMENT

In order to structure the architecture, typical tasks of a
validation experiment have to be identified. This structuring
allows to combine different methods facing individual tasks
in a flexible manner. We distinguish six tasks in a validation
experiment [27].

The first task is the specification of requirements for the
model to be validated. Depending on the goal of the valida-
tion the requirements can lead to experiments ranging from
simple (like comparing a single simulation trajectory with

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

given data) to complex (like sweeping the parameter space
of a model). Hence, the format to represent the requirements
should be adaptable to various experiment designs. In ad-
dition, a formal description is essential in order to make it
repeatable and comparable. Since, the requirements com-
prise crucial information (like applicable methods) that are
of relevance for the following tasks, this step is the founda-
tion of the validation experiment.

The second task is the configuration, which corresponds
to the generation of test cases in software testing. Here
points in the model parameter space are selected, that need
to be investigated in order to achieve the desired information
about the validity of the model. Those parameters depend
on the model, e.g. they could be rates of chemical equations
as well as a family of model components that represent the
cell nucleus. The type of the parameter space also has an
impact on the optimization methods used.

The third task is the execution of the model. Since accu-
racy (e.g. approximation issues of numerical ODE solvers)
as well as bugs in the implementation can bias the simu-
lation results, it is important to investigate different simu-
lators and their impact. To identify interferences between
specific model and simulator parameters, a separated con-
figuration of both is required.

The fourth task is the observation, where the simulation
output results are retrieved. The challenge during this step
is to collect as much information as necessary to allow a
proper analysis of the results but as little information as
possible to save memory as well as computation costs during
the analysis. It is for instance not necessary to observe all
the variables of a model, if only one variable is of interest.

The analysis of the observed data is the fifth task, some-
times called runtime verification [6]. This part comprises
two steps: the analysis of a single simulation run (e.g., cal-
culation of the steady state) and the analysis of a set of
replications (e.g., mean of the steady states of different repli-
cations). In general, the second step is based on the results
of the first one, but occasions exist where just one of them is
necessary. If for instance no stochasticity exists in the model
and one replication is sufficient, no additional analysis of the
replication is required. On the other hand, if trajectories of
different replications have to be compared directly to calcu-
late the monte-carlo variability [28], the single trajectories
do not have to be analyzed. Various methods exist for both
steps [16, 34, 7, 12]. However, they have to be chosen care-
fully in order to produce the proper information for the final
task.

During this sixth task, i.e., the evaluation, the analysis
results are used twofold. On the one hand feedback is pro-
duced for the configuration in order to identify additional
interesting parameter combinations. On the other hand the
result of the validation experiment are presented, this may
be for instance the sensitivity of the parameters of the model
or the preparation of the data as a figure to allow a face val-
idation.

4. AN ARCHITECTURE FOR EXPERI-
MENTAL MODEL VALIDATION

As described in the previous sections, a validation tool
should support solutions for the six validation tasks. Those
solutions have to be arranged in a flexible, extensible, and
configurable way, to offer the user the ability to apply the

right method at the right time as well as to perform repeat-
able and comparable experiments. We propose the valida-
tion architecture FAMVal based on the plug-in structure of
James II [21, 20], which features flexibility, extensibility, and
configurability. In the following we will present this archi-
tecture and show how its components interact in order to
tackle the six tasks of a validation experiment.

4.1 Validation Requirements

The specification of requirements is a crucial point of each
validation experiment. To represent requirements as well as
the necessary information to execute validation experiments,
we use ParameterBlocks in JAMES II, which can be utilized
to configure models and algorithms alike. Each Parame-
terBlock is labeled with an identifier, holds a reference to
an object representing a value associated to the identifier,
and contains a set of sub-blocks, which are ParameterBlocks
themselves. This design allows a simple creation of parame-
ter configurations for hierarchical structures, by associating
each level of the structure with the corresponding level of
the ParameterBlock. So far, this way of representing pa-
rameters has been used to configure components realized as
plug-ins in JAMES II. For instance, the ParameterBlock for
a simulator using an event-queue, comprises a label denoting
the simulation algorithm, as well as a sub-block responsible
for the configuration of the event-queue.

As explained in Section 2 the base for specifying require-
ments is a structure that can store the most detailed de-
scription of the experiment configuration. ParameterBlocks
are thus well suited to represent specified requirements, due
to their high flexibility and adaptability. This can be il-
lustrated by a ParameterBlock, used to configure a valida-
tion method comparing a simulation output trajectory and a
given trajectory. The topmost block holds the reference tra-
jectory as well as a label referring to the comparison method.
In many cases this methods relies on an interpolation algo-
rithm to prepare the simulation trajectory in order to syn-
chronize its time points with those of the reference trajec-
tory. Therefore, a sub-block is required, referring to the in-
terpolation algorithm. Typically, this algorithm has its own
parameters (e.g., size of splines), which leads to sub-blocks
of the sub-block.

At the end of the specification phase, the ParameterBlock
represents a detailed hierarchical description of the experi-
ment setting, which is used to control the validation experi-
ment. The repeatability of the validation experiments is as-
sured, since modelers can exchange ParameterBlocks, reuse
them to repeat the experiments and compare their results.
Furthermore, the documentation of a validation experiment
is facilitated, since the configuration of the methods is re-
flected in the ParameterBlock. To be more easily accessible
by the user, a higher level validation specification language
should be designed which is then translated into Parame-
terBlocks for execution.

4.2 Coordination of the Validation Experi-
ment

According to the created ParameterBlocks representing
the requirements, the class BaseValidator coordinates the
tasks configuration, simulation execution, observation, anal-
ysis, and evaluation (see Figure 1). To structure the coor-
dination and to facilitate a parallel execution of the exper-
iment, the execution of those tasks is delegated to differ-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

ent components. Configuration and evaluation are tightly
coupled, due to their interplay of creating configurations
and giving feedback about the behaviour of those config-
urations. Therefore, the interaction of both tasks is handled
by one component, the ConfigurationSetValidator. Each re-
quirement represented by a ParameterBlock contains the in-
formation to configure a ConfigurationSetValidator and its
associated components. Based on those information, the
BaseValidator creates a ConfigurationSetValidator which re-
ceives the requirement, the location of the model, as well as
a list of available simulation engine configurations. This
list is used to parameterize the simulator using different
simulator settings. As a result, bias produced by simula-
tor components can be identified and therefore reduced (see
Section 4.3). The ConfigurationSetValidator creates a set
of VariablesAssignments, representing simulation configura-
tions (including model and simulator parameters) that need
to be executed. The execution and observation of those con-
figurations, is realized by an external simulation tool, which
uses the VariablesAssignments for executing the simulation
runs.

The BaseAnalyzer is the central component for the anal-
ysis of the simulation output data and has to communicate
to the simulation tool in order to inform it about required
simulation end times, replications, and to retrieve the ob-
served data in the right format for the analysis. Further-
more, the analysis results from the BaseAnalyzer are passed
to the corresponding ConfigurationSetValidator, to activate
the evaluation. For a detailed overview over the interaction
of the components see Figure 2.

Simulation System

'simulation

Parameters end Jresult

time linfo replications

BaseValidator results

ConfigurationSetValidator

BaseAnalyzer

IConfigurator

L
feedback

|Evaluator

Requirements
ParameterBlock

properties
(ParameterBlock)

analyzation
g results

Results 1

U

Figure 1: Scheme of a BaseValidator.

4.3 Configuration and Evaluation

The ConfigurationSetValidator is responsible for the con-
figuration and evaluation task of the validation experiment.
Therefore, it comprises two types of components, Config-
urator and Fwaluator. Both components are coupled to
the ConfigurationSetValidator by interfaces to maximize the
flexibility of the possible functionality. While those inter-
faces constrain the structure of input and output of the
methods in order to ensure a proper communication with the
other components, the concrete functionality of the imple-
mented method is not constrained. Furthermore, the com-
ponents are realized as JAMES II plug-in types, which offers
the opportunity to extend as well as to reuse the existing

functionality at this point. In order to follow the specifica-
tion of the validation experiment, Configurator and Evalu-
ator are configured according to the ParameterBlock given
by the BaseValidator and representing the corresponding re-
quirement.

To create the required VariablesAssignments for the Ba-
seValidator, the ConfigurationSetValidator retrieves the
model parameter configurations from the Configurator and
merges them with the list of simulator parameter configu-
rations. Thereby, each combination of available model and
simulator configuration is created. This allows the Evalu-
ator to investigate the influences of the different simulator
configurations on the behaviour of each model configura-
tion. In addition to the VariablesAssignment, the Config-
urator creates a set of ParameterBlocks (usually retrieved
from the requirement ParameterBlock) representing the de-
sired properties for the specific configuration. Those proper-
ties are required to configure the analysis step (see Section
4.4). So far, we implemented a simple Configurator, pro-
cessing a list of given VariablesAssignments as well as more
complicated Configurators for fractional-factorial or bifurca-
tion experiment designs [25]. At the moment we are working
on a Kriging [26] component and different Configurators to
realize parameter estimation strategies.

After the simulation runs of a configuration have been
executed and the output data has been analyzed, the eval-
uation process is started. The results of the analysis as well
as the corresponding parameter configurations are passed to
the Evaluator, which returns two results. Firstly, it produces
the feedback for the Configurator in order to identify new
interesting model parameter configurations. Secondly, it re-
turns a list of simulator configurations, that turned out to be
invalid (by biasing the results of the simulation runs) during
the evaluation process. These configurations are removed
from the BaseValidator’s list of simulator configurations to
prevent a further use of them. After all configurations have
been executed and analyzed, the Evaluator conducts the fi-
nal steps of the evaluation process, e.g., creating a figure for
a face validation or writing evaluation results to a database.
It is possible to create multiple Evaluators for one Configu-
rator, to allow different evaluation strategies for the same set
of configurations, whereas not every Evaluator implementa-
tion is suitable to interact with any Configurator. It was
necessary for instance to create a corresponding Evaluator
for each of the Configurator implementations mentioned be-
fore to realize the accordant design. On the other hand we
created an Evaluator wrapping a Mosan [39] visualization,
which does not depend on a Configurator and can interact
with all of them.

The division between Configurator and Evaluator allows
the flexible integration of diverse algorithms that chose in-
teresting parameter configurations. E.g., in addition to the
methods implemented so far, an optimization algorithm may
be integrated easily by creating a Configurator that calcu-
lates the configurations and returns them as VariablesAs-
signments and an Evaluator, that gives informs the Config-
urator about successful configurations based on the simula-
tion analysis results.

4.4 Analysis

The BaseAnalyzer is responsible for the coordination of
the analysis process. As described in Section 3, this task
is divided into two steps, the analysis of a single simulation

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

run and the analysis of a set of replications. Both steps
comprise loops of analysis and execution, to enable a dy-
namic adaptation of required simulation end times (for the
first step) and replications (for the second step) in order to
create sufficient simulation results for a proper analysis. To
reflect the distinction of the steps, the BaseAnalyzer com-
prises the two components, RunAnalyzer executing the first,
and ConfigurationAnalyzer executing the second one. Simi-
lar to the Configurator and Evaluator, both components are
coupled to the BaseAnalyzer by interfaces and have been
realized as plug-in types, to enable the most possible flexi-
bility, extensibility and reusability of the used methods. The
analysis highly depends on the properties, that have to be
checked. Those properties have been created by the Config-
urator (see Section 4.3). Since usually, they are an integral
part of the requirements and contain information about the
experiment configuration, they are represented as Parame-
terBlocks. They are used to configure the RunAnalyzer and
ConfigurationAnalyzer components.

Since, the output of a simulation run may be analyzed
for a set of properties (e.g., steady-states of different vari-
ables), multiple RunAnalyzers may be required during an
experiment. To structure their interaction and to facilitate a
parallel execution, all the RunAnalyzers analyzing the same
single simulation run, are coordinated by a ReplicationAn-
alyzer. When the simulation run has reached its tentative
end time and output data are available, this component is re-
sponsible for the initiation of the analysis process of its Run-
Analyzers. If a RunAnalyzer is not able to produce a clear
result, it returns the estimated end time of the simulation
run required to process a reliable analysis. The maximum of
these end times, over all RunAnalyzers is the next tentative
end time of the simulation run, which is forwarded to the
simulation tool. Thereby, a dynamic and automatic adapta-
tion of the simulation end time is possible, corresponding to
the specific needs of the analysis step. This loop is repeated
until none of the analyzers estimates a higher end time than
the actual tentative end time of the simulation run. So far,
we created eight different RunAnalyzers, including an equi-
librium analyzer as well as different analyzers to compare
simulation trajectories with given ones. Currently, we are
working on an analyzer checking LTL-formulae in trajecto-
ries, to support simulation-based model-checking [16].

If a simulation run and its analysis have been finished, the
results are passed to the corresponding ConfigurationAna-
lyzers to trigger the second step of the analysis. The results
are processed with respect to the property and the amount
of additionally required replications (leading to additional
ReplicationAnalyzers as well as associated RunAnalyzers)
is determined. If no additional replications are required
the analysis results of the ConfigurationAnalyzer are cre-
ated. The ConfigurationSetValidator uses them to trigger
the evaluation. So far, we implemented an analyzer, calcu-
lating statistical measures (e.g., mean, variance,..) based on
the results from the RunAnalyzer. We are working on an
analyzer to calculate the monte-carlo variability of a model
as well as a component corresponding to the RunAnalyzer
checking for LTL-formulae in order to realize probabilistic
simulation-based model-checking [12]. Thereby, the domain
of the variables for a given LTL-formula and simulation run
is created by the RunAnalyzer and forwarded to the Configu-
rationAnalyzer, which calculates the accordant probabilistic
domain for a set of simulations. While this analysis method

BaseValidator

addRequirement |

i ion Tool Wrapper

getNextVariablesAssignment

onfigurationSetHandler

getNextVariablesAssignment

Evaluator

getNextAnalyzer 1

A N

getNextAnalyzer

P17 getNextVariablesAssignment

1
I
1] :
T T BaseAnalyzer
| |
énalyzeRun : |
] !
; : »
[! !
h I i
I ! |
i ! |
analyzeConfiguration H i
: ; :
L] H
| |
e

1 valuateResults

evaluate

finalizeEvaluation

1
I
|
'
|
|
1
|
|
|
1
|
|
|
'
1
|
'
|
'
T
|
'
|
|
'
T
|
|
|
1
|
1
|
'
1
|

»
|
|
|

Figure 2: Sequence chart for the interaction of the BaseValidator with the associated components.

clearly differs from the ones implemented so far (which basi-
cally aggregate a trajectory into one value and calculate the
mean over a set of simulations), it is well supported by the
separation between the two analysis steps and their interac-
tion.

Simulation System

results |end [result
time [info

BaseAnalyzer

ConfigurationSetValidator

r
ReplicationfAnalyzer

I
properties| IRunAnalyzer H

fun analyzation
results

£
IConfiguration
andlyzation Analyzer replications
results

Figure 3: Scheme of a BaseAnalyzer.

Besides the required end time and the count of replica-
tions, the external simulation tool needs information about
the type and format of the data to be observed. RunAna-
lyzers put constraints on the data they can analyze. These
constraints are represented by an interface providing infor-
mation about the variable name that is in the focus of the
analysis, as well as the according data format (e.g., a list of
double values for a trajectory). Objects implementing this
interface are created for each RunAnalyzer. They are for-
warded to the simulation tool using them as base for the
instrumentation and therefore observation of the simulation
runs.

4.5 Connection to a Simulation Tool

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

BaseAnalyzer

ReplicationAnalyzer

ConfigurationAnalyzer

|
| N
analyzeRun i i

1

analyzeReplication !

i

addData
L

update

analyzeConfiguration

i
update

1
getRequiredReplications

evaluateResults

Figure 4: Sequence chart for the interaction of the
BaseAnalyzer with the analysis components.

A vital part of a validation experiment is the execution of
the model. FAMVal is based on the plug-in based structure
of JAMES II and so far JAMES II is the only simulation
tool supporting all the required features (including a strict
distinction between model and simulation engine, flexible
configuration of both, adaptable simulation run lengths and
replications, flexible instrumentation of the simulation runs,
etc.). However, we decided to offer the opportunity of ex-
changing the simulation tool. Thereby, the validation archi-
tecture offers the functionality to configure and to analyze
the simulation runs, while a wrapper is necessary to man-
age the communication between validation and simulation
tool. This strategy offers several advantages. The user can

decide which simulation tool he uses, depending on his pref-
erences and what is at hand. Furthermore, more than one
simulation tool can be used, which is beneficial if one tool
does not offer all the required functionality (e.g., support
of different simulator components) and to compare results
between tools. Finally, the simulation tool does not have
to be a simulation tool literally. The source for simulation
results could be for instance, a database holding the simula-
tion output data. This could save computation costs, since
it is not necessary to repeat simulation runs if their results
are available already.

A wrapper connecting a simulation tool to FAMVal has to
fulfill several tasks. It needs to retrieve the VariablesAssign-
ments representing the simulation configurations from the
BaseValidator, and has to forward them to the simulation
tool, in a format the system can understand. Furthermore,
it needs to pass the information about the required data for-
mat of the simulation output to the simulation tool to en-
able a proper observation. Correspondingly, the simulation
output results have to be retrieved in order to execute the
analysis process. Thereby, information about required simu-
lation end times and replications have to be communicated
to the simulation tool. In order to interact with FAMVal
the simulation tool has to support a dynamic adaptation of
simulation end times and replications, as well as a flexible
system of instrumenting simulation runs. Since the interac-
tion between FAMVal and a simulation tool is coordinated
by a wrapper, the fact which component is the active part
in the communication is kept flexible. A mix of the active
and passive part is possible, e.g., the wrapper could actively
push new simulation configurations to the simulation tool,
while the tool on the other hand actively pushes the simu-
lation output results to the wrapper, to trigger the analysis.
Thus, the communication scheme between FAMVal and the
simulation tool can be adapted flexibly to the needs of the
tool. So far, we implemented a wrapper, based on FExper-
imentVariables to communicate with the BaseFExzperiment
[20] of JAMES II. However, wrappers for additional simula-
tion tools are possible, e.g., for the statistical framework of
the ns-3 network simulator [1]. The wrapper would have the
role of the experiment controller translating the VariablesAs-
signment created by FAMVal in order to spawn simulation
instances. Furthermore it would configure the data collec-
tion according to the SimulationResutInfo objects given by
FAMVal (and the used analysis methods), while each addi-
tional replication required for the data analysis leads to a
new simulation instance. The only missing feature of the
the statistical framework is the dynamic determination of
simulation end times. However, this could be compensated
by creating additional longer runs.

S. VALIDATION EXPERIMENTS

As mentioned in the previous section, we already created
plug-ins for the components providing the validation meth-
ods. In the following we want to show, how the validation
system is used, how these components interact, and how
ParameterBlocks need to be configured, in order to realize
different validation experiments. Thereby, the focus of this
section does not lay on the experiments themselves, but on
the benefits of the validation architecture used to configure
and execute them.

5.1 Example model

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

During all of the experiments we use a model which rep-
resents reactions of a M gC'l> solution. Originally, the model
was introduced as a sample model for the stochastic -
calculus simulator SPiM [31]. As among other formalisms,
JAMES 1II also supports the stochastic m-Calculus, it was
easy to adapt for our purpose. The model comprises five
species definitions Mg, Mg", Mg®T, Cl, and C1~ and four
reactions with names i1, i2, d1 and d2 for ionization and
de-ionization of Magnesium, respectively. The rates of the
reaction are the parameters of the model.

At the beginning of each simulation run the initial amount
of M g and C particles is set to 100. During the experiments,
the count of the different particles over time is observed.

5.2 Simple Validation

The first experiment has been executed using the Sim-
pleConfigurator, processing a list of given model configura-
tions. The parameters for this configurator contain a map of
VariablesAssignments and associated ParameterBlocks rep-
resenting the properties (see Figure 5). We executed the
experiment, to measure the distances between the simula-
tion results of the JAMES II example model and the source
model executed with SPiM [32]. Therefore, we used the
given parameter setting proposed in the description of the
model (11=10.0, i2=100.0, d1=50.0, d2=5.0), to create one
VariablesAssignment. To represent the properties, we cre-
ated a ParameterBlock (see Figure 6), including a string
referring to the desired analysis method, the name of the
variable that should be analyzed, as well as a reference tra-
jectory (for the comparison), retrieved from a SPiM simu-
lation run. We chose four methods to compare simulation
trajectories, calculating the minimum, maximum, average,
and average absolute deviation (all of the methods have been
realized as RunAnalyzers). For the ConfigurationAnalyzer
we added a label referring to the StatisticalAnalyzer, to cal-
culate mean and variance of the deviations.

Requirement

Configurator

‘ SimpleConfigurator ‘ ‘ Evaluator ‘

B ‘ SimpleResultPrinter ‘
i1:10.0
2100 property
d2:5.0

Figure 5: ParameterBlock for the simple validation
experiment.

For a proper comparison of the models it is necessary, to
include some additional considerations like testing different
parameter settings. However, the focus on this experiment is
on the proof of concept of the validation architecture, which
is why we refrain from a broader investigation here.

The results of the experiment have been created by the
SimpleResult Printer, an Evaluator implementation, writing
the received analysis results to a CSV-file. Table 1 shows,
the content of that file. This variant leaves the configura-

Property

‘ RunAnalyzer ‘ ‘ ConfigurationAnalyzer ‘
Trajectory | |Deviation A . Statistical
Analyzer Type M:eozt&(§Da§ﬁ Analyzer

99

Maximum

Figure 6: ParameterBlock for a property to get the
maximum deviation between a given trajectory and
the simulation results.

min deviation 0.0
Mg max deviation 11.4
average deviation -0.16
average absolute deviation 2.63
min deviation 0.0
Mgt | max deviation 10.26
average deviation -0.15
average absolute deviation 2.35
min deviation 0.0
Mg?t | max deviation 10.63
average deviation -0.003
average absolute deviation 2.55

Table 1: Deviations between the trajectories of the
Mg particles, produced by JAMES II and SPiM.
All the deviations are averaged over the count of
replications

tion of the model as well as the interpretation of the analy-
sis results completely to the user, who would have to decide
whether the numbers are satisfying or not. For all species
the minimum deviation is 0.0, which denotes, that parts of
the trajectories of JAMES II and SPiM overlap. The maxi-
mum deviation is between 10 and 12. The distance between
the minimum and maximum deviation can be explained by
the stochasticity of the models. Time points might exist,
where the JAMES II trajectory has reached a maximum
and the SPiM trajectory has reached a minimum (and vice
versa), due to the use of different random numbers. Fur-
ther experiments with equal random number generators and
seeds (which would require including them into the Param-
eterBlock), would give more insight. Average and average
absolute deviation denote, that over the whole simulation
runs, the distance of the trajectories is small (less than 3 per-
cent of the average species counts). However, as mentioned
before, the decision, whether the results are satisfying, is left
to the user.

5.3 Sensitivity Analysis

Sensitivity analysis is a major topic of validation. Exper-
iments of this kind try to investigate the impact a change in
the parameters of the model has on its behaviour. So far,
we realized two variants of sensitivity analysis: sequential
bifurcation and regression analysis with (fractional-) facto-
rial experiment designs [25].

Sequential Bifurcation.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

The basic idea of a bifurcation experiment is to group the
parameters, according to whether a change of their value
has an impact on the behaviour of the model. Therefore,
interesting levels of the value domains of the parameters (in
most cases two: high and low) are determined. The process
of grouping the parameters is done iteratively. In the first
step the parameters are divided arbitrarily into two equally
sized groups. For both groups simulation runs are executed,
with the high and low levels of the parameters. If there
is no difference between the levels, the parameters of the
accordant group are declared as insignificant. Otherwise,
the group is divided again. This scheme is repeated until
there are only single significant parameters, which form the
result of the experiment.

Requirement

Configurator

SequentialBifurcation
Configurator

Evaluator

Variables ‘Progeﬁy‘ BifurcationEvaluator| | Threshold
i1: 9.0 -11.0 0.1
i2: 90.0 -110.0
d1: 45.0 -55.0
d2: 45 -55

Figure 7: ParameterBlock for the sequential bifur-
cation experiment.

We use this kind of experiment, to illustrate the inter-
action between Configurator and Evaluator. The Parame-
terBlock to configure the Sequential BifurcationConfigurator
contains a HashMap mapping the parameters to their lev-
els. For the example experiment we decided to set these lev-
els to 10 percent below (low) and 10 percent above (high) the
value used in the SPiM model description for each parame-
ter. We used the same properties as in the simple validation
experiment.

The Configurator holds a list of interesting parameter
groups (which initially contains one group comprising all
parameters). During an iteration step it removes the first
group from the list, splits it into two equally sized groups and
creates four VariablesAssignments (for each group low and
high parameter settings). After simulation runs and anal-
ysis have been executed, the SequentialBifurcationEvalua-
tor identifies the results of associated VariablesAssignments
(two VariablesAssignments are associated, if they contain
the same parameters but different assignments) and checks
whether their distance exceeds a given threshold. If that
is the case, the parameters are sent to the Configurator as
feedback. The Configurator adds the parameters as a group
in its list, to create new VariablesAssignments in a further
step. It terminates the creation of VariablesAssignments,
when the list is empty.

The threshold for the Evaluator has been set to 1 per-
cent, which means that if one of the results of the devia-
tions methods is more than 1 percent lower or higher than
the corresponding result of the associated assignment, the
group of parameters is marked to be significant. During the
experiment with this threshold all four parameters of the

M gCly were marked to be significant. Of course, this result
highly depends on the threshold and on the used analysis
method.

Factorial Experiment Designs.

The third experiment type we realized with the validation
architecture is a sensitivity analysis, based on a factorial ex-
periment design. The idea of a factorial design is again, to
divide the value domains of the parameters (called factors
in this context) into two (or more) levels. Based on these
levels a full-factorial design can be created, where all pos-
sible factor combinations using the two levels are executed
(similar to a boolean value table). Depending on the count
of factors, the number of factor combination can be very
high, due to the combinatorial explosion. However, under
the assumption, that some factor combinations have a neg-
ligible impact on the simulation result, this number can be
reduced. The calculation of such reduced factor combina-
tion sets is not trivial and an scientific field of its own deals
with this problem [10]. An experiment design based on a
reduced set, is called a fractional-factorial design.

ParameterBlock

‘ EactorialConfigurator ‘ ‘ Evaluator ‘
Variables Property|| Resolution || Fraction | | sensitivityEvaluator
i1: 90 -11.0 3 0
i2: 90.0 -110.0
d1: 450 -55.0
d2: 45 55

Figure 8: ParameterBlock for the factorial experi-
ment.

Property

‘ RunAnalyzer ‘

‘ ConfigurationAnalyzer ‘

BasicEquilibrium Initial QTS Statistical
Analyzer EndTime _LMQ Analyzer
0.02

Figure 9: ParameterBlock for a property to get the
equilibrium of a species.

We implemented the FactorialConfigurator to create such
designs. Besides a similar HashMap as in the bifurcation
experiment, the ParameterBlock comprises, two additional
parameters, the fraction and the resolution. The fraction
denotes the size of the subset of the full-factorial design, the
resolution denotes the degree of factor combinations that are
negligible. Based on these two parameters, a FactorialDe-
signGenerator is chosen, that calculates the design. The
FactorialDesignGenerator has been relized as a plug-in type,
to cover the variety of existing methods. So far we imple-
mented three variants, a full-factorial generator (which we

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

used during the experiments), an implementation according
to the Franklin-Bailey method [18], and one according to
Plackett-Burman [33]. Based on the design, the Configura-
tor creates the VariablesAssignments.

The corresponding Evaluator calculates the sensitivity of
the parameters based on the simulation results, by applying
a regression analysis as described in [24].

In addition to the properties used in the previous ex-
periments, we used different analysis method for our ex-
periments with the factorial designs (see Figure 9 for the
ParameterBlock). Therefore, we implemented a RunAna-
lyzer retrieving the steady-state of a simulation trajectory.
Both properties were interchangeable in the overall Parame-
terBlock, representing the requirement, which illustrates the
simple way, how the different components and methods can
be combined. During all the experiment runs (with both
properties), the model turned out to be insensitive to any of
the parameters, which is interesting keeping in mind the re-
sult of the bifurcation experiment. This gives evidence, that
the result of a validation experiment highly depends on the
chosen methods and method parameters. In addition, it un-
derlines the urgency for the preparation of experiments with
proper definitions of requirements, while supporting the ex-
periment execution by offering a broad variety of methods.

5.4 Face Validation with Mosan

During all of the experiments, we added the parameters
for an additional evaluator to the requirements. Thereby,
we enabled the evaluation of the simulation results with
the MosanFvaluator, an Evaluator component wrapping the
functionality of Mosan [39]. Mosan is a visualization tool for
experiment results, in the context of systems biology. Figure

Figure 10: The result of an evaluation with Mosan.

10 shows an example for a Mosan visualization. In the upper
left corner, a graph is shown representing the model. In the
lower part of the model an overview over the trajectories of
events and species is given. In the upper right corner more
details are given about a specific trajectory. User interaction
in one of the views, is reflected in the other views as well.
For instance, if a user selects a species in the graph, the ac-
cording trajectory is highlighted in the trajectory overview,
which facilitates the browsing through the experiment re-
sults. The additional evaluation strategy is possible due to
the high flexibility of the validation architecture, with re-
spect to methods as well as to configurability. Furthermore,
the opportunity to execute different evaluation strategies for
the same set of configurations is exploited, by realizing a vi-

sual as well as an automated evaluation of the experiments.

6. RELATED WORK

BIOCHAM [17] is a framework for the modeling and anal-
ysis of biochemical systems. It supports the simulation of
differential equations, querying in temporal logic, and op-
timization methods for the model parameters. These three
techniques cover the validation tasks: configuration, simula-
tion, analysis, and evaluation. Requirements are defined in
temporal logics. Since the techniques are tightly coupled and
the simulation runs produce exactly the output the analysis
step requires, no additional effort has to be put into the con-
figuration of the observation. However, this tight coupling
reduces the flexibility. While BIOCHAM is well suited to ex-
ecute simulation-based model-checking experiments, it does
not support the full spectrum of validation techniques (e.g.,
factorial experiment designs).

In [22] the authors describe a system for the automatic
output analysis of discrete event simulations, including the
estimation of required replications and simulation end times.
Therefore, they propose an analyzer, sharing similarities,
with the BaseAnalyzer and the associated components. At
the beginning of the analysis process (and before the execu-
tion), the user determines whether a set of replicated simu-
lation runs or one single long run shall be executed. In both
cases, the user is then asked whether the warm-up period
in the simulation output data has to be identified, which is
done by the Warm-up Analyzer. Afterward, depending on
the case, the count of required replications, or respectively
the run duration is determined by suitable tools. The whole
structure resembles the idea of dividing the analysis of a sin-
gle run and a set of runs as we realized by separating the
RunAnalyzer and the ConfigurationAnalyzer. However, the
separation is realized very strictly, since the dynamic adap-
tation of run length and replication count cannot be com-
bined. While this strategy may be appropriate for models,
where the simulation runs reach a steady-state, it might not
be useful for models with a less predictable behaviour. For
instance events that occur rather late during the simulation
run, but under specific conditions which highly depend on
the initial stochastic behaviour of the model, could only be
detected by adapting simulation end times and replication
counts. Here, it could be necessary to have long simulation
runs (to trigger the event) and many replications (to execute
runs were the conditions are met). All three strategies (one
long run, many replications, or a combination of both) can
be realized with the BaseAnalyzer component of FAMVal.

SWAN Tools [30] offers a five-step workflow to guide the
user through a simulation experiment. The first step is
the configuration of the simulation parameters, e.g., RNG
seeds and simulator components. During the second step,
the model parameters are defined. The third step executes
the simulation runs, based on interesting configurations and
required replications. The fourth and fifth step include the
analysis of the simulation results and the plotting of them.
This scheme lays special focus on the configuration of model
and simulation. However, the experiment is executed with
just one simulator setting, which could bias the results. Fur-
thermore, it is not possible to adapt the simulation end time,
if the analysis process needs more data (e.g., when the warm-
up phase of the simulation run is not finished).

7. CONCLUSION AND OUTLOOK

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

We introduced FAMVal, an architecture for experimental
model validation. It is based on the six tasks of a validation
experiment, specification of requirements, configuration of
the model, model execution, observation, analysis, and eval-
uation. FAMVal tackles the emerging need of supporting
modelers during the validation step(s) of the modeling and
simulation process. The architecture comprises the compo-
nents BaseValidator, ConfigurationSetValidator, BaseAna-
lyzer, and ReplicationAnalyzer to coordinate the experiment
as well as the components Configurator, Evaluator, RunAn-
alyzer, and ConfigurationAnalyzer to provide the methods
and techniques required for a validation experiment. The
latter have been realized as JAMES II plug-in types to max-
imize flexibility and extensibility of the architecture and are
coupled to the architecture by interfaces to avoid constrain-
ing the possible functionality. The definition of validation
requirements in connection with the configuration of the ex-
periment has been realized as ParameterBlocks.

Furthermore, we described example experiments, includ-
ing simple validation experiments, sensitivity analysis, as
well as face validation, to illustrate the power of the pre-
sented approach.

Future work will deal with adding new functionality by
implementing additional plug-ins. Therefore, we are work-
ing on a RunAnalyzer checking for LTL-formulae in sim-
ulation trajectories and a ConfigurationAnalyzer, comput-
ing the probabilities that an LTL-formula is true for a set
of (replicated) simulation runs. Both components are used
to allow a (probabilistic) simulation-based model-checking.
Furthermore, a ConfigurationAnalyzer is being developed
that calculates the monte-carlo variability of a model. This
component is based on methods from Bioinformatics [13]
and social sciences [11] to retrieve the distance of strings
adapted to compare simulation trajectories. To explore the
parameter space of a model Configurators and Evaluators
will be implemented, inspired by optimization methods.

Besides additional validation techniques and methods, fur-
ther improvements are required. While ParameterBlocks are
sufficiently flexible and adaptable to hold information about
diverse validation requirements and to support a correspond-
ing automatic configuration of experiments, they might not
be the most convenient way to formalize the requirements
for a user. Relief could be provided by a language to spec-
ify requirements in. A specific challenge for this language
is that it should be adaptable to the specific level of ab-
straction in which the user would like to formalize his or her
requirements for validation. In addition, the translation to
detailed ParameterBlocks independently of the chosen ab-
straction level should be possible.

8. ACKNOWLEDGMENTS

This research is sponsored by the German research foun-
dation (DFQG).

9. REFERENCES

[1] ns-3 reference manual. Technical report, ns-3 Project,
http://www.nsnam.org/docs/release/manual.pdf,
2009.

[2] O. Balci. Verification validation and accreditation of
simulation models. In WSC, pages 135-141, 1997.

3]

[4]

[11]

[12]

[13]

18]

[19]

[20]

O. Balci. Verification, validation, and certification of
modeling and simulation applications. In WSC, pages
150158, 2003.

0. Balci and R. G. Sargent. A methodology for
cost-risk analysis in the statistical validation of
simulation models. Commun. ACM, 24(4):190-197,
1981.

G. Batt, J. T. Bradley, R. Ewald, F. Fages,

H. Hermans, J. Hillston, P. Kemper, A. Martens,

P. Mosterman, F. Nielson, O. Sokolsky, and A. M.
Uhrmacher. Working groups’ report: The challenge of
combining simulation and verification. In Dagstuhl
Seminar Proc. 06161: Simulation and Verification of
Dynamic Systems, 2006.

S. Bensalem and D. A. Peled, editors. Runtime
Verification. Springer, 2009.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time
Series Analysis: Forecasting and Control. John Wiley
& Sons, 1976.

D. Brade. A Generalized Process for the Verification
and Validation of Models and Simulation Results. PhD
thesis, Universitat der Bundeswehr Miinchen, 2004.
R. Butler, A. Geser, J. Maddalon, and C. Munoz.
Formal analysis of air traffic management systems:
The case of conflict resolution and recovery. In WSC,
pages 906-914, 2003.

J. Chen, D. X. Sun, and C. F. J. Wu. A catalogue of
two-level and three-level fractional factorial designs
with small runs. International Statistical Review /
Revue Internationale de Statistique, 61:131-145, 1993.
W. Dijkstra and T. Taris. Measuring the agreement
between sequences. Sociological Methods Research,
24:214-231, 1995.

R. Donaldson and D. Gilbert. A model checking
approach to the parameter estimation of biochemical
pathways. In CMSB, pages 269-287, 2008.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological sequence analysis: Probabilistic models of
proteins and nucleic acids. Cambridge University
Press, 1998.

B. Edmonds and D. Hales. Replication, replication
and replication: Some hard lessons from model
alignment. J. Artificial Societies and Social
Simulation, 6(4), 2003.

K. H. Elster. Modern Mathematical Methods of
Optimization. Wiley VCH, 1993.

F. Fages and A. Rizk. On the analysis of numerical
data time series in temporal logic. In CMSB, pages
48-63, 2007.

F. Fages and S. Soliman. Formal cell biology in
biocham (tutorial). In Formal Methods for
Computational Systems Biology, pages 54-80, 2008.
M. F. Franklin and R. A. Bailey. Selecting defining
contrasts and confounded effects in p"~"" experiments.
Technometrics, 27:165-172, 1977.

J. M. Galan and L. R. Izquierdo. Appearances can be
deceiving: Lessons learned re-implementing axelrod’s
‘evolutionary approach to norms’. Journal of Artificial
Societies and Social Simulation, 8(3), 2005.

J. Himmelspach, R. Ewald, and A. M. Uhrmacher. A
flexible and scalable experimentation layer for JAMES

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8833
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8833

21]

(22]

23]

[24]

25]

(26]

27]

(28]

29]

30]

(31]

32]

33]

(34]

(35]

(36]
(37]

(38]

(39]

I1. In WSC, pages 827-835, 2008.

J. Himmelspach and A. M. Uhrmacher. Plug’n
simulate. In Spring Simulation Multiconference, pages
137-143. IEEE Computer Society, March 2007.

K. Hoad, S. Robinson, and R. Davies. Automating
discrete event simulation output analysis - automatic
estimation of number of replications, warm-up period
and run length. In Simulation Society Workshop, 2009.
L. R. Izquierdo and J. G. Polhill. Is your model
susceptible to floating-point errors? Journal of
Artificial Societies and Social Simulation, 9(4):4, 2006.
J. P. Kleijnen. Simulation experiments in practice:
statistical design and regression analysis. Journal of
Simulation, 2:19-27, 2008.

J. P. C. Kleijnen. Design of experiments: Overview. In
WSC, pages 479-488, 2008.

J. P. C. Kleijnen. Kriging metamodeling in simulation:
A review. Furopean Journal of Operational Research,
192(3):707-716, 20009.

S. Leye, J. Himmelspach, and A. M. Uhrmacher. A
discussion on experimental model validation. In
UKSIM, pages 161-167, 2009.

G. H. Orcutt, S. Caldwell, I. W. Richard, S. Franklin,
G. Henrricks, G. Peabody, J. Smith, and S. Zedlewski.
Policy exploration through microanalytic simulation.
Rowman & Littlefield, 1976.

L. F. Perrone, C. Cicconetti, and G. S. andBryan

C. Ward. On the automation of computer network
simulators. In SIMUTools, 2009.

L. F. Perrone, C. J. Kenna, and B. C. Ward.
Enhancing the credibility of wireless network
simulations with experiment automation. In Workshop
on Selected Topics in Mobile and Wireless Computing,
pages 631-637, 2008.

A. Phillips and L. Cardelli. A correct abstract
machine for the stochastic pi-calculus. Electronic
Notes in Theoretical Computer Science, 2004.

A. Phillips and L. Cardelli. Efficient, correct
simulation of biological processes in the stochastic
pi-calculus. In CMSB, pages 184-199. Springer, 2007.
R. L. Plackett and J. P. Burman. The design of
optimum multifactorial experiments. Biometrika,
33:305-25, 1946.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical recipes - The art of
scientifc computing. Cambridge University Press, 3rd
edition, 2007.

T. J. Santner, B. J. Williams, and W. 1. Notz. Design
and Analysis of Computer Experiments. Springer,
2003.

R. G. Sargent. Validation of simulation models. In
WSC, pages 497-503, 1979.

R. G. Sargent. Verification and validation of
simulation models. In WSC, pages 157-169, 2008.

R. E. Shannon. Tests for the verification and
validation of computer simulation models. In WSC,
pages 573-577, 1981.

A. Unger and H. Schumann. Visual support for the
understanding of simulation processes. In Proceedings
of IEEE Pacific Visualization Symposium, 2009.

